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Abstract
Maternal immune activation (MIA) has been identified as a causal factor in psychiatric disorders by epidemio-
logical studies in humans and mechanistic studies in rodent models. Addressing this gap in species between mice
and human will accelerate the understanding of the role of MIA in the etiology of psychiatric disorders. Here, we
provide the first study of MIA in the ferret (Mustela putorius furo), an animal model with a rich history of
developmental investigations due to the similarities in developmental programs and cortical organization with
primates. We found that after MIA by injection of PolyIC in the pregnant mother animal, the adult offspring
exhibited reduced social behavior, less eye contact with humans, decreased recognition memory, a sex-specific
increase in amphetamine-induced hyperlocomotion, and altered gut microbiome. We also studied the neuro-
physiological properties of the MIA ferrets in development by in-vivo recordings of the local field potential (LFP)
from visual cortex in five- to six-week-old animals, and found that the spontaneous and sensory-evoked LFP had
decreased power, especially in the gamma frequency band. Overall, our results provide the first evidence for the
detrimental effect of MIA in ferrets and support the use of the ferret as an intermediate model species for the study
of disorders with neurodevelopmental origin.
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Significance Statement

Maternal immune activation (MIA) has been adopted in the rodent model to study neurodevelopmental disorders
such as schizophrenia. However, neurodevelopmental programs differ quite substantially between mice and
humans. The ferret has a rich history for the study of neurodevelopment due to its unique advantages that
combine short gestation time with the emergence of sophisticated cortical organization during development. The
present study found that MIA leads to a range of behavioral abnormalities as well as altered gut microbiome in
adult ferrets. Notably, we observed impaired brain oscillations in these animals in early development. Our results
lay the foundation for the translational study of neurodevelopmental disorders in ferrets.
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Introduction
Environmental factors such as maternal infection during

early development contribute to the etiology of many
psychiatric disorders such as autism spectrum disorder
and schizophrenia (Grabrucker, 2013; Murray et al., 2017).
Epidemiological studies show that the risk of psychiatric
disease increases in the offspring after maternal illness
during pregnancy (Mednick et al., 1988; Brown et al.,
2004; Byrne et al., 2007; Atladóttir et al., 2010; Abdallah
et al., 2012; Zerbo et al., 2013). The elevated risk is
associated with the activation of the maternal immune
system (Jarskog et al., 1997; Gilmore and Jarskog, 1997;
Urakubo et al., 2001; Brown et al., 2004; Gilmore et al.,
2004, 2005; Smith et al., 2007; Abdallah et al., 2012; Choi
et al., 2016). These observations sparked researchs of
maternal immune activation (MIA) in animals to study the
effect of such a prenatal perturbation on brain develop-
ment in the context of neurodevelopmental disorders.
These studies showed a broad range of behavioral, neu-
roanatomical, and neurochemical changes as a conse-
quence of MIA and revealed the underlying mechanisms,
such as changes of the maternal and fetal cytokines,
altered stress pathways, and deficits of certain types of
interneurons (Urakubo et al., 2001; Gilmore et al., 2005;
Boksa, 2010; Patterson, 2011; Piontkewitz et al., 2012;
Kneeland and Fatemi, 2013; Knuesel et al., 2014; Meyer,
2014; Reisinger et al., 2015; Estes and McAllister, 2016).

Most of the MIA animal studies, however, focus on
rodents. To amplify translational relevance, it is necessary
to verify whether the results can be generalized across
species. Recent studies confirmed that MIA also elicits
some behavioral deficits (Willette et al., 2011; Bauman
et al., 2014; Machado et al., 2015) and anatomic abnor-
malities (Short et al., 2010; Weir et al., 2015) in juvenile
rhesus monkeys. However, the specific phenotypes found
in the monkeys were distinct from those found in rodents,
suggesting species differences of the effects of MIA. Fur-
thermore, while MIA in mice generally results in large
effects, prenatal infections in humans do not have the
same consistent and pronounced effects. Many factors,
like the genetic background and the vulnerability to en-
vironmental insults, may contribute to this difference
(Meyer, 2014), thus emphasizing the importance of the

model to be verified in species with a more heteroge-
neous genetic background as well as a longer develop-
ment period.

The domestic ferret has been widely used in studies of
neurodevelopment, brain diseases and immunology. Fer-
rets are extremely altricial animals. Their neurodevelop-
ment in the first four postnatal weeks are equivalent to the
last trimester of pregnancy in humans (Clancy et al., 2001;
Medina et al., 2005). This is the main reason why the ferret
is used to study the development of visual system (Chap-
man and Stryker, 1993; Li et al., 2008; Smith et al., 2015).
Furthermore, the ferret cortex is smooth at birth but starts
to fold (gyrification) from postnatal day (P)10 (Borrell and
Reillo, 2012; Sawada and Watanabe, 2012; Knutsen et al.,
2013), making ferrets particularly suitable for studies of brain
trauma and other insults during development (Medina et al.,
2005; Empie et al., 2015; Trindade et al., 2016; Schwerin
et al., 2017). With an immune system similar to human,
ferrets are also widely used to study the immune response
to virial infections (Belser et al., 2011, 2016). The ferret has
a well-defined prefrontal cortex (Duque and McCormick,
2010), which makes it suitable to study cognition. Ferret
are social animals and have shown promise for the study
of socio-cognitive functions (Hernádi et al., 2012). Finally,
ferrets have a moderate gestation time (�41 d) and rela-
tive large litter size (8–18; Ball, 2006) compared to mon-
keys.

Here, we studied the effect of MIA on the adult ferret
offspring. We adopted behavioral tests that have been
used in rodents to model the behavior construct of several
neurodevelopmental disorders (Meyer, 2014; Estes and
McAllister, 2016). We also used some ferret-related tests
to measure changes in cognitive and social behaviors
(Poole, 1972; Hernádi et al., 2012). To further investigate
the effect of MIA and its possible underlying mechanisms,
we also performed preliminary studies of the gut micro-
biome in adults and brain oscillatory activity in the juvenile
animal.

Materials and Methods
Animals

Twelve pregnant ferrets (Mustela putorius furo) were
acquired at the gestational age of day 21–24 (G21–G24)
from Marshall BioResources Inc. and housed individually.
At G30, they were randomly assigned to receive either 10
mg/kg PolyIC (polyinosinic:polycytidylic acid, potassium
salt; Sigma-Aldrich; dissolved 10 mg/ml in PBS) or 1
ml/kg PBS by intraperitoneal administration under anes-
thesia introduced by 4–5% isoflurane then sustained by
1–2%. To confirm the activation of the immune system,
rectal temperature was measured immediately before and
3 h after the injection. Blood samples (0.5 ml) were drawn
from the jugular vein at the same time points. Serum
cytokine levels (IL-2, IL-6, and TNF�) were determined by
the University of North Carolina at Chapel Hill Animal
Clinical Chemistry and Gene Expression Laboratory using
multiplexed biomarker immunoassays (Luminex MAGPIX
system, Luminex Inc., using the canine cytokine kit). The
detection sensitivities (mean � 2 SD) were 3.5 pg/ml for
IL-2, 3.7 pg/ml for IL-6, and 6.1 pg/ml for TNF�. Ferret
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offspring (kits) were born at �G40–G41. The kits were
kept with their mother until weaning at P42, when they
were separated into cages by sex. The males were single-
housed at approximately three to four months old when
they became progressively aggressive and caused le-
sions when fighting each other (Ball, 2006). To minimize
the effect of single-housing of the males on their behavior,
their cages were close to each other to allow visual,
auditory, and olfactory interactions, and enrichment was
provided. The female offspring were group-housed with
three to four animals per cage. The offspring of three
pregnant ferrets receiving PolyIC were used for the elec-
trophysiology study. Another nine litters (four receiving
maternal PolyIC injections and five receiving PBS injec-
tions) were kept until the age of six months for the inves-
tigation of behavior and microbiome. We excluded one
litter of kits since the jill had very high level of cytokines
(�2000 pg/ml for all factors) at baseline before the PolyIC
injection. As a result, a total twelve kits (four males and
eight females) were used in the electrophysiology study,
and a total of forty-five kits were used in the behavioral
study (PolyIC: 10 males and 15 females, PBS: 11 males
and nine females; for detailed litter information, see
Table 1). The pregnant ferrets and their kits were housed
in a 16/8 h light/dark cycle throughout the pregnancy and
nursing periods to ensure the same breeding season
cycle as maintained by the supplier. After weaning the kits
were turned to 12/12 h light/dark cycle. All procedures
were approved by the University of North Carolina at
Chapel Hill–Chapel Hill Institutional Animal Care and Use
Committee (UNC-CH IACUC) and in compliance with the
guidelines set forth by the NIH (NIH Publications No.
8023, revised 1978) and United States Department of
Agriculture.

Experimental design of the behavioral tests
When the offspring reached the age of six months, four

behavioral tests were performed in the following order:
open field exploration, novel object recognition, social
interaction, amphetamine-induced hyperlocomotion. Dif-
ferent tests were conducted on separate days. We com-
pleted the investigation of the females after finishing the
above tests because female ferrets usually begin estrus at

the age of seven months. The estrus requires immediate
medical actions (spay or gonadorelin administration) to
prevent serious health consequences, but any of these
treatments may inevitably complicate the interpretation of
the behavioral results. Additional four behavioral tests
were conducted on the remaining males: MK-801-in-
duced hyperlocomotion, engagement with salient stimu-
lus, eye contact tolerance, and adaptation to repeatedly
auditory stimuli. To minimize the effects of dopaminergic
sensitization by amphetamine or MK-801 on subsequent
tests, at least one month elapsed before the next test was
performed. We had also tried the auditory startle and the
pre-pulse inhibition test; however pilot results indicated
that ferrets do not exhibit any easily observable responses
on the startle sound (50-ms pulse of 120 dB SPL). All tests
were performed in a well-illuminated 1.5 � 1.5 m2 arena
unless specified. The arena was cleaned with 70% etha-
nol between tests on different animals. The tests were
conducted by experimenters blind to the group member-
ship of the animals.

Open field exploration
The animal was placed in the arena and allowed to

freely explore for 15 min. The activity within the arena was
captured by a top-mounted camera (Microsoft LifeCam
Cinema 720p HD Webcam, 30 Hz frame rate).

Novel objection recognition
The animal was first introduced into the arena for 3 min

to acclimate. Then the learning phase began: the animal
was temporally removed from the arena, and two identical
objects were placed into two opposite corners of the
arena and 15 cm away from the walls. Then the animal
was placed back to the arena for 5 min. The recall phase
started two and half hours after the learning phase. One of
the two objects was replaced with a novel object. The
animal was placed in the cage for 5 min and its interaction
with the objects was video recorded. The novel object
recognition is characterized as the time the animal spends
interacting with the novel object minus the time interact-
ing with the familiar one. Two types of objects (black
dumbbell and green kettlebell) were used in the test. The
identity of the novel object and the novel object location
were randomized and balanced across animals of the two
treatment groups. All objects were cleaned with 70%
ethanol between testing phases.

Social interactions
In the acclimating phase, two identical cages were

placed in two sides of the arena and 15 cm away from the
walls. The cages were 49 � 33 � 26 cm3 (L � W � H) and
had “barred windows” at all four sides. The animal was
placed in the arena for 10 min before temporally removed
from the arena. Then a stranger ferret (not used in the
study) with the same sex was placed randomly in one of
the cages. The test animal was placed back to the arena
for 10 min (sociability test phase). The sociability is char-
acterized as the time the test animal interacts with the
cage containing the stranger animal minus the time the
test animal interacts with the empty cage. Then, another
stranger animal was placed in the other cage. And the test

Table 1. Information of the animals used in this study

# of offspring
Litter # Treatment Study Male Female
1 PolyIC Electrophysiology 1 3
2 PolyIC Electrophysiology 0 4
3 PolyIC Electrophysiology 3 1
4 PolyIC Behavior 1 3
5 PolyIC Behavior 1 2
6 PolyIC Behavior 3 7
7 PolyIC Behavior 5 3
8 PBS Behavior 2 2
9 PBS Behavior 2 2
10 PBS Behavior 4 3
11 PBS Behavior 3 2
12a PBS Excluded 4 1

a The litter was excluded from further analysis because of high serum cyto-
kine levels at baseline before injection.
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animal was placed to the arena for 10 min (social prefer-
ence test phase). The social preference is characterized
as the time the test animal interacts with the cage con-
taining the new animal minus the time it interacts with the
cage containing the animal that was previously intro-
duced. The order of the stranger animals put in the test
were randomized and balanced across animals of the two
treatment groups. For randomly half of the animals tested,
we switched the locations of the cage that contained the
familiar animal or the stranger animal in the social prefer-
ence test. The purpose of this manipulation was to dis-
associate the preference to a new animal versus the
preference to an animal in a new location. However, no
obvious preference to new animal locations was observed
so we grouped the conditions of cage exchanging in
further analysis. All cages were cleaned with 70% ethanol
between tests.

Amphetamine-induced hyperlocomotion
After acclimation in the arena, the animal was injected

intraperitoneally with 1 ml/kg saline before being placed
back to the arena for 1 h. Next, the animal was injected
intraperitoneally with 1 mg/kg D-amphetamine (hemisul-
fate salt, Sigma-Aldrich; dissolved 1 mg/ml in saline) and
was put back into the arena for 2 h. The activity of the
animal was video recorded.

MK-801-induced hyperlocomotion
The configuration of this assay was similar to the

amphetamine-induced hyperlocomotion test expect that
we injected the animals intraperitoneally with 0.15 mg/kg
MK-801 [(�)-MK-801 hydrogen maleate, Sigma-Aldrich;
dissolved 0.15 mg/ml in saline].

Engagement with salient stimulus
This naturalistic attention test was conducted in the

home cage in the animal facility, which is a cage with
transparent walls all around. One experimenter stood in
front of the cage. The test started once the animal at-
tended and approached the experimenter. The experi-
menter made sounds by rattling a chain of keys or by a jar
containing colorful metal pins to attract attention. If the
animal approached and explored the sound source for a
few seconds, the experimenter would move the keys or jar
to a new position around the cage to see whether the
animal could keep attending and following the sound
source. If the animal failed to attend and follow the relo-
cated sound source after a few seconds, the experi-
menter put it back closer to make the animal engaged
again. The test lasted for 2 min, and the behavior of the
animal was videotaped for subsequent scoring.

Eye-contact tolerance
The eye-contact test was also conducted in the animal

facility. One experimenter took the animal out from the
housing cage and held the animal at the level of the
experimenter’s face and �25 cm away. The experimenter
tried to attract attention by talking and making facial
expression. The test lasted for 30 s, and the behavior of
the animal was videotape by a head-mounted camera for
subsequent scoring.

Adaptation to repeated noises
The test was adopted from a previous study (Poole,

1972) and was conducted in an 80 � 80 cm2, sound-
insulated and well-illuminated box. Enrichments including
shoe covers, papers, and juggle balls were placed inside
to keep the animals active. The animal was acclimated in
the box for 45 min. Then a 5-s clip of paper crackling
sounds was played once per minute for 40 min. The
intersound interval was set to vary from 45 to 75 s to
reduce expectation. The sound was played by a speaker
mounted on one side of the wall of the box. The activity of
the animal within the box was captured by a top-mounted
camera.

Microbiome sample collection and sequencing
Stool samples were collected from twenty randomly se-

lected ferrets used above (balanced for sex and group, five
males and five females from the PolyIC group and five males
and five females from the PBS group) when they became
adult (six months) and before the start of any behavioral
tests. The samples were collected in the morning after mov-
ing the animals to freshly disinfected cages. The inner part of
the stool without any mucosae was separated immediately
after defecation, frozen in dry ice-ethanol bath, and stored in
-80°C. The 16S rDNA amplicon sequencing was performed
at the University of North Carolina Microbiome Core Facility
(Chapel Hill, NC). In brief, DNA was extracted from the stool
contents by MagMAX Total Nucleic Acid Isolation kit
(Thermo Fisher Scientific); 12.5 ng of total DNA was ampli-
fied using primers consisting of the locus-specific se-
quences targeting the V3-V4 region of the bacterial 16S
rDNA (Edwards et al., 1989; Fierer et al., 2008; Caporaso
et al., 2011). Primer sequences contained overhang adapt-
ers appended to the 5’ end of each primer for compatibility
with Illumina sequencing platform. The complete sequences
of the primers were: forward: 5’ TCGTCGGCAGCGTCA-
GATGTGTATAAGAGACAG GTGCCAGCMGCCGCGGTAA
3’; and rewind: 5’ GTCTCGTGGGCTCGGAGATGTG-
TATAAGAGACAGGGACTACHVGGGTWTCTAAT 3’.

Master mixes contained 12.5 ng of total DNA, 0.2 �M of
each primer and 2x KAPA HiFi HotStart ReadyMix (KAPA
Biosystems). The thermal profile for the amplification of
each sample had an initial denaturing step at 95°C for 3
min, followed by a cycling of denaturing of 95°C for 30 s,
annealing at 55°C for 30 s, and a 30 s extension at 72°C
(25 cycles), a 5 min extension at 72°C and a final hold at
4°C. Each 16S amplicon was purified using the AMPure
XP reagent (Beckman Coulter). In the next step, each
sample was amplified using a limited cycle PCR program,
adding Illumina sequencing adapters and dual�index bar-
codes (index 1(i7) and index 2(i5); Illumina) to the amplicon
target. The thermal profile for the amplification of each
sample had an initial denaturing step at 95°C for 3 min,
followed by a denaturing cycle of 95°C for 30 s, annealing
at 55°C for 30 s and a 30 s extension at 72°C (eight
cycles), a 5-min extension at 72°C, and a final hold at 4°C.
The final libraries were again purified using the AMPure
XP reagent (Beckman Coulter), quantified, and normalized
before pooling. The DNA library pool was then denatured
with NaOH, diluted with hybridization buffer and heat
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denatured before loading on the MiSeq reagent cartridge
(Illumina) and on the MiSeq instrument (Illumina). Auto-
mated cluster generation and paired–end sequencing
with dual reads were performed according to the manu-
facturer’s instructions.

In vivo electrophysiological recording
Multi-electrodes recording were performed at P22–P50

following the same procedure as in our previous study (Li
et al., 2017). Briefly, the surgery for implanting the elec-
trode arrays was performed one to three d before the
recording. Anesthesia was induced with 4–5% isoflurane
then maintained by 1.5–3% isoflurane in 100% medical
grade oxygen. Lidocaine (2%) was used for topical anal-
gesia and furosemide (5%, 0.04 ml/kg) was used to pre-
vent cerebral edema. The electrocardiogram, breathing
rate, and body temperature were monitored throughout
the surgery to maintain deep general anesthesia. Body
temperature was maintained within 36–38°C by hot-snap
pads and a water heating blanket. Animals were fixed in a
stereotaxic frame (David Kopf Instruments). The craniot-
omy was made over visual cortex located 1–3 mm anterior
from lambda and 6–9 mm lateral from midline. The dura
and pia were removed. A 2 � 8 electrode array (Innovative
Neurophysiology; 1-M� impedance, 200-�m spacing,
0.5-mm shorter low-impedance reference electrode) was
lowered down into the cortex until spikes or local field
potential (LFP) signals were recorded. The array was then
fixed to the skull by dental cement and bone screws. After
surgery, the kit was returned to the litter. The body weight
was measured twice a day for the following days to
ensure proper recovery. Acetaminophen (Children’s Tyle-
nol, 16 mg/kg) was administrated orally twice per day for
at least 3 d after surgery for pain alleviation.

Recordings took place in a light-insulated ferret cage
with bedding. Spontaneous activity was recorded when
the animal freely moved in the cage for 10–15 min. Then
visual-evoked activity was recorded when visual stimuli
were displayed by four computer-controlled LED lights
positioned in each corner of the cage. Each stimulus was
500 ms in duration, and it was repeated 100–200 times.
Each recording session lasted less than 1 h. The neural
signal recorded from the electrode arrays were amplified
and digitized by a light-weight head-stage (Intan; RHD2132,
20-kHz sampling rate). The signal was transmitted to an
electrophysiology acquisition system (Intan, RHD2000)
and then to a computer for post hoc analysis. An infrared
sensitive camera simultaneously recorded the behavior of
the animal. The video and the neural recording data were
synchronized by a computer-controlled infrared LED light.
Immediately after recordings, animals were euthanized
with an overdose of sodium pentobarbital and perfused
with 0.1 M PBS followed by 4% formaldehyde. The brain
was extracted and sliced to reconstruct the electrode
tracks.

Data analysis of the behavioral data
The videos recorded in the behavior test were pro-

cessed by EthoVision software (Noldus). Locomotion and
location data were extracted for open field and the am-
phetamine and MK-801 induced hyperlocomotion tests.

To study the preference of the animal to stay in the center
versus periphery in the open field, the center region was
defined as the center 70 � 70 cm2 area, which was 40 cm
away from the wall, approximating the body length of an
adult male ferret. We used the BORIS software (Friard and
Gamba, 2016) to manually log behavioral events in the
following tasks: novel object recognition, social interac-
tion, engagement with salient stimuli, eye-contact toler-
ance, and responses to repeated noises. BORIS enables
frame-by-frame analysis of a video and labeling the start
and end time of an event. For the videos of the novel
object recognition task, we logged the timing when the
animal moved their nose to actively explore either of the
objects. For the social interaction videos, we logged the
timing when the animal explored either of the cages. For
logging the videos of engagement with salient stimuli, we
characterized the attention/reaction to the stimuli using
the following scheme: 1 for when an animal paid no
attention to the stimuli and engaged in other behaviors, 2
for when an animal attended the stimuli by moving its
head, 3 for when an animal moved to follow the stimuli, 4
for when an animal was fully engaged with the stimuli and
tried to scratch it. For the eye-contact tolerance test, we
detected the eye contacts which were defined as when
the animals orientated and maintained their gaze toward
the head-held camera for at least 300-ms. For the auditory
attention test, we characterized the behavioral responses to
each repetition of sound as “attention response,” “partial
response,” or “no response” using the criteria from a
previous study (Poole, 1972). Attention response was
defined as when the animals raised their neck, held their
head at 90° to the body and pricked their ears. Partial
response was defined as when the animal showed partial
but not full attention responses. The logging of the videos
was performed by an experimenter blind to the group
identity of the animal. To confirm the logging result, an-
other experimenter independently logged the videos and
we assured that the two logs to individual video files
overlapped at least 90%.

Data analysis of the microbiome data
For analyzing the microbiome data, multiplexed paired-

end fastq files were produced from the sequencing results
of the Illumina MiSeq using the Illumina software config-
ureBclToFastq. The paired-end fastqs were joined into a
single multiplexed, single-end fastq using the software
tool fastq-join. Demultiplexing and quality filtering was
performed on the joined results. Quality analysis reports
were produced using the FastQC software. Bioinformatics
analysis of bacterial 16S amplicon sequencing data were
conducted using the Quantitative Insights Into Microbial
Ecology (QIIME) software (Caporaso et al., 2010). OTU
picking was performed on the quality filtered results using
pick_de_novo_otus.py. Chimeric sequences were de-
tected and removed using ChimeraSlayer. � Diversity and
� diversity analysis were performed on the data set using
the QIIME routines: alpha_rarefaction.py and beta_diver-
sity_through_plots.py (Lozupone et al., 2006), respec-
tively. Summary reports of taxonomic assignment by
sample and all categories were produced using QIIME
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summarize_taxa_through_plots.py and summarize_o-
tu_by_cat.py. To test differences at the population level (�
diversity), samples were clustered using weighted and
un-weighted unifrac clustering (Lozupone and Knight,
2005) and grouped by sex and treatment. Differences in �
diversity by group were tested using the PERMANOVA
test (p � 0.05 considered significant) as implemented by
QIIME’s compare_categories.py. To test differences at
the taxa level, we used the Kruskal–Wallis test (FDR cor-
rected p � 0.05 considered significant) as implemented
by QIIME’s group_significance.py. Taxa were tested at
the phylum, class, order, family, and genus levels.

Data analysis of the electrophysiology data
The electrophysiology results were compared between

the MIA offspring from three litters and the results from a
previous study (Li et al., 2017) to minimize the number of
animals used. The lack of direct comparison of two
groups of animals from the same study is a limitation of
this pilot work. Data were analyzed by custom-written
scripts in MATLAB (MathWorks). LFP and multi-unit ac-
tivity (MUA) signals were extracted by applying a 300-Hz
low-pass filter and a 300-Hz high-pass filter, respectively,
to the raw data (60-Hz line-noise removed). The LFP
spectrogram was computed by convolving LFP signals
with a family of Morlet wavelets (0.5–120 Hz in 0.5-Hz
steps). The mean power spectrum was estimated by av-
eraging the square of the absolute value of the convolved
signal across the time of interest. To account for the
power law scaling of the LFP power spectrum, the power
spectra were 1/f normalized by multiplying each data
point with its frequency.

Spikes were extracted using a threshold of minus-five-
times the SD of the high-pass filtered signal. Visual re-
sponse latency was estimated using a previous method
(Maunsell and Gibson, 1992). Visual response variance
across trials was characterized by coefficient of variance
(CV), defined as the SD of the firing rate in 0–500 ms after
stimulus onset divided by the mean firing rate during the
same time period.

Statistical analysis
The results are represented as mean � SD unless

specified. Statistics were calculated by MATLAB function
ttest2 for unpaired Student’s t test, anovan for unbal-
anced ANOVA test, and multcompare for post hoc multi-
ple comparison test with the Tukey–Kramer method.

Results
To determine whether MIA perturbs developmental out-

comes in the ferret, we administered pregnant ferrets with
either 10 mg/kg PolyIC or PBS on G30 and studied the
progeny with a combination of methods that included a
comprehensive battery of behavioral tasks, which were
assembled to include the typical assays used in rodent
MIA studies and tasks that have been previously used in
ferrets. In addition, we performed pilot studies of electro-
physiological recordings and sequencing of the gut mi-
crobiome.

Maternal immune response, survival rate of the kits,
and birth weight

We confirmed that PolyIC triggered a maternal immune
response by measuring the body temperature and mater-
nal serum cytokine IL-2, IL-6, and TNF� 3 h after the
injection. Both the body temperature and cytokine levels
were significantly higher in the jills that received PolyIC
than in those that received PBS (body temperature after
injection: PolyIC 	 39.83 � 0.96°C, n 	 7; PBS 	 37.90
� 0.22°C, n 	 4, unpaired t test, t(9) 	 3.41, p 	 0.008; for
result of serum cytokine changes, see Table 2).

All litters were born full term (G40–G41). The fraction of
kits that were stillborn or died soon after birth were similar
between PolyIC and PBS group (PolyIC, 46.4%, 32/69
from seven litters; PBS, 53.5%, 23/43 from four litters, �2

test, �2 	 0.54, p 	 0.46). These numbers, however, were
lower than in our previous study of ferret development
(�75% survival rate) that did not involve a prenatal ma-
nipulation. The body weight of the kits was higher in the
PBS group than in the PolyIC group at birth but not in later
stages of development (Table 3).

Social interaction with conspecifics
We performed behavioral assays once the offspring

reached six months of age. Since ferrets are social ani-
mals, we first asked whether MIA changed their social
behaviors by testing their interaction with other ferrets
and their preference for interacting with unfamiliar versus
familiar conspecifics. We found that sociability was af-
fected by the maternal treatment conditions but not by the
sex of the animals (male PBS 	 89.59 � 8.92%, n 	 11,
PolyIC 	 73.51 � 15.26%, n 	 10; female: PBS 	 81.10
� 15.94%, n 	 9, PolyIC 	 65.55 � 29.32%, n 	 15;

Table 2. Cytokine level before and 3 h after PolyIC or PBS
injection

Cytokine concentration (pg/ml)
PBS (n 	 4) PolyIC (n 	 7)
Before After Before After

IL-2 6.6 � 7.6 5.6 � 6.4 5.6 � 8.4 111.9 � 166.0#

IL-6 9.2 � 8.0 7.8 � 6.9 15.4 � 13.6 119.1 � 124.4�

TNF� 6.1 � 7.0 4.9 � 5.8 8.9 � 5.4 170.9 � 142.7��

# t(9) 	 1.88, p 	 0.093, unpaired t test.
* t(9) 	 2.30, p 	 0.047.
�� t(9) 	 3.66, p 	 0.005.
Values are mean � SD.

Table 3. Comparison of the body weights between the PolyIC
and PBS groups for different ages

Body weight (g)
PBS [n 	 11/9
(M/F)]

PolyIC [n 	 10/15
(M/F)]

Birth# 10.1 � 0.8 8.4 � 1.4���

Weaned, male 332.8 � 20.5 322.0 � 33.8
Weaned, Female 275.9 � 23.2 257.6 � 27.4
Adult□, male 1623.6 � 145.2 1528.0 � 173.9
Adult, female 796.7 � 89.0 784.7 � 93.0

# Sex was unspecific at birth.
□ Adults were weighted at six months old.
��� t(43) 	 3.64, p 	 0.0007, unpaired t test.
Values are mean � SD.
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two-way ANOVA, sex, F(1,41) 	 1.48, p 	 0.23; treatment,
F(1,41) 	 5.48, p 	 0.02; interaction, F(1,41) 	 0.00, p 	
0.97; Fig. 1A). A post hoc multiple-comparison analysis
confirmed a significant difference between the PolyIC and
PBS groups (p 	 0.02, 95% confidence interval of the
difference, [2.12% 29.51%]). Given this difference, we
next asked whether MIA alters the preference for engag-
ing with familiar versus unfamiliar ferrets. We found that
social preference was affected by both maternal treatment
and sex (male PBS 	 66.31 � 29.45%, PolyIC 	 45.12 �
30.03%; female: PBS 	 22.68 � 25.96%, PolyIC 	 8.11 �
19.05%; two-way ANOVA, sex, F(1,41) 	 24.5, p 	 10
5;
treatment, F(1,41) 	 4.82, p 	 0.03; interaction, F(1,41) 	 0.17,
p 	 0.69; Fig. 1B). A post hoc multiple-comparison analysis
showed a significant difference between the PolyIC and PBS
groups (p 	 0.03, 95% confidence interval of the difference,
[1.38% 34.39%]) and between males and females (p 	
10
5, 95% confidence interval of the difference, [23.82%
40.32%]). Together, these findings suggest that MIA in the
ferret impairs social behavior in the adult progeny.

Social interactions with humans: eye contact
A previous study indicated that the ferret, which is a

domestic species, exhibits aspects of social-cognitive
skills pertaining to the interaction with humans (Hernádi
et al., 2012). We adopted the method of testing eye-
contact tolerance from that study to examine interaction
with humans. In general, the ferrets exhibited some lim-
ited periods of eye contact (cumulative duration: 0–2 s)
during the 30-s test period. We characterized each animal
by whether or not it made eye contact in the test period
and found that animals in the PolyIC group were less likely
to make eye contact with the experimenters than the ones
in the control group at trend level [PolyIC 	 40.0% (4/10),
PBS 	 81.8% (9/11), Fisher’s exact test, p 	 0.08; Fig.
1C]. This result suggests that MIA impaired the social
interaction with humans.

Novel object recognition
We next probed cognitive function by investigating the

ability of the ferrets to retain the memory of an object they

were previously exposed to and to differentiate it from a
novel object. Specifically, we tested whether the animals
were able to recognize the novel object in presence of an
object they were exposed to 2.5 h earlier. We character-
ized novel object recognition as the percentage of the
time interacting with the novel object minus the percent-
age of time with spent with the familiar object. We found
that novel object recognition was affected by the maternal
treatment conditions but not by sex (male: PBS 	 19.69 �
14.01%, PolyIC 	 14.52 � 10.30%; female: PBS 	 22.42
� 15.74%, PolyIC 	 9.95 � 11.38%; two-way ANOVA,
sex, F(1,41) 	 0.05, p 	 0.82; treatment, F(1,41) 	 4.85, p 	
0.03; interaction, F(1,41) 	 0.83, p 	 0.37; post hoc
multiple-comparison analysis to compare the difference
between the PolyIC and PBS groups, p 	 0.03, 95%
confidence interval 	 [0.71% 16.92%]; Fig. 2A). This re-
sult suggests that MIA impairs recognition memory.

Engagement with salient stimulus
We next asked how the ferrets responded and attended

to a salient stimulus in a naturalistic setting. We attempted
to engage the ferrets by rattling a noisy object in front of
their home cage. The animals typically exhibited an overt
redirection of their attention to the stimulus and continued
to engage with it as the noisy object was moved around in
front of the cage. We characterized the attention ability on
a scale from 1 to 4 (for details, see Materials and Meth-
ods). We found no difference of attention level between
the two groups (PBS 	 2.55 � 0.65, n 	 11, PolyIC 	
2.50 � 0.77, n 	 10, Student’s t test, t(19) 	 0.14, p 	
0.89). The result indicates that MIA did not affect the
ability to engage with and sustain attention to a salient
stimulus. To expand on this finding, we next asked
whether the overt attention response is sustained in re-
sponse to repeat auditory stimulus application (Poole,
1972). We found that the animals attended to the source
location of the stimuli for the first several presentations
but gradually adapted and showed less overt attention.
We characterized the response to individual auditory
stimulus as attending (assigning a value of 1), partial
attending (assigning a value of 0.5), or non-attending
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Figure 1. Effects of MIA on social behaviors in the ferret. A, Social interaction defined as the percentage of the time interacting with
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(assigning a value of 0). We found that both the PolyIC and
the control group adapted to the auditory stimuli in a
similar way (mean score, PolyIC 	 0.38 � 0.21, n 	 10,
PBS 	 0.42 � 0.17, n 	 11, Student’s t test, t(19) 	 0.44,
p 	 0.66; Fig. 2B). Together, these results suggest that
attentional processing is spared by MIA.

Open field exploration
To control for the effects of the locomotion ability on the

results observed in other behavioral tests, we investigated
locomotion in an arena. We found the animals explored
the arena and spent time on both the center and the
periphery (Fig. 3A). The averaged locomotion distance
was affected by the sex but not by the maternal treatment
(two-way ANOVA, sex, F(1,41) 	 8.19, p � 0.01; treatment,
F(1,41) 	 0.03, p 	 0.86; interaction, F(1,41) 	 0.17, p 	
0.68; Fig. 3B). There was no significant effect of either sex
or maternal treatment on the amount of time spent in the
center of the arena (two-way ANOVA, sex, F(1,41) 	 0.34,
p 	 0.56; treatment, F(1,41) 	 2.77, p 	 0.10; interaction,
F(1,41) 	 1.33, p 	 0.26; Fig. 3C). Our results thus show
that the results in the other behavioral assays were un-
likely to be caused by changes in general locomotive
patterns.

Response to pharmacological perturbations
In rodents, MIA animals exhibit differential response in

their locomotive behavior when exposed to pharmacolog-
ical challenges. Therefore, we asked whether MIA ferret
shared this feature with the rodent MIA models. We first
studied the changes of dopamine-associated neurotrans-
mission by testing the locomotion activity after adminis-
tration of 1 mg/kg D-amphetamine. We found that the
animals exhibited increased locomotive activity after the
treatment. The effects of MIA on the amphetamine-
induced hyperlocomotion were sex-dependent: the males
in the PolyIC treatment group had more locomotion in the
first hour after the amphetamine injection than the males
in the PBS control group (Fig. 3D); however, there was no
significant difference in the locomotion between the fe-
male PolyIC group and the female PBS group (Fig. 3E). An

ANOVA analysis on the total locomotion distance within 1
h after the injection revealed a non-significant effect of
sex (F(1,41) 	 1.78, p 	 0.19), a trend-level effect of the
maternal treatment (F(1,41) 	 3.39, p 	 0.07) and a signif-
icant interaction (F(1,41) 	 4.96, p 	 0.03). The result of the
post hoc comparison showed that the difference of total
locomotion distance in the first hour between PolyIC
males and PBS control males was significant (p 	 0.04,
PolyIC 	 30,409 � 18,765 cm; PBS 	 10,137 � 14,868
cm) but the difference between PolyIC females and PBS
control females was not (p 	 0.99, PolyIC 	 15,728 �
20,937 cm, PBS 	 15,399 � 19,425 cm). Our results thus
suggest the presence of sex-specific changes of dopa-
mine-associated neurotransmission by MIA.

We next investigated changes of glutamate-associated
neurotransmission by injecting the male ferrets with 0.15
mg/kg of MK-801, a non-competitive NMDA receptor
antagonist. Although a visual comparison suggests that
the MIA animals exhibited less locomotion in the first hour
after injection and more locomotion in the second hour
(Fig. 3F), statistical testing did not confirm this finding (first
hour, PolyIC 	 25,595 � 37,229 cm, PBS 	 32,488 �
19,316 cm, unpaired t test, t(19) 	 0.53, p 	 0.60; second
hour, PolyIC 	 27,100 � 26,318 cm, PBS 	 15,489 �
22,183 cm, unpaired t test, t(19) 	 1.09, p 	 0.29). The
result suggests that the MIA-induced pharmacological
changes depend on the specific type of neurotransmis-
sion.

Gut microbiome
Given the recent finding of changes to the gut micro-

biome in the PolyIC mouse model (Hsiao et al., 2013), we
analyzed the fecal microbiome of a subset of the animals
(PolyIC/male n 	 5, PolyIC/female n 	 5, PBS/male 	 5,
PBS/female 	 5) to determine whether MIA resulted in
significant changes of the ferret gut microbiome. The
small sample size makes this investigation a pilot study.

With weighted unifrac clustering, we found significant
differences between the microbiomes of treatment and
controls (p 	 0.037; Fig. 4A) and between males and
females (p 	 0.029; Fig. 4B). When stratifying by sex, the
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difference between PolyIC and PBS was enhanced in
females (p 	 0.008; Fig. 4C) but reduced in males (p 	
0.083; Fig. 4D). None of the comparisons were significant
when using unweighted unifrac clustering (p � 0.05 for all
comparisons).

We also looked for differences at the taxa level for these
comparisons. One Gammaproteobacteria genus, Actino-
bacillus, was significantly different between treatment and

controls (FDR p 	 0.006). It was found at a low frequency
in treatment samples (0.461%) but was not found in con-
trols. There was a similar pattern for Actinobacillus in
females alone (0.730% in treatment, none in controls).
However, this did not reach statistical significance (FDR
p 	 0.150, uncorrected p 	 0.005). In females alone, we
found trends for differences in Clostridia (61.2% in treat-
ment, 82.0% in controls) and two Gammaproteobacteria
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orders: Pasteurellales, which contains Actinobacillus
(31.6% treatment, 6.91% controls) and Enterobacteriales
(1.00% treatement, 9.41% controls). These differences
were trending toward, but did not achieve statistical sig-
nificance (FDR p � 0.05, uncorrected p � 0.05). These
results are summarized in Table 4. Our results, in accor-
dance to a similar study in mice (Hsiao et al., 2013),
suggest that the changes of gut microbiome represent an
important aspect of MIA.

Brain network dynamics in juvenile animals
Previous studies have shown the MIA impairs the cor-

tical oscillations in adult rodents with behavioral deficits

(Dickerson et al., 2010, 2014; Ducharme et al., 2012).
However, it is not clear whether the abnormalities in os-
cillations exist in juvenile animals. To answer this ques-
tion, we recorded the spontaneous and visually elicited
LFP and MUAs from the visual cortex in freely-moving
P33–P42 animals (from three MIA litters). Six animals were
recorded before eye-opening (P22–P29) and six after eye-
opening (P33–P42). However, no spiking activities could
be recorded from these animals before eye-opening, so
we focused our analysis on data recorded after eye-
opening. The data were compared to the results from
control animals (Li et al., 2017). The two groups have
similar age at recording (polyIC: 40.2 � 4.5 d, range
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Figure 4. Weighted UniFrac-based PCoA plots of microbiome � diversity. Clustering of all samples (A, B), female samples only (C),
and male samples only (D). In A, C, D, samples from PolyIC animals are colored red and samples from PBS animals are colored blue.
In B, female samples are colored purple and male samples colored yellow.

Table 4. OTUs that is significant different between the PolyIC and PBS groups

OTU p FDR_P PolyIC PBS
All samples k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;

o__Pasteurellales;f__Pasteurellaceae;g__Actinobacillus
0.00005 0.00624 0.46% 0.00%

Female only k__Bacteria;p__Firmicutes;c__Clostridia 0.0472 0.44131 61.24% 82.02%
k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;

o__Pasteurellales;f__Pasteurellaceae
0.00902 0.21656 31.57% 6.92%

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;
o__Enterobacteriales;f__Enterobacteriaceae

0.01629 0.26788 1.01% 9.41%

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;
o__Pasteurellales;f__Pasteurellaceae;g__Actinobacillus

0.00535 0.14953 0.73% 0.00%
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33–45, n 	 6, control: 39.8 � 3.8 d, range 33–46, n 	 8,
t(12) 	 0.18, p 	 0.86). Comparison of a representative
trace recorded from a control animal (P43; Fig. 5A) and
that from a MIA animal (P44; Fig. 5B) shows that while the
spontaneous and visual-induced spiking activity (Fig.
5A,B, bottom traces) was generally preserved in MIA
animal, the LFP amplitude were decreased, especially in
the high-frequency range (top traces for 1–30 Hz and
middle traces for 30–300 Hz). At the population level,
maternal PolyIC administration did not significantly affect
spontaneous firing rate (control, 7.02 � 5.27 spikes/s, n 	
102; PolyIC, 8.42 � 7.74 spikes/s, n 	 32, t test, t(132) 	
0.76, p 	 0.45; Fig. 5E). The firing rate in response to the
visual stimuli was decreased, yet the difference to control
group was not significant (control, 17.72 � 12.80
spikes/s, n 	 46; after, 13.18 � 10.12 spikes/s, n 	 32,
t(76) 	 1.67, p 	 0.10; Fig. 5F). In contrast, maternal PolyIC
injection significantly decreased the spontaneous LFP
power throughout the frequency range we investigated
(Fig. 5C). The visually elicited LFP power was also de-
creased, and the difference was significant in the high
frequency-range (Fig. 5D). The response latency to visual
stimuli was not significantly changed (control, 104.8 �
106.7 ms, n 	 46; PolyIC, 109.6 � 66.4 ms, n 	 32, t(76)

	 1.29, p 	 0.20; Figs. 4, 5G). However, the CV of visual
firing rate was increased in the PolyIC (control: 0.53 �
0.18, n 	 46; PolyIC, 0.66 � 0.23, n 	 32, t(76) 	 2.72, p
	 0.008; Fig. 5H). Our result suggests that pathologic
changes in brain oscillations may serve as a biomarker
predicting the emergence of behavioral dysfunction
caused by MIA.

Discussion
Epidemiological data of neurodevelopmental disorders

motivates MIA studies in animal models (Meyer and Fel-
don, 2010; Estes and McAllister, 2016). However, it is
unclear whether the effects of MIA generalize across spe-
cies with different genetic background and developmental
trajectories. Furthermore, the electrophysiological proper-
ties in MIA animals, especially those in early development,
remain mostly unstudied. Here, we found that MIA caused
broad range of deficits/alterations in ferrets, a model spe-
cies with a rich history of developmental studies, including
(1) impaired sociality and social preference to conspecif-
ics, (2) reduced social interactions with humans, (3) re-
duced recognition memory, (4) sex-specific increasing of
amphetamine-induced hyperlocomotion, (5) altered mi-
crobiome profile, and (6) reduced high-frequency brain
oscillations. Our results support MIA as an adverse factor
in neurodevelopment across species.

Alterations of behavior in adult ferrets with MIA
We found that MIA impaired social behaviors in ferrets.

In agreement with our findings, previous studies showed
reduced social activities/preference in MIA rodents (Shi
et al., 2003; Smith et al., 2007; Bitanihirwe et al., 2010;
Malkova et al., 2012). Ferrets are social animals and social
behaviors are important for the development and mainte-
nance of other behaviors (Chivers and Einon, 1982; Boyce
et al., 2001). Besides affecting interactions with conspe-
cifics, MIA also impaired interactions with humans (re-

duced eye contact tolerance). Since there were no group
differences in our two naturalistic attention paradigms, the
alterations of social behaviors are unlikely to be caused by
decreased attention capabilities. It is less clear by what
mechanisms MIA changes the social behavior in ferrets.
One possibility is that the social behavior is changed by
the alternation of the hypothalamic-pituitary-gonadal axes
(Stockman et al., 1986; Vinke et al., 2008) via the action of
MIA-induced cytokines (Haddad et al., 2002). Future stud-
ies are needed to test this and alternative potential mech-
anisms.

Our result also shows that MIA reduced the preference
to novel objects. In agreement with this result, previous
studies in rodents showed reduced acclimation to novel
objects (Shi et al., 2003; Ozawa et al., 2006) and de-
creased performance in Morris water maze (Meyer et al.,
2006b; Ozawa et al., 2006; Samuelsson et al., 2006; Coyle
et al., 2009; Hao et al., 2010).

For the open field assay, unlike a previous study in
rodent where MIA rodents spent less time in the center
(Shi et al., 2003; Meyer et al., 2005), MIA ferrets spent as
much time in the center as the control ferrets. The dis-
crepancy between rodents and ferrets can be explained
by the fact that ferrets are predatory animals and the time
spent in center is unlikely to represent an index of “anxi-
ety.”

We found that amphetamine-induced hyperlocomotion
was increased in male MIA ferrets but not in females.
MK-801 induced hyperlocomotions in male ferrets but
there was no significant difference between the control
and PolyIC groups. Previous studies in rodent showed
enhanced amphetamine-induced hyperlocomotion (Zuck-
erman et al., 2003; Fortier et al., 2004; Meyer et al., 2005,
2008; Ozawa et al., 2006) and enhanced MK-801-induced
hyperlocomotion (Zuckerman and Weiner, 2005; Meyer
et al., 2008). Our results indicate MIA affects the phar-
maco-behavior of ferret and the effects depend on the sex
and specific neurotransmitter systems. Little is known
about dopaminergic signaling in ferrets but previous stud-
ies showed that dopamine agonists disrupted the control
of goal-directed movements, such as preying, in male
ferrets (Schmidt, 1983, 1984). Our results suggest hyper-
activity of the dopamine-system in ferrets by MIA, which
may impact naturalistic behaviors in ferrets.

Changes of microbiome by MIA
A previous study in mice showed that MIA also affects

the gut microbiome in juvenile animals and that there is a
causal link to changes in behavior (Hsiao et al., 2013).
However, it is not clear whether MIA changes the gut
microbiome in other species. Here, we found that MIA
altered the gut microbiome in the adult ferrets. It is nota-
ble that significant changes in ferret microbiome were
observed using weighted uniFrac analysis but not in the
unweighted result, which suggests an altering in species
richness and evenness but not the phylogenetic makeup.
In contrast, Hsiao et al. (2013) found the opposite in MIA
mice. The difference may come from the different species
used and the ages tested. The ferrets are carnivores and
receive a protein-based diet. Ferret and mouse micro-

New Research 11 of 16

September/October 2018, 5(5) e0313-18.2018 eNeuro.org



A

B

0.5

1.0

1.5

2.0

2.5

1

0

-1

-2
5 10 20 40 80 5 10 20 40 80P

ow
er

 In
du

ce
d 

- 
B

as
el

in
e

  l
og

 [µ
V

2  
/ H

z]

P
ow

er
 lo

g[
µV

2 ]

Frequency [Hz] Frequency [Hz]

Control
Poly I:CControl

Poly I:C

*
*

10

5

0F
iri

ng
 R

at
e 

[s
pi

ke
s/

se
c]

n.s.

Control Poly I:C

0.8

0.4

0

150

100

50

0

20

10

0 R
es

po
ns

e 
La

te
nc

y 
[m

se
c]

C
V

 o
f F

iri
ng

 R
at

e

F
iri

ng
 R

at
e 

[s
pi

ke
s/

se
c]

n.s. n.s. *

Control Control ControlPoly I:C Poly I:C Poly I:C

30-300Hz:

MUA:

Lights on

50
 µ

V

1ms

50
µV

50ms

30
µV

1-30Hz:

25
 µ

V
50

 µ
V

1 sec

50
 µ

V
25

 µ
V

50
 µ

V

1 sec

1-30Hz:

30-300Hz:

MUA:

50ms

30
µV

1ms

50
µV

C D

E F G H

Figure 5. Spontaneous and visual-evoked LFP and MUAs recorded from visual cortex of MIA and control animals. A, An example
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biomes may have different compositions and may react
differently to MIA. Furthermore, the findings from mice
was from juvenile animals while our data were from adults
after six months of development. Our result prompts fu-
ture studies on the effects of MIA across species with
different dietary habits and development time-courses.
Future studies will need to investigate the relationship
between the changes in gut microbiome and behavior.

Given the relatively small size of this first microbiome
study in ferret, there are some important limitations to
consider. In our study, the female ferrets were driving the
difference between MIA and control animals. This may
have to do with caging necessities: female ferrets are
caged in groups where they may normalize their micro-
biomes to each other, while males must be single housed,
likely enhancing microbiome variability across animals in
either group. These differences are also more apparent
when using weighted unifrac clustering, as opposed to
unweighted unifrac clustering. This suggests a significant
change in evenness but not in the composition of domi-
nating species in the gut microbiome. We were able to
identify some of these differences at the taxa level, which
is in line with the population level differences with
weighted unifrac clustering.

Abnormal brain oscillations in juveniles
To investigate physiological changes underlying the de-

velopment of the MIA phenotype, we recorded the LFP as
well as the spiking activity in juvenile animals. Although
the effects of MIA has been shown in behavior, anatomy,
gene expression (Richetto et al., 2017), and synaptic
transmission (Escobar et al., 2011; Burt et al., 2013;
Patrich et al., 2016), relatively less is known about the
physiologic outcome in terms of brain network dynamics.
Only very few studies have focused on change of brain
oscillation (Dickerson et al., 2010, 2014; Ducharme et al.,
2012). Our result of LFP and MUA recordings show that,
while the firing rate was not significantly changed, a re-
duction of spontaneous and sensory-evoked neural oscil-
lations occurred in this early developmental stage. This
suggests that the impairment of neural synchronization,
which is to some extent independent of individual neuro-
nal firing, may be a prominent phenomenon before the
appearance of many behavioral phenotypes. Further

studies will need to investigate the potential to use the
neural oscillation and synchronization as a biomarker to
predict psychiatric disorders or guide prevention and
treatment. The diagnostic potential of this finding is sup-
ported by a recent study in which applying deep brain
stimulation to medial prefrontal cortex in adolescence
prevented the behavioral deficits and anatomic abnormal-
ities associated with MIA in adult rats (Hadar et al., 2018).

Limitations
As any scientific study, our work has a series of limita-

tions. First, we did not cross-foster the kits on birth to
control for the nurture effect. Previous cross-foster study
in rodents showed that both prenatal insult and postnatal
adoption by PolyIC-treated mothers will impair the behav-
ior of rat offspring in adulthood (Meyer et al., 2006a).
Future experiments will need to include cross-fostering of
the ferret kits. Second, no systematic dosing study of
PolyIC was done, nor did we parameterize the timepoint
of the PolyIC injection during gestation. This choice was
the result of cost considerations. Previous studies showed
dose-dependent effects of prenatal PolyIC injections (Shi
et al., 2003; Meyer et al., 2005). In the present study, we
used a dosage and administration route similar to previ-
ous rodent studies (Shi et al., 2003; Smith et al., 2007).
The result of similar offspring survival rates for the MIA
and control groups suggests that the chosen dose is safe.
The exact effects of prenatal PolyIC also depend on the
gestational stage at the injection (Meyer et al., 2006b).
Here, the insult age was in mid-late gestation stage and
corresponds to the second trimester in human (Clancy
et al., 2007). We chose this time point as a critical time
point in genesis of cortical neurons (Jackson et al., 1989)
and formation of the thalamocortical connections (John-
son and Casagrande, 1993) in ferrets. Future studies are
required to test the effect of MIA at other gestational ages.
Third, due to the limited litter size, data from all animals
from all litters were pooled together in the data analysis,
which means that the result could be biased because of
the uneven litter size and within-litter effects. Fourth, we
used the data set of electrophysiological recording from a
previous study as control when comparing the results of
MIA animals. Thus, we cannot exclude that some of the
differences are a consequence of the additional proce-

continued
trace recorded from a P43 control animal. For clarity, the raw signal was band-passed filtered and shown as low-frequency LFP (1–30
Hz, top), high-frequency LFP (30–300 Hz, middle), and MUA (300–5000 Hz, bottom). The left column of plots shows the spontaneous
activities. The right column displays the responses to visual stimuli whose duration is indicated by the short bold lines above. A short
episode of time-resolved high-frequency LFP is shown in the inset above the trace. The inset in the bottom left of the MUA trace
shows the shape of the detected spikes. B, An example trace recorded from a P44 MIA animal. Same configuration as A. C, Power
spectra (1/f normalized) of spontaneous LFP across the whole recording session in control (black, n 	 11 animals) and PolyIC animals
(red, n 	 6 animals). Traces and shadows represent mean and SEM, respectively. The data around 60 Hz (dotted lines) are removed
and interpolated between adjacent data points due to the applied notch filter. The dashed line marks the frequency range in which
the power is significantly different between the two groups. D, Power spectra of visually evoked activity (subtracted from the baseline
power) in the control group and PolyIC group. Traces and shaded regions represent mean and SEM, respectively. The data around
60 Hz (dotted lines) are removed and interpolated between adjacent data points due to the applied notch filter. The dashed lines mark
the frequency ranges in which the power is significantly different between the two periods. E, Spontaneous firing rate in control group
(black, n 	 102) and PolyIC group (red, n 	 32). Error-bar indicates SEM. F, Visually elicited firing rate in control group (black, n 	
46) and PolyIC group (red, n 	 32). Error bar indicates SEM. G, H, Visually elicited response latency and CV in control group and
PolyIC group, respectively. Error bar indicates SEM. n.s.: non-significant, �p � 0.05.
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dures that were performed on both groups in the present
study but not in our previous study on brain development
in the healthy ferret. We thus emphasize that these results
are to be considered preliminary and exploratory. Fifth, in
the study all male ferrets were single-housed when they
grew up and became progressively aggressive. Sixth, the
shipment during pregnancy might induce stress and po-
tentially affected the development, although we chose the
safest gestation period as advised by the animal supplier.
Seventh, we did not perform a behavioral characterization
during development to exclude that testing procedures
affected brain maturation and development. Eighth, the
gut microbiome study was underpowered and are thus
also preliminary and exploratory.

In summary, we tested whether MIA alters behaviors,
brain oscillations, and the gut microbiome in ferrets, a
predator which is distinct to the laboratory rodents both in
evolution and behaviors. Indeed, we found changes in
behaviors similar to the phenotypes in MIA models of
other species, supporting that the detrimental effects of
MIA in neurodevelopment are universal across species.
Our results suggest the possibility to model neurodevel-
opmental disorders in ferrets. Furthermore, the findings of
the alternations of gut microbiome in adults and the de-
crease of higher frequencies oscillation power in juveniles
demonstrate the feasibility to use this model to test hy-
potheses about the biological mechanisms underlying the
environmentally induced developmental perturbations.
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