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Significance Statement

Epileptic seizures are commonly thought to arise from a pathology of inhibition in the brain circuits.
Theoretical models aiming to explain epileptic oscillations usually describe the neural activity solely in terms
of inhibition and excitation. Single neuron adaptation properties are usually assumed to have only a limited
contribution to seizure dynamics. To explore this issue, we developed a novel neural mass model with
adaption in the excitatory population. By including adaptation together with inhibition in this model, we were
able to account for several experimentally observed properties of seizures, resting state dynamics, and
pre-ictal oscillations, leading to improved understanding of epileptic seizures.
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Pharmacoresistant epilepsy is a common neurological disorder in which increased neuronal intrinsic excitability
and synaptic excitation lead to pathologically synchronous behavior in the brain. In the majority of experimental
and theoretical epilepsy models, epilepsy is associated with reduced inhibition in the pathological neural circuits,
yet effects of intrinsic excitability are usually not explicitly analyzed. Here we present a novel neural mass model
that includes intrinsic excitability in the form of spike-frequency adaptation in the excitatory population. We
validated our model using local field potential (LFP) data recorded from human hippocampal/subicular slices. We
found that synaptic conductances and slow adaptation in the excitatory population both play essential roles for
generating seizures and pre-ictal oscillations. Using bifurcation analysis, we found that transitions towards seizure and
back to the resting state take place via Andronov–Hopf bifurcations. These simulations therefore suggest that single
neuron adaptation as well as synaptic inhibition are responsible for orchestrating seizure dynamics and transition
towards the epileptic state.
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Introduction
Epilepsy is the fourth most common neurologic disorder,

and is responsible for a greater total global burden of dis-
ease than any neurologic conditions except for stroke and
migraine (Beghi et al., 2005; Rothstein et al., 2005; Chin and
Vora, 2014). Epileptic seizures are characterized by the
increased excitability/excitation in the brain’s recurrently
coupled neuronal networks (Lytton, 2008). Typically, exper-
imental seizure models assume that seizures occur due to
decreased inhibition (Karnup and Stelzer, 1999; Sivakuma-
ran et al., 2015) or increased excitation in the neural net-
works (Ursino and la Cara, 2006; Hall and Kuhlmann, 2013).

There is also evidence that interneurons increase their
firing at seizure initiation (Lillis et al., 2012) and are active
during the time course of the epileptic activity (Ziburkus
et al., 2006), suggesting that the activity of interneurons
contributes importantly to aspects of seizure dynamics. The
activity-dependent interplay between the pyramidal cells
and interneurons could play an essential role for seizure
generation mechanisms (Krishnan and Bazhenov, 2011;
Naze et al., 2015; Buchin et al., 2016b). In neural mass
models, neuron populations are often treated as rate units
lacking intrinsic adaptation (Touboul et al., 2011). The dy-

namic behavior of the neural populations is determined by
the balance between excitation and inhibition. Despite the
simplicity of these models, they can be successfully used
to reproduce resting and interictal states as well as ictal
discharges by producing time series comparable with mac-
roscopic measurements such as electroencephalogram sig-
nals and field potentials (Demont-Guignard et al., 2009).

However, not all types of epileptic seizures can be ex-
plained by looking only at the balance between excitation
and inhibition (Traub et al., 2005); intrinsic excitability
changes on the single-neuron level also play an important
role (Krishnan and Bazhenov, 2011). Studies on human
subiculum tissue showed that the complete blockade of
type A GABAergic neurotransmission (and thus inactivation
of the effects of inhibitory population) precludes seizure
emergence while, if applied after seizure initiation, it abol-
ishes rather than enhances the seizure activity. These ma-
nipulations usually bring back the neural network in the slice
toward pre-ictal events, which have substantially different
frequency content than seizure activity (Huberfeld et al.,
2011), and which in this case fail to trigger ictal events. In
human epileptic tissues, including peritumoral neocortex
(Pallud et al., 2014), interictal discharges are generated
spontaneously. These events are triggered by interneurons
which depolarize pyramidal cells with impaired chloride reg-
ulation, leading to depolarizing effects of GABA. Once acti-
vated, pyramidal cells excite other cells via AMPA-mediated
glutamatergic transmission. In these tissues, seizures can be
produced by increasing local excitability using modified
bathing media. The transition to seizures is characterized by
the emergence of specific pre-ictal events initiated by pyra-
midal cells which synchronize local neurons by AMPA syn-
apses. These pre-ictal events cluster before seizure initiation
which requires functional AMPA, NMDA as well as GABAA

signals. The conventional neural mass models are unable to
explain these pre-ictal oscillations because they require the
excitatory population to generate periodic oscillations in the
absence of inhibition. The second motivation for incorporat-
ing intrinsic excitability into neural mass models is that in
epileptogenic areas, such as human subiculum, there is a
substantial proportion of neurons with non-trivial intrinsic
properties such as spike-frequency adaptation (Jensen
et al., 1994; Huberfeld et al., 2007). To take these properties
into account, neural mass models need to be enriched by
the addition of components such as slow potassium cur-
rents (Pinsky and Rinzel, 1994).
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In addition, seizures are typically accompanied by high
potassium concentrations (Dietzel and Heinemann, 1986;
Xiong and Stringer, 1999; Fröhlich and Bazhenov, 2006;
Florence et al., 2009), which in turn activate calcium
currents (Bazhenov et al., 2004; Fröhlich et al., 2008),
which in turn affect spike-frequency adaptation and intrin-
sic bursting. These properties are likely to modulate the
single neuron firing and thus further influence the neuronal
dynamics. These findings motivate the development of
neural mass models that can capture the intrinsic excit-
ability in coupled neural populations.

In this work, we developed a novel neural mass model
consisting of an inhibitory neural population and an adap-
tive excitatory neuronal population (Buchin and Chizhov,
2010b). We calibrated the parameters of the model to
local field potential (LFP) data recorded in human subic-
ulum slices during rest, seizure, and full disinhibition in
pre-ictal condition. We then analyzed the model as cali-
brated to each of these three regimes. Our results em-
phasize the role of intrinsic excitability such as adaptation
in the excitatory population, which help explain the tran-
sitions between rest, seizure, and full disinhibition states.

Materials and Methods
Epileptic tissue

Temporal lobe tissue blocks containing the hippocam-
pus, subiculum, and part of the entorhinal cortex were
obtained from 45 people of both sexes with pharmacore-
sistant medial temporal lobe epilepsies associated with
hippocampal sclerosis (age, 18–52 years; seizures for
3–35 years) undergoing resection of the amygdala, the
hippocampus, and the anterior parahippocampal gyrus.
All of the individuals gave their written informed consent
and the study was approved by the Comité Consultatif
National d’Ethique.

Tissue preparation
The post-surgical tissue was transported in a cold,

oxygenated solution containing 248 mM D-sucrose, 26
mM NaHCO3, 1 mM KCl, 1 mM CaCl2, 10 mM MgCl2, and
10 mM D-glucose, equilibrated with 5% CO2 in 95% O2.
Hippocampal-subicular-entorhinal cortical slices or iso-
lated subicular slices (400-�m thickness, 3 � 12 mm
length and width) were cut with a vibratome (HM650 V,
Microm). They were maintained at 37°C and equilibrated
with 5% CO2 in 95% O2 in an interface chamber perfused
with a solution containing 124 mM NaCl, 26 mM NaHCO3,
4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, and 10 mM
D-glucose. Bicuculline or picrotoxin was used to block
GABAA receptors. Ictal-like activity was induced by in-
creasing the external K� concentration to 8 mM and
reducing the Mg2� concentration to 0.25 mM to increase
the cellular excitability (similar to Huberfeld et al., 2011).

Recordings
Up to four tungsten electrodes etched to a tip diameter

of �5 �m were used for the extracellular recordings. The
signals were amplified 1000-fold and filtered to pass fre-
quencies of 0.1 Hz to 10 kHz (AM Systems, 1700). The
extracellular signals were digitized at 10 kHz with a 12-bit,

16-channel A-D converter (Digidata 1200A, Molecular De-
vices) and monitored and saved to a PC with Axoscope
(Molecular Devices).

Data analysis
Records were analyzed using pCLAMP 10 software and

scripts written in MATLAB 2016a. Power spectrum esti-
mation was performed using fast Fourier transforms. The
major frequencies of oscillations were computed via the
multitaper method (Thomson, 1982).

Simulations and analysis
Neural population model simulations were performed in

XPPAUT 8.0 using the direct Euler method of integration,
with a time step of 0.05 ms. Smaller time steps were
tested and provided substantially similar results. In all
simulations the initial conditions were systematically var-
ied to check stability of numerical results. The data for the
model was taken from one representative patient in the
brain slice demonstrating resting state, seizure and pre-
ictal oscillations.

Software accessibility
The model code is available on GitHub (https://github.com/

abuchin/EI-with-adaptation). Bifurcation analysis was per-
formed in the XPP AUTO package (http://www.math.pitt.edu/
~bard/xpp/xpp.html). All code is also available as Extended
Data 1.

Neural mass model
In the model we considered interacting excitatory and

inhibitory neural populations coupled by AMPA and
GABAA synapses. All model parameters and variables are
presented in Tables 1, 2. Each population was character-
ized by the average membrane potential of a population of
leaky integrate-and-fire (LIF) neurons (similar to Chizhov
and Graham, 2007; Touboul et al., 2011) with approxima-
tions for adaptive currents taken from Buchin and Chizhov
(2010b):

CE

UE

dt
� IE � INa

LE � IKLE � ICl
LE � gAHPa�UE � VAHP� � gEEe

�UE � VAMPA� � gIEi�UE � VGABA�

CI

UI

dt
� � INa

LI � IKLI � ICl
LI � gEIe�UI � VAMPA� � gIIi�UI �

VGABA�

where

INa
LE/I � gNa

LE/I�UE/I � VNa�

IKLE/I � gK
LE/I�UE/I � VK�

ICl
LE/I � gCl

LE/I�UE/I � VCl�

The firing rate of each population is computed based on
the interspike interval distribution of the neural population
(Gerstner and Kistler, 2002):
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�E/I�t� � A�UE/I�

where

A�U� � ��m
E/I �

�Ureset
E/I

�UE/I�/�VE/I

�Vthreshold
E/I

�UE/I�/�VE/I

eu2
�1 � erf �u��du�

�1

and

Table 1. Population model parameters

Excitatory population
Parameter Value Interpretation

CE 1 mF/cm2 Membrane capacitance (Buchin and Chizhov, 2010b)
gNa

LE 0.02 mS/cm2 Sodium leak conductance (Krishnan and Bazhenov, 2011)
gK

LE 0.044 mS/cm2 Potassium leak conductance (Krishnan and Bazhenov, 2011)
gCl

LE 0.01 mS/cm2 Chloride leak conductance (Krishnan and Bazhenov, 2011)
gAHP 1.6 mS/cm2 AHP-current conductance (Buchin and Chizhov, 2010b)
gEE 1.5 mS/cm2 Excitatory-to-excitatory conductance
gEI 1 mS/cm2 Excitatory-to-inhibitory conductance
gIE 2; 0.5; 1 mS/cm2 Inhibitory-to-excitatory conductance
gII 0.2 mS/cm2 Inhibitory-to-inhibitory conductance
Ureset

E –65 mV Reset membrane potential (Chizhov and Graham, 2007; Buchin and Chizhov, 2010b)
Vthr

E –55 mV Threshold membrane potential (Chizhov and Graham, 2007; Buchin and Chizhov, 2010b)
aE 2.84 � 104 Sigmoid fit parameter
bE 0.19 mV-1 Sigmoid fit parameter
cE 1.23 � 104 Sigmoid fit parameter
dE –10 mV Sigmoid fit parameter (threshold)
�E 3 �A/cm2 Input current variance
�E 5.4 ms AMPA current correlation time (Buchin et al., 2016a,b)
�VE 4 mV Membrane potential dispersion
VNa

E 50 mV Sodium reversal potential (Krishnan and Bazhenov, 2011)
VK

E –75 mV Potassium reversal potential (Krishnan and Bazhenov, 2011)
VCl

E –93 mV Chloride reversal potential (Krishnan and Bazhenov, 2011)
VGABA –75 mV GABA reversal potential (Huberfeld et al., 2007)
VAMPA 0 mV AMPA reversal potential (Brunel and Wang, 2001)
VAHP –70 mV AHP reversal potential (Brunel and Wang, 2001)
�AHP1 1 ms AHP rise time (Brunel and Wang, 2001)
�AHP2 320 ms AHP decay time (Brunel and Wang, 2001)
�AMPA1 1 ms AMPA rise time (Chizhov, 2002)
�AMPA2 5.4 ms AMPA decay time (Chizhov, 2002)

Inhibitory population
Parameter Value Interpretation
CI 1 mS/cm2 Membrane capacitance (Buchin and Chizhov, 2010b)
gNa

LI 0.02 mS/cm2 Sodium leak conductance (Krishnan and Bazhenov, 2011)
gK

LI 0.04 mS/cm2 Potassium leak conductance (Krishnan and Bazhenov, 2011)
gCl

LI 0.03 mS/cm2 Chloride leak conductance (Krishnan and Bazhenov, 2011)
gIE 2 mS/cm2 Inhibitory-excitatory synaptic conductance
gII 0.2 mS/cm2 Excitatory-inhibitory synaptic conductance
Ureset

I –65 mV Reset membrane potential
Vthr

I –55 mV Threshold membrane potential
aI 2.84 � 104 Sigmoid fit parameter
bI 0.19 mV-1 Sigmoid fit parameter
cI 1.23 � 104 Sigmoid fit parameter
dI –10 mV Sigmoid fit parameter (threshold)
�VI 4 mV Membrane potential dispersion
VNa

I 50 mV Sodium reversal potential (Krishnan and Bazhenov, 2011)
VK

I –75 mV Potassium reversal potential (Krishnan and Bazhenov, 2011)
VCl

I –82 mV Chloride reversal potential (Krishnan and Bazhenov, 2011)
�GABA1 8.3 ms GABA-A decay time (Chizhov et al., 2002)
�GABA2 0.2 ms GABA-A rise time (Chizhov, 2002)

Table 2. Population model variables

Variable Interpretation
UE, mV Average membrane potential of the excitatory

population
UI, mV Average membrane potential of the inhibitory

population
e Excitatory population synaptic gating variable
i Inhibitory population synaptic gating variable
a Excitatory population adaptation gating variable
IE�t�, �A/cm2 Random excitatory input
�E�t�, Hz Firing rate of the excitatory population
�I�t�, Hz Firing rate of the inhibitory population
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�m
E/I �

CE/I

gNa
LE/I � gK

LE/I�gCl
LE/I

In all simulations �E/I�t� has been approximated by the
following sigmoid function:

�E/I�t� �
1

�m
E/I

	
aE/I

cE/I � exp ��bE/I�UE/I � dE/I��

The population firing rate determines the adaptive (a),
excitatory (e), and inhibitory (i) gating variables. Their dy-
namics are computed using the second-order approxima-
tion (Wendling et al., 2002; Chizhov, 2014):

�AHP1�AHP2
d2a
dt2

� ��AHP1 � �AHP2�
da
dt

� a � �1 � a���E

�AMPA1�AMPA2
d2e
dt2

� ��AMPA1 � �AMPA2�
de
dt

� e � �1 � e���E

�GABA1�GABA2
d2i
dt2

� ��GABA1 � �GABA2�
di
dt

� i � �1 � i���I

To mimic the afferent excitatory input, the excitatory
population also received stochastic excitatory input mod-
eled as an Ornstein–Uhlenbeck process (Buchin and Chi-
zhov, 2010a):

�E

dIE
dt

� � IE � �E
�t�

To mimic elevated extracellular potassium from epi-
leptogenic slice experiments, in the population model,
we increased potassium reversal potential in both pop-
ulations VK

E/I from –90 to –75 mV, i.e., from Ko � 4 mM to
K0 � 8 mM. This value of VK

E/I was computed based
on Nernst equation, VK � RT / F ln � Ko / Ki �, where
RT / F � 26.64 mV and Ki � 138 mM (Krishnan and
Bazhenov, 2011).

All model parameter values and variable names are
present in Table 1, 2. The initial parameter set was chosen
manually to reproduce the pre-ictal like oscillations due to
balance between gEE and gAHP, seizure and resting state
were fit such that gEI parameter variations would make a
transition between seizure and resting state.

LFP model
The LFP was calculated based on the activity of the

excitatory population. We assumed that pyramidal cells
activity dominates the extracellular field (Buzsáki et al.,
2012). The dominant theory is that the LFP component is
dominated by the single neuron dipole contribution (Buz-
sáki et al., 2012). Since the neural mass model averages
over single neurons, the dipole moment cannot be directly
modeled. Thus, to approximate the LFP being recorded
near somas of the excitatory populations, we used the
assumption that the average membrane potential of the
excitatory population is proportional to the LFP, i.e.,
LFP � UE (Ursino and la Cara, 2006; Demont-Guignard

et al., 2009; Wendling et al., 2012; Ratnadurai-Giridharan
et al., 2014).

Results
Construction of the population model

We developed � model of interacting excitatory and
inhibitory population inspired by Wilson–Cowan approach
(Wilson and Cowan, 1972), which consists of excitatory
and inhibitory populations coupled by synaptic connec-
tions (Fig. 1A). The firing rate in each population depends
on the average membrane potential UE/I, which is gov-
erned by the subthreshold dynamics of LIF neuron pop-
ulation similar to (Gerstner and Kistler, 2002; Chizhov,
2014; as explained in Materials and Methods). Firing rates
of the excitatory and inhibitory populations are deter-
mined using the values of UE/I put through function A
�UE/I� (Johannesma, 1968; Gerstner and Kistler, 2002). To
make the model numerically stable and amenable to bi-
furcation analysis we used a sigmoid function to estimate
the population firing rate provided by the A�UE/I� approx-
imation. To justify the choice of sigmoid parameters, we
used least-squares to match it with the analytical solution
(Johannesma, 1968; Fig. 1C,D). The sigmoid approxima-
tion allows one to efficiently take into account zero and
linear parts of the potential-to-rate transfer functions vE/I

�t�, and provides saturation due to the single neuron
refractory period (Renart et al., 2004). The sigmoid func-
tions of excitatory and inhibitory populations are shown in
Figure 1C,D. The difference between the excitatory and
inhibitory populations was taken into account by adjusting
passive conductances for sodium, potassium, and chlo-
ride leak currents estimated in Krishnan and Bazhenov,
(2011) based on dynamic ion concentration model.

The subthreshold UE/I dynamics determine the synaptic
gEEe��E�, gEIe��E/I�, gIIi��I�, gIEi��I�, and intrinsic gAHPe��E/I�
conductances (Fig. 1A), computed according to the pop-
ulation firing-rates �E/I. Similar to spiking neural network
models (Bazhenov et al., 2004; Ratnadurai-Giridharan
et al., 2014), adaption in our population model reduces
neural firing in the excitatory population after periods of
activity. Excitatory population receives external random
synaptic input to model excitation from the rest of the
brain similar to (Jansen and Rit, 1995; Touboul et al.,
2011). To mimic the experimental epileptogenic condi-
tions of human subiculum slice experiments, the potas-
sium reversal potential was elevated from –95 to –75
mV both in the excitatory and inhibitory populations to
provide excitatory drive to reproduce the experimental
conditions. Elevation of extracellular potassium also
leads the increase of intracellular chloride reducing the
efficiency of inhibition due to elevated GABAA reversal
potential (Huberfeld et al., 2007; Buchin et al., 2016b).
To generate the model output comparable with exper-
imental data, we computed the LFP generated by the
excitatory population (Buzsáki et al., 2012). This ap-
proximation assumes that all pyramidal cells in the
excitatory population contribute equally to the recorded
LFP signal (Fig. 1B). Thus, the total LFP near somas
depends on the average value of the membrane poten-
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tial in the excitatory population with a certain dimen-
sionality constant, i.e., LFP � kUE/I.

Reproduction of epileptic oscillations
When the excitatory and inhibitory synaptic currents

were dynamically balanced, the activity stayed in the
low-firing regime, as indicated by LFP power spectrum
(Fig. 2). The recorded pyramidal cell during this period
demonstrated sparse firing activity, partially time-locked
with the discharges on the LFP. We call this activity in the
model the balanced or resting state (Fig. 2A). In this
regime, the model does not generate epileptic oscilla-
tions. To evaluate the model performance in this resting
state, we compared the synthetic LFP with the experi-
mental LFP recorded between seizures (Fig. 2A). Similar
to the experimental data, we found that in the resting
state, the model generates broadband oscillations, with
the highest power in the 1- to 15-Hz frequency band. In
this regime, the average membrane potential of the excit-
atory population UE/I stays in the range from –60 to –50
mV.

We found that the model was not capable of generating
interictal discharges using this parameter set. It has been
recently suggested that interneurons play the key role in
generating interictal activity (Cohen et al., 2002; Huberfeld
et al., 2011). In the presence of GABAA blockade these
events were completely blocked, indicating that they de-
pend on combination of GABAergic and glutamatergic
signaling. In the recent population model (Chizhov et al.,
2017), it was proposed that interictal discharges could be
initiated by the inhibitory population, thus explaining in-

terneuron firing before pyramidal cell firing (Huberfeld
et al., 2011). In our model we have not explored this
scenario, i.e., when the inhibitory population is also re-
ceiving the background synaptic input. These mecha-
nisms would likely play an important role for seizure
initiation; however, incorporating all mechanisms at once
would make the model impossible to study analytically.
Therefore, we have not considered interictal discharges
before seizure, while aiming to specifically describe other
types of oscillations.

To reproduce the seizure state in the model, we re-
duced the synaptic inhibition of the excitatory population
by decreasing the synaptic conductance parameter gIE

(Fig. 2B, black arrow). All other parameters of the model
remained the same. In this case the model moved into an
oscillatory regime in which the power spectrum of the
oscillations changed dramatically to include strong oscil-
lations in the 1- to 4-Hz frequency band, which is typical
for ictal discharges (Huberfeld et al., 2011).

We compared the model power spectrum with the mea-
sured LFP recorded during the initial phase of the ictal
discharge with the hypersynchronous activity onset. Dur-
ing this activity regime the recorded pyramidal cells gen-
erated strong bursts of spikes temporally locked to the
LFP (Fig. 2B). The population model displayed discharges
with the same frequency band as in the LFP, indicating
large amount of synchrony in the excitatory population
(Buzsáki et al., 2012). Note that we considered only the
initial phase of the seizure (the whole ictal event is shown
in Fig. 3E).
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Figure 1. Structure of the population model. A, Scheme of interacting neural populations. E, I: excitatory and inhibitory populations;
gEE, gEI: excitatory to excitatory and excitatory to inhibitory maximal conductances; gII, gIE: inhibitory-to-inhibitory and inhibitory-to-
excitatory maximal conductance; gAHP: adaptation conductance in the excitatory population;IE�t�: synaptic noise input to the
excitatory population; AHP, afterhyperpolarization current (Buchin and Chizhov, 2010b). B, LFP model: i: contribution of a single
excitatory cell; N: the number of neurons; UE: the average membrane potential in the excitatory population. C, D, Sigmoid
approximation of potential-to-rate function (Johannesma, 1968) of the excitatory (C) and inhibitory population (D).
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To further test the validity of our model, we explored its
dynamics with inhibitory activity completely blocked (Fig.
2C). In these simulations the initial conditions were set to
the resting state and parameter values of the model were
set to the seizure state, but with the conductance gIE (from
the inhibitory to the excitatory population) set to zero to
mimic the experimental conditions. In this case the
GABAergic effects of the inhibitory population in the slice
has been fully blocked by bicuculine after seizures have
been previously established (Huberfeld et al., 2011). In
response to this change, the activity in the slice became
highly synchronized and reduced to regular pre-ictal dis-
charges. During these oscillations the pyramidal cells
generated large bursts of activity, temporally coupled with
the LFP (Fig. 2C). In the model, similarly to the experimen-
tal preparation, the blockade of the GABAergic signaling

mimicked by the abolition of the inhibitory population led
to the development of a slow oscillatory rhythm with a
peak frequency around 1 Hz. These events have been
previously reported as pre-ictal discharges (Huberfeld
et al., 2011). This rhythm has much slower frequency than
seizures, and is usually within the 1- to 4-Hz frequency
range (Huberfeld et al., 2011; Buchin et al., 2016b). In
addition, these events recur regularly for long periods with
very limited modulation.

We call this regime of activity pre-ictal discharges be-
cause similar activity takes place before transition toward
an ictal state (Huberfeld et al., 2011). In this regime, the
dynamics of the excitatory population are determined only
by the balance between self-excitation, gEEe��E/I�, afterhy-
perpolarization current (AHP; Chizhov and Graham, 2008;
Buchin and Chizhov, 2010b), gAHPe��E/I�, and the afferent

A

B

C

-300

-200

-100

0

100

200
Experiment

Time (s)

U
E (

m
V

)

Seizure (power spectrum)

Disinhibition (power spectrum)

LF
P

 (µ
V

)

U
E (

m
V

)
U

E (
m

V
)

0

1

N
or

m
al

iz
ed

 p
ow

er

Rest (power spectrum)

0

1

N
or

m
al

iz
ed

 p
ow

er

0

1

Frequency (Hz)

N
or

m
al

iz
ed

 p
ow

er

-100

-80

-60

-40

-20

-90

-70

-50

-30

-10

0 2.5 5

-80

-60

-40

-20

ModelExperiment

Model

50

-400

-200

0

200
LF

P
 (µ

V
)

50 mV

50 mV

-400

-200

0

200

LF
P

 ( µ
V

)

Time (s)

Experiment

50 mV

2.5

50 2.5 0 52.5

Model

50 2.5 0 52.5

2 4 6 8 10 12 14

2 4 6 8 10 12 14

2 4 6 8 10 12 14

g
g
g
g

g

gg
g
g
g

gg

Figure 2. Neural mass model in various excitatory regimes. A, Activity of a neural population in the resting state. B, Seizure state. C,
Disinhibited state. LFP is present together with intracellular recording from the pyramidal cell. Each plot contains the model scheme,
power spectrum, and time traces provided by the excitatory population UE as well as experimental LFP. Red traces correspond to the
model, blue traces to the experiment, and green traces to the intracellular recordings from the pyramidal cells. Model parameters for
(A): gEE � 1.5 mS/cm2; gEI � 1 mS/cm2; gIE � 2 mS/cm2; gII � 0.2 mS/cm2; gAHP � 1.6 mS/cm2; (B): gEE � 1.5 mS/cm2; gEI � 1 mS/cm2;
gIE � 0.5 mS/cm2; gII � 0.2 mS/cm2; gAHP � 1.6 mS/cm2; (C): gEE � 1.5 mS/cm2; gEI � 1 mS/cm2; gIE � 0 mS/cm2; gII � 0.2 mS/cm2;
gAHP � 1.6 mS/cm2.
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synaptic current IE�t�. Hence, these pre-ictal oscillations in
the model are driven by the synaptic noise and adapta-
tion. The excitatory input to the excitatory population IE
�t� drives the upswings of UE due to recurrent excitatory
synapses, with activity then being terminated by AHP
currents. These transitions take place randomly due to
stochastic nature of the synaptic input.

For quantitative comparisons between the model and
experiment we used the linear fit to the power spectrum
over frequencies and peak estimation (Table 3). We found
that there is substantial intersection between linear fits
applied to the power spectrums in resting, seizure, and

pre-ictal states (Fig. 2). We found that there is a substan-
tial overlap between these frequencies, providing valida-
tion for the model. Note that we compared the overall
spectral characteristics between the model and experi-
ment by variation of only one parameter, gIE to reproduce
transitions between the pre-ictal, resting and seizure
states. If more parameters are varied at the same time, it
would be possible to get a better match between the
model and experiment.

Overall oscillations in our population model are con-
trolled by the balance between synaptic currents, adap-
tation and external synaptic input. When synaptic and
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Figure 3. Oscillatory frequencies of the population model. A–D, Oscillatory frequencies of the population model in the absence of the
synaptic noise (IE�t� � 0) as a function of the synaptic conductance, gEE, gEI, gIE, gII. E, Simultaneous intracellular recording from single
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gIE � 0 mS/cm2).
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intrinsic conductances are balanced, the population dem-
onstrates resting state activity, characterized by a flat
power spectrum. When there is an imbalance between
excitation and inhibition, populations start developing os-
cillatory rhythms associated with ictal discharges with a
frequency of 3–4 Hz. However, complete loss of inhibition
leads to the development of another population rhythm,
pre-ictal discharges with 1-Hz frequency, controlled by
adaptation and recurrent excitation. Thus, the dynamic
state of a neural population depends on the interplay
between the intrinsic and synaptic excitability within pop-
ulations as well as external synaptic input.

Analysis of the population model
To delineate the mechanisms giving rise to the different

oscillatory modes in the model, we used continuation
techniques and bifurcation analysis. Since it is impossible
to use the standard techniques to identify bifurcations in
the presence of noise, we analyzed the model in the
absence of an external input IE�t�. This allowed us to
compute the model behavior in the stationary regime and
characterize bifurcations happening during transitions be-
tween different oscillatory regimes. The initial parameters
were chosen to correspond to the resting state. The
parameter variations were calculated around this point in
the parameter space for gEE, gEI, gIE, and gII bifurcation
diagrams, with other parameters held fixed. Analysis of
gAHP and VGABA variations was implemented for another
parameter set, where gIE � 0.5 �S/cm2 and gIE � 1
�S/cm2; other parameters remained the same.

The frequency of seizure oscillations depends on the
strength of the synaptic currents in the population model.
There is a nonlinear relationship between seizure major
frequency and the recurrent excitatory conductance gEE

(Fig. 3A). When the gEE is increased up to 2.8 mS/cm2, the
model responds with an oscillatory frequency near 7.5 Hz.
When self-excitation is further increased up to 4 mS/cm2,
seizure-related oscillations disappear since the system
moves to the high activity state due to sigmoidal satura-
tion of the transfer function (Fig. 1C,D). The amount of
stimulation of the inhibitory population also influences the
oscillatory frequency. When gEI is in the range of 0 to 0.29
mS/cm2 (Fig. 3B), the population model generates seizure
activity with frequencies of 1.2–2.5 Hz. Note that seizure
oscillations are possible even when gEI � 0 mS/cm2.

Inhibitory synaptic connections also affect the oscilla-
tory frequency of seizure activity. When gIE is as low as
�0.6 mS/cm2 (Fig. 3C), the seizure activity starts around
3 Hz; it decreases to �1 Hz when gEI is close to zero
(when gIE � 0 mS/cm2, there is no seizure activity in the
model). The amount of recurrent inhibition also deter-
mines the seizure oscillatory frequency (Fig. 3D). Seizure
activity can be initiated by sufficient self-inhibition, i.e.,

when gII is near 2 mS/cm2, seizures of 2.5 Hz are ob-
served. When gII increases, the seizure frequency de-
creases; for example, at 10 mS/cm2, seizure activity is
�1.8 Hz.

In the previous sections, the population model was
calibrated to data for short periods of seizure activity,
where the frequency was not substantially changing (Fig.
2B). Yet, one can see that in the experiment, seizure
activity is not stationary and its frequency changes over
time. The time course of a typical seizure is shown in
Figure 3E. Before the seizure starts there is a resting state,
characterized by occasional interictal (Cohen et al., 2002)
and pre-ictal discharges (Huberfeld et al., 2011). When
seizure starts at 22 s, it is characterized by fast oscilla-
tions of the extracellular field in the range of 5–6 Hz in the
initial phase. During the time course of seizure activity, it
gradually decreases to 1-Hz frequency, and from 52 s, it
gradually stops.

We aimed to reproduce this aspect of seizure activity
using the population model (Fig. 3E). First, the model was
initialized in the resting state (Fig. 2A), green trace. Sec-
ond, we reduced the amount of inhibitory-to-excitatory
coupling (to gIE � 0.5 mS/cm2) to reproduce the seizure
state, red trace. Third, we gradually reduced the coupling
parameter (to gIE � 0.25 mS/cm2) to reduce the oscillation
frequency, yellow trace. Fourth, to model the slow oscil-
lations in the end of seizure, we set the coupling param-
eter to zero (gIE � 0 mS/cm2), violet trace. Finally, we
restored it to the original value to bring the model back to
rest (gIE � 2 mS/cm2), green trace. This example illustrates
how the transition toward seizure in the population model
can be achieved by varying only one parameter, the
inhibitory-to-excitatory conductance gIE.

To study the amplitude of pathologic oscillations, we
performed a bifurcation analysis and tracked changes of
the average membrane potential in the excitatory popu-
lation, UE (Fig. 4), the self-excitation conductance gEE (Fig.
4A). We found that increasing gEE leads to the develop-
ment of ictal oscillations when its value increases beyond
�2.8 mS/cm2. During the gradual increase of gEE, the
constant steady state loses stability via the supercritical
Hopf bifurcation (Izhikevich, 2007), red dot. After passing
this point the neural populations start developing seizure
oscillations. This activity regime is stable for large gEE

variations, implying that seizure dynamics are possible for
a large range of recurrent excitation. When gEE becomes
higher than a critical value (�4.1 mS/cm2) and the system
loses stability via the subcritical Hopf bifurcation, green
dot. It corresponds to the high activity state with no
oscillations. This happens due to the sigmoid approxima-
tion of the population rate (Johannesma, 1968), when �E/I

reaches the saturation level (Fig. 1C,D).

Table 3. Power spectrum analysis

Model, peak
amplitude, Hz

Experiment, peak
amplitude, Hz

Model, spectrum
linear fit, 1/Hz

Experiment, spectrum
linear fit, 1/Hz

Rest - - -0.005—-0.002 -0.005—-0.002
Seizure 3.01—3.52 2.95—3.75 -0.005—-0.002 -0.003—-0.002
Pre-ictal state 1.33—1.43 1.21—1.79 -0.007—-0.003 -0.01—-0.008
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Second, we considered the excitatory to inhibitory con-
ductance gEI (Fig. 4B). In this case, seizure activity is
blocked when gEI is larger than 0.3 mS/cm2. If gEI is
smaller than 0.3 mS/cm2, it leads to seizure activity via a
subcritical Hopf bifurcation, green dot. Similar to the gEE

bifurcation diagram, seizure dynamics are possible for a
large range of gEI. These results show that a decrease in
the excitatory conductance from excitatory to inhibitory
populations is sufficient to provoke seizure activity. Note
that even if gEI � 0 mS/cm2, the excitatory population still
receives the input from the inhibitory one because potas-
sium reversal potential is elevated. These changes in
potassium reversal potential drive both excitatory and
inhibitory population even if synaptic drive is not present.
For example, when gEI � 0 mS/cm2, the increased potas-
sium reversal potential still drives the inhibitory popula-
tion, providing the inhibitory input to the excitatory
population. It happens because it decreases the leak
current thus depolarizing the membrane potential of ex-
citatory and inhibitory neurons. Therefore, seizure oscilla-
tions are still present because inhibition is still present.

Seizure frequency in this case is near 1.25 Hz (Fig. 3B) and
UE oscillates between –61 and –25 mV.

Third, we considered inhibitory-to-excitatory conduc-
tance gIE (Fig. 4C). When gIE � 0, the model shows resting
state activity. This corresponds to the condition when the
inhibitory population does not have any influence on the
excitatory one. Experimentally this scenario is achieved
when inhibitory neurotransmission is completely blocked.
Therefore, in the complete absence of inhibition, seizure
activity could not be generated. In turn, pre-ictal oscilla-
tions are not possible without the contribution of the
external synaptic noise IE�t� when gIE � 0 mS/cm2. When
there is stochastic synaptic input, it occasionally brings
the system to the oscillatory regime associated with sei-
zures (Fig. 2C). Then oscillations are promoted due to
recurrent excitation and terminated via AHP adaptation
mechanism. Thus, without synaptic stimulatin of the in-
hibitory population, the model is incapable of seizure
generation. In turn, pre-ictal oscillations do not require
inhibition, but strongly depend on the recurrent excitatory-to-
excitatory connections gEE, adaptation gAHP, and the external
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synaptic input IE�t�. When inhibitory to excitatory conductance
gIE becomes strong enough, around 0.65 mS/cm2, seizure
oscillations become truncated and the system moves back to
the resting state via subcritical Andronov–Hopf bifurcation,
green dot.

Fourth, we evaluated the role of recurrent inhibitory
conductance gII for seizure dynamics (Fig. 4D). When
there is substantial amount of self-inhibition in the inhib-
itory population, it leads to an increase of excitation in the
whole system because of synaptic coupling. If gII is above
2.1 mS/cm2, it leads to the development of seizure oscil-
lations via a supercritical Hopf bifurcation, red dot. Sei-
zure activity in this case persists for the large variations in
gII variations, from 2.2 to �10 mS/cm2.

We then analyzed the effect of adaptation in the excit-
atory population. We found the regime in the parameter
space of the model for which gAHP becomes the critical
parameter for seizure oscillations. To find this regime we
slightly modified the parameter set, where gIE � 0.5 mS/
cm2 instead of 2 mS/cm2. In this case, gAHP could sub-
stantially affect seizure oscillations. When gAHP is in the
range of 1–3 mS/cm2, there is a large region in the pa-
rameter space that produces seizure oscillations. If gAHP is
larger than 3 mS/cm2, the seizure dynamics becomes
truncated due to the inhibitory effect of adaptation via
subcritical Andronov–Hopf bifurcation, green dot. Yet
when adaptation is not strong enough, gAHP is lower, the
model demonstrates seizure oscillations. If gAHP is lower
than 1 mS/cm2, seizure oscillations become impossible
and the model moves to the high activity state without
oscillations via supercritical Andronov–Hopf bifurcation.
Additionally, we found that in the complete absence of
adaptation, seizure oscillations are still possible in the
model (results not shown), but pre-ictal oscillations could
not be generated because of the absence of negative
feedback provided by adaptation. To be able to repro-
duce seizure oscillations together with pre-ictal oscilla-
tions induced by GABAA blockade, adaptation in the
excitatory population is required.

We further studied the critical role of VGABA for seizure
generation. It has been recently found that changes in
VGABA are associated with the rhythm generation in the
hippocampus (Cohen et al., 2002; Huberfeld et al., 2007).
The analysis was performed for slightly modified param-
eter set, where gIE�1 mS/cm2, such that VGABA becomes
the bifurcation parameter. The other parameters remained
the same. We have changed the initial parameter set to
find the region of the parameter space where VGABA could
play the crucial role for oscillations. We found that when
VGABA is higher than –59 mV, it leads to ictal oscillations
(Fig. 4F). If VGABA drops below –48 mV, the oscillations
stop. These transitions take place due to supercritical and
subscritical Andronov–Hopf bifurcations. Thus, there is
substantial range of VGABA where its increase leads to the
development of seizures, which might take place due to
chloride accumulation before an ictal discharge (Huber-
feld et al., 2007; Lillis et al., 2012).

In summary, using bifurcation analysis, we character-
ized the parameter regions of the model where seizure
oscillations could take place. We found that transitions

from seizure to rest and from rest to seizure take place via
supercritical and subcritical Andronov–Hopf bifurcations.
In all studied cases we found that resting and oscillatory
solutions exist for large parameter variations, implying the
stability of found solutions (Prinz et al., 2004; Marder and
Taylor, 2011). We showed that variations of synaptic gEE,
gEI, gIE, gII, and intrinsic conductances gAHP could bring the
system toward seizure and move it back to the resting
state. It implies that combination of recurrent synaptic
currents and spike-frequency adaptation in the excitatory
population accounts for the transitions between seizure
and resting states.

Discussion
The objective of this study was to investigate the role of

intrinsic excitability and inhibition as mechanisms of sei-
zure dynamics. We constructed a novel neural mass
model, consisting of interacting excitatory and inhibitory
neural populations driven by external synaptic input. By
comparing the model with the LFP data from human
hippocampal/subicular slices, we found that it could ac-
curately represent resting states, ictal discharges, and
pre-ictal oscillations after the blockade of inhibition
(Huberfeld et al., 2011). Analysis of the model showed that
synaptic and intrinsic conductances play the most crucial
role for transitions between resting and seizure activity.
By analyzing the parameter space of the model, we found
the oscillatory regimes specific for the resting state and
seizure dynamics, and found that transitions between
these regimes take place via subcritical and supercritical
Andronov–Hopf bifurcations.

Starting with the pioneering work of Wilson and Cowan
(Wilson and Cowan, 1972), neural mass models have
traditionally aimed to reduce the complexity of neural
dynamics toward interactions between excitation and in-
hibition. This approach has been validated in multiple
studies for describing the large-scale brain activity pat-
terns (Jirsa et al., 2010). Additionally, it has been shown
that intrinsic properties of single neurons such as spike-
frequency adaptation (Fröhlich et al., 2008) substantially
change spiking patterns and thus neural dynamics (Kager
et al., 2000; Bazhenov et al., 2004; Buchin et al., 2016b).
So far these types of interactions have not been explicitly
taken into account in neural mass models.

In this work, we developed a novel mass model by
adding AHP currents (Buchin and Chizhov, 2010a) to the
excitatory population. This allowed to efficiently take into
account not only seizure and resting state dynamics
(Wendling et al., 2012) but also pre-ictal oscillations. In
our model seizure activity takes place due to imbalance
between self-excitation, adaptation and inhibition. We
found that reducing the amount of inhibition to the excit-
atory population provokes seizure activity. Nonetheless,
inhibition plays an important role in orchestrating seizures
as well (Fig. 2B). We found that the complete lack of
inhibition leads to the development of slow oscillations
with significantly different frequency content than seizures
(Fig. 2C). Thus, we propose that inhibition, together with
single neuron intrinsic properties provided by adaptation,
plays an important role controlling the seizure dynamics.
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We have investigated multiple mechanisms responsible
for generation of seizure activity. In the proposed model,
seizure oscillations could be generated by increased re-
current excitation gEE, decreased excitation of the inhibi-
tory population gIE, decreased inhibition of the excitatory
population gIE, increased recurrent inhibition in the inhib-
itory population gII. Changes in the intrinsic excitability of
the excitatory population such as decrease of intrinsic
adaptation gAHP and increase of the GABAA reversal po-
tential VGABA could also lead to seizure oscillations. We
speculate that various physiological parameters combina-
tions could lead to seizure activity, as found by Jirsa et al.
(2014). The combination of multiple factors such as in-
creased chloride concentration in the pyramidal cells and
GABAA reversal (Huberfeld et al., 2011; Lillis et al., 2012;
Buchin et al., 2016a), together with an increase in extra-
cellular potassium concentrations (Bazhenov et al., 2004;
Krishnan and Chizhov, 2011) and decreased activity of
interneurons (Ziburkus et al., 2006), all contribute to sei-
zure initiation. Combination of these factors and their
relative contribution should be evaluated via additional
experiments and modeling.

Adaptation on the single neuron level could be achieved
by calcium-dependent potassium currents (Jung et al.,
2001; Bazhenov et al., 2004). In our model, AHP is the key
mechanism for termination of population bursts during
seizure oscillations (Fig. 2B) and pre-ictal discharges (Fig.
2C). The alternative potential mechanism of termination of
these bursts are GABAB currents provided by the inhibi-
tory population (de la Prida et al., 2006). We predict that in
the complete absence of the inhibitory neurotransmission
including GABAA and GABAB synapses, the purely excit-
atory network in the epileptogenic slice of human subic-
ulum would be capable of generating self-sustained pre-
ictal oscillations due to negative feedback provided by
AHP (Ratnadurai-Giridharan et al., 2014) and other intrin-
sic adaptation currents. Therefore the downregulation of
excitatory neuronal adaptation currents such as AHP
and/or functionally similar muscarinic-sensitive potassium
currents (Stiefel et al., 2008) could lead to seizure initia-
tion. According to the model the pharmacological strategy
aiming to increase the amount of adaptation in the excit-
atory population would lead to the decreased suscepti-
bility toward seizures.

GABAB inhibition could also participate for the termina-
tion of population bursts. As shown by (de la Prida et al.,
2006), the joint blockade of GABAA receptors by PTX and
GABAB receptors by CGP led to generation of all-or-none
population bursts in CA3 mouse hippocampal slices. In
our experiments we did not test for the possibility that
GABAB could participate for the pre-ictal discharge termina-
tion. Additional experiments are needed to divide the contribu-
tions of GABAB and AHP for the burst termination.

Note that oscillations in the slice switched from ictal
discharges to pre-ictal ones after full GABAA blockade.
This transition was possible only if seizures were already
established in the slice (Huberfeld et al., 2011). It implies
that there are excitability and synaptic plasticity changes
in the slice associated with seizures before the pre-ictal
discharges could be established using complete GABAA

blockade. When GABAA blockers were applied before first
seizure being generated, the pre-ictal and ictal oscillations
were not established (Huberfeld et al., 2011).

Our model has several limitations compared to existing
approaches (Molaee-Ardekani et al., 2010; Wendling
et al., 2012; Jirsa et al., 2014). First, it is unable to describe
the pre-ictal discharges taking place before seizure. The
work of Buchin et al. (2016b) proposes a network expla-
nation of pre-ictal discharges that take place before sei-
zure transition (Huberfeld et al., 2011). To describe this
activity, it was necessary to take into account the heter-
ogeneity in the excitatory population caused by depolar-
izing GABA, while in the current model we did not take it
into account. Therefore, pre-ictal discharges in our model
could be generated only in the absence of inhibitory
population. Second, particular features such as high fre-
quency oscillations (Engel et al., 2009) relevant for seizure
initiation (Quilichini et al., 2012) are not captured in our
model. We speculate that this property could be taken
into account by incorporating fast somatic and slow den-
dritic inhibition (Wendling et al., 2012). Third, our model is
also unable to describe the interictal discharges, which
have been explained in the other population models
(Wendling et al., 2012; Chizhov et al., 2017). It has been
found that interictal discharges in human subiculum re-
quire initial interneuron activation. Since in our model we
impose the background synaptic input onto the excitatory
population, the pyramidal cells are always activated be-
fore interneurons. It has been recently proposed in
Chizhov et al. (2017) that the interneuron population
should receive background synaptic input, which would
allow the reproduction of interictal discharges in neural
mass models.

Pre-ictal discharges are generated before seizure initi-
ation and in the absence of inhibition when seizures have
been established in the slice (Huberfeld et al., 2011).
These oscillations are still generated in the absence of
inhibitory population (Fig. 2C). Using the model, we show
that in this case the background synaptic input to the
excitatory population IE�t� is necessary to generate the
periodic pre-ictal oscillations. When IE�t� is absent, there
are no pre-ictal discharges in the model (Fig. 3C). We
speculate that before seizure initiation the interneurons
are becoming non-functional because of depolarization
block (Ziburkus et al., 2006) and GABAA reversal (Lillis
et al., 2012), thus allowing the pre-ictal discharges to be
generated before seizure initiation (Huberfeld et al., 2011).
The proposed model could explain the presence of pre-
ictal discharges only in the complete absence of inhibition
(Fig. 2C). The possibility of pre-ictal discharge generation
before seizure due to non-functional inhibition could be
investigated in the future studies.

During seizures or ictal discharges, the frequency con-
tent of spiking activity might substantially change (Fig.
3E). This can be explained using the current model as due
to the gradual increase of recurrent excitation gEE (Fig. 3A)
or the increase of recurrent inhibition gII. Note that the
frequency content of seizure oscillations in the end of it
might be similar to the pre-ictal discharges (Figs. 2C, 3E).
However, pre-ictal oscillations are possible in the model
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only in the absence of inhibition (Fig. 2C), as in the exper-
imental data when the GABAA synaptic activity is com-
pletely blocked.

The primary advantage of our model compared to more
abstract ones such as Jirsa et al. (2014) is that it provides
more firm biophysical explanations linking single neuron
properties to population dynamics (Johannesma, 1968;
Gerstner and Kistler, 2002; Chizhov and Graham, 2007).
Our approach could be extended to take into account the
shunting effect of inhibition by adjusting the firing rate
transfer function (Chizhov et al., 2014). To describe the
additional mechanisms of seizure transition, the present
model could include slow activity-dependent parameter
changes similar to (Cressman et al., 2009; Ullah et al.,
2009; Proix et al., 2014; Chizhov et al., 2018). There are
multiple biophysical mechanisms that could play the role
of slow variable bringing the network toward seizure
(Naze et al., 2015), including dynamic ion concentration of
extracellular potassium (Bazhenov et al., 2004), intracel-
lular chloride (Jedlicka et al., 2011; Buchin et al., 2016b),
and intracellular sodium (Krishnan and Bazhenov, 2011;
Karus et al., 2015), in pyramidal cells. The population
model could be further modified to incorporate these slow
mechanisms to describe seizure initiation.

A common problem with neural mass models in general is
their limited ability to generate the experimentally measur-
able signals (Lytton, 2008). In this work, we used the average
voltage of the excitatory neural population as the appro-
ximation of the LFP signal near the neurons’ somas
(Ratnadurai-Giridharan et al., 2014). Given the distant de-
pendence of the LFP signal, the current model should be
considered only as a first approximation (Buzsáki et al.,
2012). More detailed approaches describing populations of
two-compartmental neurons (Chizhov, 2014; Chizhov et al.,
2015) could also provide better approximation for the LFP.

Epilepsy is a complex phenomenon involving the dynamic
interactions between multiple components of the nervous
system (Lytton, 2008). In this work, we have investigated the
particular role of inhibition and adaptation and their implica-
tions for seizure dynamics. Reconciling modeling results
with experimental data, we have shown that seizure activity
cannot be generated in the complete absence of the inhib-
itory population and adaption in the excitatory population.
Further development of theoretical and experimental ap-
proaches in epilepsy research may lead to a better under-
standing of its mechanisms and the development of new
therapeutic targets.
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