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Abstract

The mammalian visual system consists of several anatomically distinct areas, layers, and cell types. To under-
stand the role of these subpopulations in visual information processing, we analyzed neural signals recorded from
excitatory neurons from various anatomical and functional structures. For each of 186 mice, one of six genetically
tagged cell types and one of six visual areas were targeted while the mouse was passively viewing various visual
stimuli. We trained linear classifiers to decode one of six visual stimulus categories with distinct spatiotemporal
structures from the population neural activity. We found that neurons in both the primary visual cortex and
secondary visual areas show varying degrees of stimulus-specific decodability, and neurons in superficial layers
tend to be more informative about the stimulus categories. Additional decoding analyses of directional motion
were consistent with these findings. We observed synergy in the population code of direction in several visual
areas suggesting area-specific organization of information representation across neurons. These differences in
decoding capacities shed light on the specialized organization of neural information processing across anatom-
ically distinct subpopulations, and further establish the mouse as a model for understanding visual perception.
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This analysis is one of the first of the Allen Brain Observatory’s visual cortex dataset. The mouse has
recently emerged as a powerful alternative to primates and carnivorous species as a model for studying
visual perception. Mice offer the benefit of large-scale, high-throughput experiments and sophisticated
genetic tools useful to investigating highly specific components of visual perception. Preliminary work in
identifying the functional organization of mouse extrastriate areas has focused on single neurons and lacks
analysis at the population level. Our population decoding analysis contributes novel evidence about the role
of many distinct areas and layers of the mouse visual cortex in visual information processing to further
kestablish the mouse as a viable model for future visual system research. j

ignificance Statement

Introduction

Although the mouse has long been neglected as a
model for studying neural visual information processing, it
has recently emerged as a powerful alternative to primate
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and other carnivorous species. Mice offer the benefit of
large-scale, high-throughput experiments and sophisti-
cated genetic tools for investigating highly specific com-
ponents of visual perception (Arenkiel and Ehlers, 2009).
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Figure 1. Overview of the population decoding analysis. The neural code of either one of six visual categories (A) or one out of eight
directions of drifting grating stimulus (B) by the excitatory neurons in the mouse visual system (C) were analyzed. A specific
subpopulation (visual area, cell type, depth) were targeted and observed while the mice viewed the visual stimuli. From the normalized
fluorescence signals from the subpopulation (D), we decoded the identity of the stimulus class (E). Successful decoding provides
evidence for an instantaneous representation of the spatiotemporal signatures of stimuli within the population activity.

However, the use of mice in studying visual perception
is currently limited by insufficient knowledge about the
functional organization of the mouse visual cortex.
Thus, we aim to characterize the population neural
code associated with cortical organization of visual
information processing.

Visual information is thought to be processed in a series
of computations as it travels from the retina to the lateral
geniculate nucleus and then through a series of visual
cortices (Nassi and Callaway, 2009). The early visual sys-
tem processes complex visual stimuli through the simul-
taneous encoding of different stimulus attributes, such as
direction, orientation, and spatial and temporal frequency
by individual neurons, while higher order visual cortices
process nonlinear features (Orban, 2008). If we can build
a simple population decoder to read out the information
made accessible by the neural population (Fig. 1), we can
provide insight to which of these features are encoded in
specific populations of neurons (Graf et al., 2011).

The global topographic organization of the mouse vi-
sual cortex has been well characterized. Recent studies
have retinotopically identified at least 10 visual areas with
organized and complete representations of the entire vi-
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sual field (Wang and Burkhalter, 2007; Marshel et al.,
2011; Garrett et al., 2014). However, the neural population
code, how information is collectively represented in the
neural activity, has remained elusive. While progress has
been made in identifying differences between the spatio-
temporal information encoded by neurons in different
visual areas, prior work has focused on single neurons
and lacks analysis at the population level (Andermann
et al., 2011; Marshel et al., 2011; Juavinett and Callaway,
2015). By decoding neural responses in large neural pop-
ulations of 186 mice spanning six visual areas, we aim to
better understand population coding in the mouse visual
cortex.

Given neural responses from populations of just over
one hundred visual cortical neurons, linear classifiers
achieve high accuracy in two decoding tasks: one with six
stimulus classes with complex spatiotemporal features
and one with eight drifting grating directions. We found
differential decoding accuracy between the primary (VISp),
lateral (VISI), anterolateral (VISal), anteromedial (VISam), pos-
teromedial (VISpm), and rostrolateral (VISrl) visual areas,
which implies differential information representation in
these visual areas. We also found differences between
populations from different cortical depths, with superficial
layer populations containing more information than those
from deeper layers. Moreover, we found evidence that
directional tuning in individual neurons does not neces-
sarily predict the population decoding accuracy suggest-
ing distributed representation of information. These
results reveal novel evidence about the cortical organiza-
tion of visual information processing.
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Materials and Methods

Dataset

We analyzed data from the Allen Brain Observatory,
downloaded on July 3, 2017 using the AllenSDK version
0.13.2. A full description of the Allen Brain Observatory’s
data collection methodology is available in their Visual
Coding Overview and Visual Stimuli technical whitepapers
(Allen Institute for Brain Science, 2017). In brief, the Allen
Brain Observatory recorded in vivo two-photon calcium im-
aging data at 30 Hz over a 400-um field of view at a
resolution of 512 X 512 pixels. We use data from 186 mice
of the 216 mice imaged by the Allen Brain Observatory.

Recent studies have identified aberrant cortical activity in
GCaMP6-expressing transgenic mouse lines, particularly in
Emx1-Cre, aline included in Allen Brain Observatory dataset
(Steinmetz et al., 2017). By screening somatosensory cortex
epifluorescence movies before imaging and analyzing vi-
sual cortex two-photon calcium recordings after imaging,
the Allen Brain Observatory detected aberrant activity
resembling epileptiform interictal events in 10 Emx-IRES-
Cre mice and seven Rbp4-Cre_KL100 mice. Data re-
corded from these 17 aberrant mice were excluded from
our analysis. In addition, data from 12 mice were dis-
carded due to the recording of fewer than 10 common
neurons across three visual stimulus sessions. Lastly,
data from one additional mouse was discarded due to a
large number of missing values, resulting in a total of 186
mice with viable data. The sizes (Table 1-4) and Cre lines
(Table 5, 6) of the populations varied among the targeted
visual areas and depths.

A set of synthetic and natural stimuli, comprised of (1)
drifting gratings, (2) static gratings, (3) locally sparse
noise, (4) natural images, (5) natural movies, and (6) spon-
taneous activity (mean luminance gray), were displayed
on an ASUS PA248Q LCD monitor at a resolution of
1920 X 1200 pixels (de Vries et al., 2018). Spherical
warping was applied to all stimuli to account for the close
viewing angle. The monitor was positioned 15 cm from
the right eye of awake head-fixed mice, spanning 120° by
95° of visual space without accounting for the spherical
warping. The stimuli were distributed into three sessions
A, B, and C (or C2) which were presented over 3 d. The
natural movie and spontaneous stimuli were presented in
all sessions. Drifting gratings were presented in session A,
static gratings and natural images in session B, and lo-
cally sparse noise in session C/C2. Session types C and
C2 both contained the four-degree locally sparse noise
stimulus (16 X 28 array of 4.65° patches). Session C2 also
contained the eight-degree locally sparse noise stimulus
(8 X 14 array of 9.3° patches), which was discarded from
analysis since it was only shown to a subset of mice.

The static and drifting gratings stimuli were presented
in a variety of orientations, spatial frequencies, and tem-
poral frequencies. The static gratings stimulus was com-
prised of gratings presented at 6 orientations (separated
by 30°), five spatial frequencies (0.02, 0.04, 0.08, 0.16, or
0.32 cycles/degree), and four phases (0, 0.25, 0.5, or
0.75). Each static grating condition was presented 50
times in a random order, with a duration of 0.25 s per
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Table 1. Mean population size with SD by visual area for the
stimulus classification

Area VISal VISam VISI VISp VISpm VISr
Mean population size 65.16 38.12 69.71 82.91 42.42 92.00
SD 40.89 18.53 43.45 48.96 27.08 37.64

Populations are composed of neurons common across the three imaging
sessions A, B, and C.

condition. The drifting gratings stimulus was comprised of
40 grating conditions. Each grating condition was a com-
bination of one of eight directions (separated by 45°) and
one of five temporal frequencies (1, 2, 4, 8, or 15 Hz) at a
spatial frequency of 0.04 cycles/degree. Each drifting
grating condition was presented 15 times each in a ran-
dom order, with a duration 2 s per condition followed by
1 s of mean luminance gray.

Pre-processing

The neural signal was quantified as fluorescence fluc-
tuation AFF, calculated for each frame as AF/F = (F —
F,) | F,, where the baseline F, is the mean fluorescence of
the preceding 1 s. For each of 186 neural populations, 3 h
of AF/F traces were separated into stimulus epochs.

To form samples for the stimulus classification, each
epoch was divided into 10-s intervals, of which the final
interval was discarded if it was <10 s. Neural populations
used in the stimulus classification were composed of
neurons common across the three imaging sessions A, B,
and C (or C2) for each mouse (Tables 1, 2). For each 10-s
interval, the mean fluorescence fluctuation per neuron
was calculated and labeled with the corresponding stim-
ulus class.

To form samples for the direction classification, the
drifting gratings epoch was divided into 3-s intervals, of
which the third second (during which a blank sweep of
mean luminance gray was presented) was discarded.
Neural populations used in the direction classification
were composed of all neurons imaged during session A,
and thus were larger than populations used in the stimu-
lus classification (Table 3, 4). For each 2-s interval, the
mean fluorescence fluctuation per neuron was calculated
and labeled with the corresponding grating direction.

Table 2. Mean population size with SD by imaging depth
group for the stimulus classification

Imaging depth (um) 175 265-300 325-350 365-435

Mean population size 70.82 84.96 46.82 38.50
SD 33.74 50.14 34.20 22.62

Populations are composed of neurons common across the three imaging
sessions A, B, and C.

Table 3. Mean population size with SD by visual area for the
direction classification

Area VISal VISamVISI VISp VISpmVISr
Mean population size 139.1389.12 143.97169.8799.87 178.13
SD 79.40 56.77 85.16 84.83 62.29 68.83

Population sizes are larger for the direction classification than the stimu-
lus classification because the population includes all neurons imaged in
session A.
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Table 4. Mean population size with SD by imaging depth
group for the direction classification

Imaging depth (um) 175 265-300 325-350 365-435
Mean population size 153.49 178.15 93.27 80.13
SD 56.76  88.79 66.22 52.75

Population sizes are larger for the direction classification than the stimu-
lus classification because the population includes all neurons imaged in
session A.

In both the stimulus and the direction decoding, mean
AF/F for each neuron were z-scored and combined to
form the neural feature vectors in R” for classification,
where n is the number of neurons in the population.

Neural decoding

We used linear classifiers to decode the stimulus
classes based on the neural feature vectors. The classifi-
ers were implemented in the Python programming lan-
guage using the scikit-learn machine learning library
version 0.19.0 (Pedregosa et al., 2011). Linear support
vector machine (SVM) and multinomial logistic regression
(MLR) were trained and tested with a nested cross-
validation scheme. We principally split the data into train-
ing and test sets to form a 5-fold cross-validated
prediction.

In Figures 2-7, we show only SVM classification results
for simplicity. However, all results are based on data from
both SVM and MLR classification, for which similar results
were obtained (Fig. 8).

Because of the different duration of stimulus presenta-
tions, the stimulus classes had unbalanced numbers of
samples. To build balanced training sets, we subsampled
(without replacement) an equal number of responses from
each class. The size of these subsamples was equal to
80% of the smallest class (spontaneous activity; 20 min
out of total 177 or 156 min of recording used in samples,
depending on if the mouse was shown C or C2). The test
sets consisted of the remaining samples and were kept
unbalanced.

The direction classes used in the direction decoding
were evenly distributed throughout the stimulus presen-

Table 5. Cre line populations in each visual area

Area VISal VISam VISI VISp VISpm VISt
Cux2-CreERT2 11 5 13 16 13 3
Emx1-IRES-Cre 7 2 6 7 4 6
Nr5a1-Cre 4 1 5 9 6 4
Rbp4-Cre_KL100 3 4 5 5 5 1
Rorb-IRES2-Cre 6 5 6 8 5 2
Scnnla-Tg3-Cre 0 2 0 9 0 0
Table 6. Cre line populations in each depth group

Imaging depth (um) 175  265-300 325-350 365-435
Cux2-CreERT2 34 27 0 0
Emx1-IRES-Cre 15 10 0 7
Nr5a1-Cre 0 3 26 0
Rbp4-Cre_KL100 0 0 0 23
Rorb-IRES2-Cre 0 32 0 0
Scnnia-Tg3-Cre 0 2 7 0
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tation. The direction samples were randomly split intro
training (80%) and test (20%) sets for all classification.
The training set was assumed to be balanced due to the
even distribution of classes throughout data collection.

Both classifiers were regularized using additive €,-
regularizer of the form ||6||?>/2C. The regularization
constant was optimized through a nested cross-
validation within the first training set where the best
C ={10"2,10"",1, 10, 102 108, «} that yielded the high-
est accuracy was chosen.

Subsampled population

To investigate the scaling of decoding performance as
a function of population size, we made random sub-
samples (without replacement) of different sizes n =
{25, 21,22, .} up to the number of neurons available for
each mouse. We repeated the procedure 10 times to form
10 resampled subpopulations. We report accuracy values
averaged over the 10 resampled datasets. The statistics
of population sizes by group or decoding task can be
found in Table 1-4.

To investigate the information carried by the joint pop-
ulation activity, we trained “correlation-blind” decoders
with the same procedure but on a shuffled dataset where
the joint structure was approximately independent. To
generate the shuffled data, we randomly permuted the
trials corresponding to the same target for each neuron.

Accuracy curve fitting
To extrapolate the accuracy as a function of population
size, we used the following generalized logistic function:

1—-c¢

accuracy(n) = m

+ c, (1)

with three parameters {a, b, c} with constraintsa =0, c =
0 and b € [0,1]. Note that the c parameter allows a
minimum accuracy expected from chance level perfor-
mance for small population size. We fit the curve on the
average accuracies obtained by subsampling using non-
linear least squares (van der Walt et al., 2011).

Statistical tests

To compare accuracy between cortical areas and im-
aging depths, we performed Tukey’s test at a 0.05 signif-
icance level (Tukey, 1949). Tukey’s test compares the
mean accuracies of every pair with adjustment for multi-
ple comparison. Ten imaging depths (175, 265, 275, 300,
325, 335, 350, 365, 375, and 435 um) were sorted into
four groups: 175, 265-300, 325-350, and 365-435 um.
We compared the six visual cortical areas (VISp, VISpm,
VISI, VISal, VISam, and VISrl), four imaging depth groups,
and six stimulus classes.

Orientation and direction selectivity

The neural activity recorded during the session A drift-
ing gratings stimulus was used to calculate the orientation
selectivity index (OSI) and direction selectivity index (DSI)
for each neuron. We obtained OSI and DSI using the Allen
SDK Drifting Gratings module,

eNeuro.org
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Figure 2. Population decoding performance by visual area for six stimulus classes. A, Stimulus decoding accuracy for individual
randomly subsampled populations consisting of 1, 2, 4, 8, 16, 32, 64, and 128 neurons (black dots, jittered for visual clarity) and curve
fits (solid lines). The number of populations per area is listed in the titles (n). In all visual areas, the majority of small populations (one
to four neurons) outperformed chance level (gray line at 16.67% accuracy). However, small population performance in VISrl was
more concentrated near chance level than all other areas. Individual populations of 128 neurons achieved near-perfect accuracy
in all visual areas except VISrl. B, Population averaged accuracy by visual area (solid lines) with standard error (shaded regions).
The line colors correspond to the visual area indicated by the line colors in A. C, Statistically significant (p < 0.05) pairwise
comparisons of decoding accuracy at 128 neurons between the six visual areas using Tukey’s test. VISrl underperforms all other

visual areas.

R R

OS| _ pref orth o
Rpref + Ror‘th ( )
R ref Rnull

DSl = X——" 3
Rpref + Rnull ( )

where R, is the mean response to the preferred orien-
tation at the preferred temporal frequency, R4, is the
mean response to the orthogonal directions, and R, is
the mean response to the opposite direction (Allen Insti-
tute for Brain Science, 2017, de Vries et al., 2018). The
response was defined as the mean AF/F during the grating
presentation. Each condition was presented 15 times, and
responses to all presentations were averaged together.
The preferred direction and temporal frequency condition
was defined as that grating condition that evoked the
largest mean response.

Since AF/F can be negative, OSI and DSI values can be
>1 or even be negative. We excluded values below 0 (663
OSI values and 648 DSI values out of 26,186 cells) or
above 2 (1871 OSI values and 1561 DSI values) following
the Allen Institute guidelines. The full computation meth-
odology for these indices can be found in the Allen Brain
Observatory’s Visual Stimuli technical whitepaper (Allen
Institute for Brain Science, 2017). To compare across
visual areas, the OSI| and DSI of all neurons in each area
were averaged together (Fig. 4D,E). To compare across
depths, the OSI and DSI of all neurons in each depth were
averaged together (Fig. 7D,E).

July/August 2018, 5(4) e0414-17.2018

Code accessibility
The code described in the paper is freely available
online at https://github.com/catniplab/aboDecoding.

Results

Spatiotemporal structure of stimuli is differentially
encoded among visual areas

To investigate differences in information processing be-
tween six mouse visual areas, statistical classifiers were
fit to discriminate visual categories based on the popula-
tion activity within each area. Neural activity was moni-
tored through a fluorescent calcium sensor (GCaMP6f)
selectively expressed in transgenic mice (de Vries et al.,
2018). Recorded calcium signals were processed and
discretized in time to yield feature vectors corresponding
to neural activity of the population (see Materials and
Methods). Mice were shown six types of stimuli which
differed in their spatiotemporal structures, ranging from
simple spatial structures (such as orientation gratings and
sparse pixels) to complex natural scenes (Fig. 1A,8) The
stimuli included static images as well as movies with
complex long range correlations. A faithful recovery of
these visual categories from neural activity reflects the
potential information the neural population encodes about
the stimuli.

Since the population size was variable across experi-
ments, we compare the rate at which the classification
accuracy improves as a function of population size (Fig.
2A). Classification accuracies from small randomly sub-
sampled populations were near chance level, and gradu-
ally increased with the population size for all sessions

eNeuro.org
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Figure 3. Stimulus-specific population decoding. A, Visual area averaged stimulus-specific decoding accuracy similar to Figure 2. The
line color corresponds to the stimulus indicated by the legend in C. High-performing areas with similar overall decoding accuracy
show differential accuracy in predicting specific stimuli. B, Stimulus-specific decoding accuracy averaged across all populations.
There is differential accuracy in decoding the specific stimulus classes, with some being harder to decode than others. C, Statistical
significance map (same convention as Fig. 2C). The natural movies are significantly more difficult to decode than all other stimuli, and
the locally sparse noise is significantly more difficult to decode than all others except the natural movies.

analyzed (Fig. 2A, black dots). We fit a three-parameter
sigmoid function to extrapolate up to 128 neurons for
each session (Fig. 2A; see Materials and Methods). The
averages within each of the six visual areas show similar
increasing trends with accuracy approaching 90% for
the population size of 128. Five areas (VISal, VISam,
VISI, VISp, VISpm) significantly outperformed VISrI (Fig.
2B,C). We used a one-sided t test with a null hypothesis
that secondary areas’ decoding performance is less
than that of the primary visual cortex. For both the
stimulus category decoding and direction decoding, we
failed to reject the null hypothesis at the 0.05 signifi-
cance level.

We examined the accuracy of decoding specific stim-
ulus categories to further investigate encoding differences
across visual areas. On average, natural movie and spon-
taneous categories were more difficult to decode (Fig.
3B,C). Although similar in overall decoding accuracy, the
five high-performing visual areas (VISal, VISam, VISI,
VISp, VISpm) show different patterns in per category
accuracy (Fig. 3). We used a one-sided t test (p-values
adjusted for multiple tests) to compare the decoding ac-
curacy of the natural movie stimulus and all other stimulus
categories within each visual area. The natural movie
category is significantly harder (o < 0.001) to decode than
other stimuli in populations from the anatomically adja-
cent VISp, VISI, and VISal (Fig. 3A).

Area dependent decoding of drifting gratings
direction

Local visual orientation information is prevalently en-
coded in the primary visual cortex (Hubel and Wiesel,
1959; Priebe, 2016). Layer 2/3 neurons in the mouse
visual cortex are also sensitive to orientation gratings and
their directional motion (Marshel et al., 2011). However,

July/August 2018, 5(4) e0414-17.2018

mouse primary visual cortex seems to also serve the role
of higher order visual function (Gavornik and Bear, 2014).
We investigated whether the ability to decode vastly dif-
ferent stimulus categories is related to their capacity to
represent orientation and direction. Using the average
neural activity in 2-s windows corresponding to the dura-
tion of drifting grating presentation, we trained linear clas-
sifiers to decode the direction of drifting gratings.

Except for a few VISrl populations, direction decoding
was again an increasing function of population size (Fig.
4A). VISrl showed the worst decoding performance at the
128 neuron level, and VISam/VISpm showed intermediate
performance, while VISp, VISI, and VISal showed compa-
rable population level encoding (Fig. 4B,C).

Surprisingly, the population decoding accuracy showed
discrepancies from what is expected from individual neu-
ron’s directional tuning sensitivity. Higher orientation and
DSI (Fig. 4D,E) indicates the stronger representation of
these basic visual features, which is highest in VISI fol-
lowed by VISrl. However, the joint activity decoding
showed VISI being on par with VISp and VISal, while the
VISrl population was much less informative. This suggests
that excitatory neurons in VISp and VISal are more syn-
ergistic (a tendency for the population to contain more
information than individual neurons; Brenner et al., 2000;
Latham and Nirenberg, 2005) and that there is relatively
more redundancy in the VISI population.

This synergistic population code is corroborated by the
general trend of inferior performance of the correlation-
blind decoder. The correlation-blind decoder was trained
on the trial-shuffled neural data, hence removing the noise
correlation. In Figure 5, for all areas except VISrl there is a
significant drop in performance, which indicates the joint
activity of the population carries extra information.

eNeuro.org
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Figure 4. Population decoding of directions for the drifting grating epoch. A, Direction decoding accuracy (same conventions as Fig.
2). Note that in VISrl, small populations (one to two neurons) performed closer to chance level (gray line at 12.5% accuracy) than the
same sized populations in other areas. B, Population averaged accuracy by visual area (solid lines) with SE (shaded regions). The line
colors correspond to the visual area indicated by the line colors in A. C, Statistical significance map (same convention as Fig. 2C).
Three high-performing areas (VISp, VISal, VISI) showing similar performance are anatomically adjacent. Similarly, two of three
low-performing areas (VISpm and VISam) showing similar performance are anatomically adjacent. D, E, Mean orientation (D) and
direction (E) selectivity index (with SEM) per area (see Materials and Methods).

Superficial layers are more informative about the
spatiotemporal signatures of visual stimuli

In rats, neurons in the superficial layers of V1 are known
to have better orientation selectivity and less spontaneous
activity (Girman et al., 1999), suggesting a laminar orga-
nization of visual information processing. To investigate
whether similar laminar differences exist in mice, we an-
alyzed the decoding accuracy of stimulus classes as a
function of recording depth (Fig. 6). There were six differ-
ent Cre lines with specific targets (for full distribution, see
Table 6). Since there was little difference across Cre lines,
we present the results grouped by depth.

The 325- to 350-um depth group (dominated by Nr5a1
Cre line; Table 6) consistently showed the worst decoding
performance across both the stimulus category and di-
rection decoding tasks (Fig. 7). Meanwhile, the most su-

synergy in coding direction of drifting gratings
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Figure 5. Neural population is synergistically encoding direc-
tional information. Accuracy of correlation blind decoder (gray
bars; independent decoder) is compared to the joint decoder
(same value as in Fig. 4B) for the population size of 128 neurons.
Statistical significance indicated by paired t test.
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perficial group (imaging depth of 175 um corresponding
to either Cux2 or Emx1 Cre lines, putative layer 2/3)
significantly outperformed the deeper populations (Fig. 6),
with high decoding performance across all stimulus cat-
egories (Fig. 9). However, this superficial layer did not
show distinctly superior direction decoding (Fig. 7B). This
suggests that the spatiotemporal structure of each visual
category extra to the overall orientation information is
better represented in the superficial layers. Although there
may be worsening of signal-to-noise ratio as the imaging
depth increases, both decoding schemes do not show
monotonic degradation of performance as a function of
depth (Figs. 6, 7).

The OSI and DSI showed contrary trends (Fig. 7D,E).
Deeper layers had relatively larger OSI but smaller DSI,
suggesting the temporal component of the drifting grat-
ings may be better represented in the superficial layers.
Despite larger DSI, the 325- to 350-um group performed
worse than the 365- to 435-um group, again an unex-
pected observation likely due to the spatial organization
of the code.

Discussion

The focus of this study was investigating how stimulus
classes and drifting grating directions can be inferred
from neural population responses in mouse visual areas.
In primates, it has been well established that visual pro-
cessing occurs through a hierarchical structure, in which
the primary visual cortex provides input to secondary
visual areas (Maunsell and Newsome, 1987; Felleman and
Van Essen, 1991; Orban, 2008). The rat visual cortex has
also been characterized as having a hierarchical organi-
zation (Coogan and Burkhalter, 1993). Results from this
analysis corroborate recent studies which have sug-
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Figure 6. Population decoding performance by recording depth for six stimulus classes (same conventions as Fig. 2). On average,
small populations (one to two neurons) performed better than chance level performance (gray line at 16.67% accuracy). The 325- to
350-um group significantly underperforms two shallower groups (175 and 265-300 um).

gested that this simple hierarchy may also be present in
the mouse visual cortex (Wang and Burkhalter, 2007;
Berezovskii et al., 2011). In both decoding tasks, the
overall decoding performance of populations from sec-
ondary visual areas was equal to or worse than the pri-
mary visual cortex (VISp), suggesting that secondary
areas do not encode any more information than is en-
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Figure 7. Population decoding performance by imaging depth for eight drifting grating directions (same conventions as Fig. 4

coded by the primary visual cortex. This is supported by
findings that the mouse primary visual cortex has a more
diverse set of stimulus preferences than secondary areas
VISal and VISpm (Andermann et al., 2011).

Differences in stimulus-specific decoding performance
between populations from different visual areas suggest
areal differences in visual information representation. On
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average, small populations (one to two neurons) in the three high-performing depth groups (175, 265-300, and 365-435 um)
outperformed chance level (gray line at 12.5% accuracy), while small populations in the low-performing 325- to 350-um group

performed at chance level.
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Figure 8. Comparison of results of linear SVM and MLR classi-
fication. SVM and MLR classification accuracy for subsampled
populations of 1, 2, 4, 8, 16, 32, 64, and 128 neurons are

represented by a single point. Similar results were achieved by
both classifiers.

average, the spontaneous stimulus and the natural movie
stimulus are significantly harder to decode than other
stimuli, but this trend is not seen in all areas (Fig. 3).
Anatomically adjacent visual areas display similarities in
their stimulus-specific decoding performance. The adja-
cent anteromedial (VISam) and posteromedial (VISpm)
areas showed no difference in performance for specific
stimuli. In contrast, in populations from the adjacent pri-
mary (VISp), anterolateral (VISal), and lateral (VISI) visual
areas, it was significantly harder to decode the natural
movie stimulus than other stimuli. These anatomic trends
in stimulus-specific decoding may be attributed to spe-
cialized input pathways from the primary visual cortex
(Marshel et al., 2011).

The existence of these information processing streams
is further supported by the similar direction decoding

175 um (n = 49)
100 ~

75 1 1
50 1 1

25 -
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performance of anatomically adjacent areas. The same
groups emerge in the direction decoding as in the
stimulus-specific analysis. The adjacent primary (VISp),
anterolateral (VISal) and lateral (VISI) visual areas per-
formed similarly, as did the adjacent anteromedial (VISam)
and posteromedial (VISpm) areas. The poor performance
of the latter group of visual areas (VISam and VISpm) as
well as the rostrolateral (VISrl) visual area suggests a lack
of direction sensitive information encoding in the popula-
tion. We speculate that the relative poor performance of
VISrl compared to VISam in the population decoding to be
in the distribution of well-tuned neurons; VISam had lower
single neuron DSI on average but more heterogeneous
distribution.

Marshel et al. (2011) presented drifting grating stimuli
(using the same set of directions but differing sets of
temporal and spatial frequencies as the Allen Brain Ob-
servatory) to 28 mice and found, based on the mean DSI
of each area and the proportion of neurons with a DSI
>0.5, that layer 2/3 (130-180 um below the dura surface)
populations in the anterolateral (VISal), rostrolateral (VISrl),
and anteromedial (VISam) visual areas were signifi-
cantly more direction selective than the primary visual
cortex (VISp). The results of our population direction
decoding analysis (Figs. 4, 5) of 186 mice are inconsis-
tent with the single neuron findings of Marshel et al.
(2011; note that there were differences in the methods
for estimating DSI; see Materials and Methods). The
direction decoding accuracy of VISam and VISrl popu-
lations are significantly lower than that of VISp, sug-
gesting that these populations are less direction
selective than those in VISp. Trial shuffled decoding
analysis (Fig. 5) showed that synergistic spatial corre-
lations within trial could contribute to such discrepan-
cies (Brenner et al., 2000; Averbeck et al., 2006).
Furthermore, the similar decoding accuracy of VISal
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Figure 9. Stimulus-specific decoding performance by imaging depth group. The highest performing depth (175 wm) and a lower
performing group (365-435 um) show uniform accuracy in decoding all six stimuli. In the 265- to 300- and 325- to 350-um groups,

natural movies are significantly harder to decode than other stimuli.
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and VISp populations suggests that VISal is not signif-
icantly different from VISp in its direction selectivity.

Across all visual areas, individual neurons encode
enough attributes of a stimulus in their responses that the
majority of small populations outperformed chance level
accuracy in the stimulus decoding (chance equal to
16.67%) as well as in the direction decoding (chance
equal to 12.5%). However, in the direction decoding,
individual neurons from VISrl populations and those from
the 325- to 350-um depth group performed at chance
level, suggesting a lower proportion of direction sensitive
encoding in these neurons relative to other areas and
depths. Neurons in VISam have previously been charac-
terized as extremely robust and selective (Marshel et al.,
2011). However, our direction decoding analysis shows
that decoding accuracy for small VISam populations of
one to four neurons remains at or close to chance level,
suggesting that these neurons are not especially selec-
tive. Even with larger VISam populations, direction decod-
ing accuracy remained low relative to other areas.

Despite some discrepancies with recent characteriza-
tions of mouse visual areas, this study provides novel
evidence of the functional and anatomic organization of
the mouse visual cortex. The results corroborate broad
trends in visual information processing, supporting the
existence of information processing streams and a hier-
archical organization in the mouse visual cortex.
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