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Abstract

Oscillations in local field potentials (LFPs) are prevalent and contribute to brain function. An understanding of the cellular
correlates and pathways affecting LFPs is needed, but many overlapping pathways in vivo make this difficult to achieve. A
prevalent LFP rhythm in the hippocampus associated with memory processing and spatial navigation is the 6 (3-12 Hz)
oscillation. 6 rhythms emerge intrinsically in an in vitro whole hippocampus preparation and this reduced preparation makes
it possible to assess the contribution of different cell types to LFP generation. We focus on oriens-lacunosum/moleculare
(OLM) cells as a major class of interneurons in the hippocampus. OLM cells can influence pyramidal (PYR) cells through two
distinct pathways: by direct inhibition of PYR cell distal dendrites, and by indirect disinhibition of PYR cell proximal dendrites.
We use previous inhibitory network models and build biophysical LFP models using volume conductor theory. We examine
the effect of OLM cells to ongoing intrinsic LFP 6 rhythms by directly comparing our model LFP features with experiment.
We find that OLM cell inputs regulate the robustness of LFP responses without affecting their average power and that this
robust response depends on coactivation of distal inhibition and basal excitation. We use our models to estimate the spatial
extent of the region generating LFP 6 rhythms, leading us to predict that about 22,000 PYR cells participate in intrinsic 6
generation. Besides obtaining an understanding of OLM cell contributions to intrinsic LFP 6 rhythms, our work can help
decipher cellular correlates of in vivo LFPs.
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Oscillatory local field potentials (LFPs) are extracellularly recorded signals that are widely used to interpret
information processing in the brain. 6 (3-12 Hz) LFP rhythms are correlated with memory processing, and
inhibitory cell subtypes contribute in particular ways to 6. While a precise biophysical modeling scheme
linking cellular activity to LFP signals has been established, it is difficult to assess cellular contributions in
vivo to LFPs because of spatiotemporally overlapping pathways that prevent the unambiguous separation
of signals. Using an in vitro preparation that exhibits 6 rhythms and where there is much less overlap, we
build biophysical LFP models and uncover distinct inhibitory cellular contributions. This work brings us
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Introduction

Oscillatory brain activities, as can be observed in EEGs
and local field potentials (LFPs), are a ubiquitous feature
of brain recordings (Buzsaki and Draguhn, 2004). Accu-
mulating evidence indicates that they form part of the
neural code by phasically organizing information in brain
circuits (Wilson et al., 2015). The LFP is the low-frequency
part (<500 Hz) of the extracellular signal. Due to its rela-
tive ease of recording, it is commonly used to measure
neural activity. It originates from transmembrane currents
passing through cellular membranes in the vicinity of a
recording electrode tip (Einevoll et al., 2013), and its
biophysical origin is understood in the framework of vol-
ume conductor theory (Nicholson and Freeman, 1975).
Many sources contribute to the LFP (Buzsaki et al., 2012)
and depend on the frequency range of the extracellular signal.
Slower oscillations (<50 Hz) are generated by synaptic currents
as opposed to higher frequency oscillations (>90 Hz) which are
influenced by phase-modulated spiking activity (Schomburg
et al., 2012). Determining the sources of LFP output is highly
challenging in general, and contributions from remote and
local activities can be non-intuitive (Herreras, 2016; Car-
michael et al., 2017). In essence, it is far from clear how to
interpret LFP recordings in light of contributions from
many different cell types and pathways.

The hippocampus exhibits many LFP activities includ-
ing 6 and vy rhythms (Buzséaki, 2006; Colgin, 2016). In
particular, the prominent 6 rhythm (3-12 Hz) is correlated
with spatial navigation and episodic memory, rapid eye
movement sleep and voluntary behaviors (Buzsaki, 2002).
Recently, direct behavioral relevance of 6 LFP rhythm
phase-coding was demonstrated by delivering perturba-
tions during specific phases of the 6 rhythm to preferen-
tially affect encoding or retrieval behaviors (Siegle and
Wilson, 2014). This was done by optogenetically stimulat-
ing particular inhibitory cell types in the dorsal CA1 region
of the hippocampus. Such exciting studies and several
reviews (Klausberger and Somogyi, 2008; Kepecs and
Fishell, 2014; Hattori et al., 2017) make it clear that the
specifics of inhibitory cell types are fundamental to neural
coding and brain function. In essence, if we are to under-
stand the brain’s code, i.e., behavior-related changes in
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oscillatory activity, we need to understand how various
cell-type populations contribute to LFP recordings.

A whole hippocampus in vitro preparation has been
developed and spontaneously generates intrinsic 6 (3—12
Hz) rhythms (Goutagny et al., 2009). Given the combina-
tion of its reduced nature and robust rhythms, this prep-
aration presents an opportunity to understand cellular
contributions to LFP 6 rhythms as we can remove several
complicating factors by not needing to consider various
pathways that exist in in vivo scenarios. Ambiguities are
greatly reduced and our ability to understand cellular
contributions to LFP recordings is greatly enhanced.
Oriens-lacunosum/moleculare (OLM) cells are a major
class of GABAergic interneurons (Maccaferri, 2005). They
play an important role in gating information flow in the
hippocampus by facilitating intrahippocampal transmis-
sion from CA3 while reducing the influence of entorhinal
cortical inputs (Ledo et al., 2012). Since OLM cells project
to the distal dendrites of pyramidal (PYR) cells they would
be expected to generate large LFP deflections due to
larger dipole moments (Pettersen et al., 2012). However,
these expectations may need to be modified since in
addition to inhibiting distal layers they can have an effect
on inner and middle layers, since they inhibit interneurons
that target PYR cells at those layers (Le&o et al., 2012).

In this article, we use computational modeling to deter-
mine the contribution of OLM cells to ongoing intrinsic
LFP 60 rhythms considering their interactions with local
targets using the in vitro whole hippocampus preparation
context. We take advantage of a previous modeling
framework of inhibitory networks (Ferguson et al., 2015)
and generate biophysical LFP computational models, and
investigate the factors that influence 6 LFP characteris-
tics. By directly comparing our LFP models with experi-
ment, we are able to constrain the required connectivity
profile between OLM cells and other inhibitory cells types,
as well as to show that OLM cells control the robustness,
but not the power, of intrinsic LFP 6 rhythms. We are also
able to assess the spatial reach of the extracellular signal
and so estimate the number of cells that contribute to the
LFP signal. In general, we show how the many complex
interactions lead to emergent LFP output that are non-
intuitive and would not be possible to understand without
biophysical LFP modeling in an experimentally con-
strained microcircuit context. As such, our work shows a
way forward to obtain an understanding of cellular con-
tributions to brain rhythms.

Materials and Methods

Network model details

This work builds on previously developed models de-
scribed in Ferguson et al. (2015). Here, we provide a
summary of specifics that are salient to the present study.

Inhibitory cell types and numbers, PYR cell model

The inhibitory network model consists of 850 cells and
represents a volume of 1 mm? as shown to be appropriate
to obtain spontaneous 6 rhythms in the in vitro whole
hippocampus preparation (Ferguson et al., 2013, 2015;
Goutagny et al., 2009). Four different types of inhibitory
cells are included: basket/axo-axonic cells (BC/AACs),

eNeuro.org


mailto:frances.skinner@gmail.com
http://dx.doi.org/10.1523/ENEURO.0146-18.2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

bistratified cells (BiCs), and OLM cells. BC/AACs com-
prise a 380-cell population and target somatic, periso-
matic, and axo-axonic regions of PYR cells. The BiCs
comprise a 120-cell population and target middle, apical
and basal regions of PYR cells, and the OLM cells com-
prise a 350-cell population and target the distal, apical
dendrites of PYR cells. As in Ferguson et al. (2015), the
structure of the PYR cell model was based on the one
used in Migliore and Migliore (2012) as implemented in the
NEURON simulator (Carnevale and Hines, 2006; see
ModelDB accession number 144541). The PYR cell model
was used as a passive integrator of inputs from cell firings
at the various layers of the hippocampus, and all active,
voltage-gated channel conductances were set to zero.
This overall network model is schematized in Figure 1A.
With the exception of basal excitatory input, it is the same
as used in Ferguson et al. (2015).

Inhibitory cell models and drives

The inhibitory cell models are single compartment, have
an lzhikevich mathematical structure (Izhikevich, 2003)
and were constructed by fitting to experimental data from
whole-cell patch clamp recordings in the whole hip-
pocampus preparation (Ferguson et al., 2015). All of the
cell model parameter values are given in Ferguson et al.
(2015). Parvalbumin-expressing (PV) cell types are BC/
AACs and BiCs, and somatostatin-expressing (SOM) cell
types are OLM cells. Each cell model is driven by excit-
atory postsynaptic currents (EPSCs) taken directly from
experiment (Huh et al., 2016) during ongoing spontaneous
0 rhythms for PV or SOM cells. The EPSCs were designed
to ensure that the inhibitory cells receive frequency-
matched current inputs and at the same time have ampli-
tudes and peak alignments that were consistent with 6
oscillations in experiment (Ferguson et al., 2015; see EP-
SCpy and EPSCg, ,, examples in Fig. 1A). Importantly, the
experimental variability in amplitude and timing of EPSCs
across cells was captured by varying the gain (factor by
which the EPSC was scaled to alter the amplitude) and
timing of the EPSCs across cells with a normal distribu-
tion in accordance with the experimental recordings.
Thus, each inhibitory cell model received a unique set of
excitatory synaptic inputs reflecting the range of ampli-
tudes and timing of those recorded experimentally.

Inhibitory network connectivity and output

PV cells (BC/AACs and BiCs) were randomly connected
with probabilities and synaptic conductance values based
on experimental estimates from the literature and previ-
ous modeling work (Ferguson et al., 2013). Connections
between BiCs and OLM cells are known to exist (Ledo
et al., 2012) and a range of values from the literature was
previously estimated, with the connection probability from
BiCs to OLM cells taken as 0.64 times the connection
probability from OLM cells to BiCs (Ferguson et al., 2015).
Although OLM-BIiC connections exist, their synaptic con-
ductance values are unclear but can be roughly estimated
from the literature. In previous work, the balance of pa-
rameter values important for 6 rhythms was specifically
examined by exploring a wide range of values that en-
compassed determined estimates (Ferguson et al., 2015).
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Inhibitory synapses were modeled using a first order ki-
netic process with appropriate rise and decay time con-
stants. The spiking output of the inhibitory network
models briefly described here were computed for the
range of synaptic conductance strengths and connection
probabilities given in Table 1. For the work in this paper
we used output from these inhibitory networks. Specifi-
cally, these simulations were done for 5 s; the connection
probability from OLM cells to BiCs (cg,) varied from 0.01
to 0.33 with a step size of 0.02 producing 16 sets of
connection probabilities; synaptic conductance values
ranged from 0 to 6 nS for OLM cells to BiCs (g,,) and for
BiCs to OLM cells (g,,)- By changing g, and g, with a
step size resolution of 0.25 nS, 625 raster plots were
produced. So the total number of raster plots in our study
here as computed in Ferguson et al. (2015) is (625 X 16)
10,000, and they are all available on Open Science Frame-
work (osf.io/vw3jh).

Synaptic weights and distribution onto PYR cell
Inhibitory inputs to the PYR cell model were distributed
in the same way as done in Ferguson et al. (2015). That is,
we distinguished between synapses at the distal layer
(stratum lacunosum-moleculare), medial and basal layers
(stratum radiatum and oriens), and the perisomatic/so-
matic layer [stratum pyramidale (SP)]. Distal synapses
were defined as those that are >475 um from the soma;
apical and basal synapses were defined as those that are
>50-375 um from the soma; perisomatic/somatic syn-
apses were defined as those that are <30 um from the
soma. We created three lists of components (where each
component points to a specific segment of a section in
the PYR cell model), for the possible distal, proximal
apical/basal, and perisomatic/somatic synaptic targets.
For each individual, presynaptic inhibitory cell model, we
randomly chose a synaptic location on the passive CA1
PYR cell model from the respective list (distal dendrites
for OLM cell models, apical/basal dendrites for BiC mod-
els, and perisomatic/somatic locations for BC/AACs).
Then the spike times from the individual, inhibitory cell
models filled a vector, and an artificial spiking cell was
defined to generate spike events at the times stored in
that vector at the specific location at which that cell
created a synaptic target. We used the Exp2Syn function
in NEURON to define the synaptic kinetic scheme of the
synapse. This function defines a synapse as a synaptic
event with exponential rise and decay, that is triggered by
presynaptic spikes, and has a specific weight that deter-
mines its synaptic strength, and an inhibitory reversal
potential of -85 mV, as measured in the whole hippocam-
pus preparation. Synaptic weight values onto the PYR cell
from the different cell populations were estimated using
somatic inhibitory postsynaptic current (IPSC) values for
OLM cells onto PYR cells (Maccaferri et al.,, 2000). As
these synaptic weights were not clearly known, we used
different synaptic weight profiles in the explorations as
was been done previously (Ferguson et al., 2015). The
main profile used was graded such that the different cell
types led to similar somatic IPSC amplitudes, considering
that 0.00067 wS can be estimated from the OLM cells
IPSCs (Table 1). Several other synaptic weight profiles
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Figure 1. Model setup and experimental essence. A, A schematic of the network model used by Ferguson et al. (2015) is shown in
the middle. The network model contains single compartment representations for OLM cells, BiCs, and BC/AACs. Inhibitory synapses
are represented by filled black circles. Each inhibitory cell receives EPSCs that is taken from experimental intracellular recordings as
shown on the far left (adapted from Ferguson et al., 2015). Each inhibitory cell synapses onto a PYR cell model as schematized. There
are 350 OLM cells, 120 BiCs, and 380 BC/AACs. Basal excitatory input is also included. An illustration of the polarity changes
(source/sink) seen in the different labeled layers from LFP experimental recordings is shown on the right, and the detailed PYR cell
morphology that is used along with the 15 equidistant electrode locations in the different layers is shown as red numbers on the far
right. B, IPSCs from the different cell types (colored as indicated) are shown on the left to show their different kinetics. Parameter
values are given in Table 1, and the same coloring is used on the detailed PYR cell morphology to indicate the synaptic location
regions for the different cell types. An example simulation of a computed LFP from the SR layer (using parameter values of g,, = 6
and g, = 1.25 nS, ¢, = 0.21) is shown below, and the computed CSD is shown on the right (averaged over time). On the bottom
is an example of an experimental LFP recording from the SR layer (adapted from Ferguson et al., 2015).
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Table 1. Connectivity parameter values
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Maximal synaptic Conduc.(nS)

Cell type X to cell Connection or synaptic weight (uS) Synaptic rise Synaptic decay
type Y X -Y) probability to PYR cell time (ms) time (ms)
BC/AAC - BC/AAC 0.12 3 0.27 1.7
BC/AAC - BiC 0.12 3 0.27 1.7
BC/AAC — OLM cell 0 N/A N/A N/A
BC/AAC - PYR cell 1 0.00038 0.3 3.5

BiC — BC/AAC 0.12 3 0.27 1.7

BiC - BiC 0.12 3 0.27 1.7

BiC — OLM cell 0-0.224 0-6 2 16.1

BiC - PYR cell 1 0.00044 2 16.1
OLM cell - BC/AAC 0 N/A N/A N/A
OLM cell - BiC 0-0.33 0-6 2 16.1
OLM cell — OLM cell 0 N/A N/A N/A
OLM cell - PYR cell 1 0.00067 3.5 11.8
Excitatory input 1 0.00044 0.5 3

to PYR cell

(197 contacts to basal tree)

N/A = not applicable.

were examined. Finally, we note that an ad hoc represen-
tation for LFPs was previously used (Ferguson et al.,
2015) as given by an inverted summation of all integrated
inputs as measured at the PYR cell soma. That is, the
postsynaptic potentials on the PYR cell were due to the
various inhibitory cell firings that comprised the presyn-
aptic spike populations.

Additional network model details for this study

For the study here, inhibitory inputs were distributed in
the same way as in Ferguson et al. (2015). In Ferguson
et al. (2015), the literature was used to estimate synaptic
conductances between OLM cells and BiCs as 3-4 nS,
and Bezaire et al. (2016) used 10 synapses/connection as
estimates in their detailed data-driven computational
models. This implies that a single synapse would be
0.3-0.4 nS, representing an approximate minimum con-
nection weight.

As we made direct comparisons with 6 LFP experimen-
tal recordings here, it was important to include excitatory
input to the PYR cell model. Thus, we also included
excitation due to CA1 recurrent collaterals which synapse
on basal dendrites (Takacs et al., 2012). In Ferguson et al.
(2015), excitatory feedback was not included in a direct
fashion as the focus was on ongoing 6 rhythms and
OLM-BIC interactions, and not on 6 generation mecha-
nisms explicitly. Thus, model excitatory cell populations
were not specifically modeled. This means that we did not
have explicit spike rasters for excitatory populations as
we did for the inhibitory cell populations. Rather than
generate an arbitrary set of spike times to simulate excit-
atory inputs, we used spike times from a BiC raster (g, =
3.75,9,s = 1.75nS, ¢, = 0.21), in which the neuron order
was randomized, and with comparable synaptic weights.
Using these random spike trains we generated spike vec-
tors exactly as in the case of interneurons and randomly
distributed them on basal dendrites using 197 synapses
based on number estimates from Bezaire and Soltesz
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(2013) and Bezaire et al. (2016). In this way, we did not
have a spatiotemporal dominance of inhibitory or excit-
atory input in basal dendrites. We used an excitatory
reversal potential of -15 mV as measured in the whole
hippocampus preparation, and synaptic time constants in
line with modeling work (Ferguson et al., 2017). In es-
sence, we simulated EPSCs using random spike trains of
0 frequency instead of explicitly modeling PYR cell spiking
activity. We note that with these choices, somatically
recorded currents in our PYR cell models were similar to
what is observed in experiments (Huh et al., 2016). All
parameter values are summarized in Table 1.

We note that the inhibitory cell spike rasters computed
in Ferguson et al. (2015) used random connectivities be-
tween the different inhibitory cell populations. Consider
that a given set of parameters (Cqp, Gsps 9ps) defines a
connectivity map. Each cell within a given population is
randomly assigned a synaptic location within the bound-
aries of the dendritic tree on which it projects. Based on a
given connectivity map the spiking activity of the various
cell populations will differ. Therefore, the characteristics
of the produced biophysical LFP will depend on the spike
distribution of a given population defined by the connec-
tivity map and also the number and location of synapses
on the dendritic tree. To ensure that our LFP output was
not dependent on the specific synaptic location that every
cell was assigned to, we generalized our observations by
performing many trials for a given connectivity map, as-
signing randomly different location to the cells of each
population to ensure that the LFP output was not depen-
dent on that aspect.

Biophysical computation of LFP

Extracellular potentials are generated by transmem-
brane currents (Nunez and Srinivasan, 2006). In the com-
monly used volume conductor theory, also used here, the
extracellular medium was modeled as a smooth three-
dimensional continuum with transmembrane currents
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representing volume current sources. The fundamental
formula (Pettersen et al., 2012) relating neural activity in
an infinite volume conductor to the generation of the LFP
o(r,t), at a position r is given by:

1 C 1)
- mz |r — r.| )

k=1

o(r, 1)

Here, I, denotes the transmembrane current (including
the capacitive current) in a neural compartment k posi-
tioned at r,, and the extracellular conductivity, here as-
sumed real (ohmic), isotropic (same in all directions) and
homogeneous (same at all positions), is denoted by o. In
the hippocampus the mean extracellular conductivity o is
equal to 0.3S m~ ' (Lopez-Aguado et al., 2001), which is
the value that we used for our simulations. A key feature
of Equation 1 is that it is linear, i.e., the contributions to the
LFP from the various compartments in a neuron sum up.
Likewise, the contributions from all the neurons in a pop-
ulation would add up linearly. The transmembrane cur-
rents /, setting up the extracellular potentials according to
Equation 1 were calculated by means of standard multi-
compartment modeling techniques, here by use of the
simulation tool NEURON Carnevale and Hines (2006). The
current source densities (CSDs) in Figure 1B were com-
puted using the 1D kCSD inverse method proposed in
Potworowski et al. (2012). The CSDs were computed from
the LFP measured by electrodes that are arranged along
a straight line, in this case along the cellular axis of the
PYR cell.

The same PYR cell multi-compartment model as de-
scribed above was used to compute the extracellular
biophysical LFP, and we used the set of 10,000 5-s raster
plots (of inhibitory spikes) as described above for our
presynaptic populations with the addition of basal excita-
tion. That is, we generated extracellular potential traces (5
s each) due to the various inhibitory cell firings. We used
a single multi-compartment PYR cell to compute the bio-
physical LFP. While an experimental LFP is generated by
many cells, we still referred to our extracellular output as
an “LFP” for consistency with the computational litera-
ture, where the LFP term has been used for an extracel-
lular field from single or multiple cells.

Simulation details

The computational simulations and analyses were per-
formed using the LFPy python package RRID:SCR_014805
(Lindén et al., 2014), NEURON RRID:SCR_005393 (Carnev-
ale and Hines, 2006), and MATLAB RRID:SCR_001622
(MATLAB 8.0 and Statistics Toolbox 8.1). The large scale
network simulations were conducted using high-per-
formance computing at SciNet (Loken et al., 2010). The
code/software described in the paper is freely available
online at https://github.com/FKSkinnerLab/LFP_microcir-
cuit.

Results

Intrinsic 0 rhythms in the hippocampus
It has long been known that input from the medial
septum is an important contributor to in vivo LFP 6
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rhythms (Buzsaki, 2002). However, recent work by Gout-
agny et al. (2009) showed that 6 rhythms can emerge in
the CA1 region of an intact in vitro hippocampus prepa-
ration. These intrinsic 6 rhythms appeared spontaneously
without any pharmacological manipulations or artificial
stimulation paradigms, and persisted even after the
neighboring CA3 subfield was removed. It is thus clear
that intrinsic 0 frequency rhythms can be produced by
local interactions between interneurons and PYR cells in
the hippocampus. That is, the CA1 region of the hip-
pocampus contains sufficient circuitry to be able to gen-
erate 6 oscillations. An example of this intrinsic LFP
rhythm is shown in Figure 1B. Considering this prepara-
tion, a one cubic millimeter estimate of the tissue size (i.e.,
network circuitry) needed for intrinsic 6 rhythm to occur
was estimated (Ferguson et al., 2013). While it is clear that
these intrinsic 6 rhythms do not fully encompass in vivo 6
rhythms, they undoubtedly exist without any special ma-
nipulations, and so are arguably part of the underlying
biological machinery generating 6 rhythms in the hip-
pocampus. More importantly, to have a chance to under-
stand the many different cellular contributions to LFP
recordings, this preparation can be used to decipher the
many interacting components.

To examine the role of specific hippocampal interneu-
rons in these intrinsic 6 rhythms, Amilhon et al. (2015)
optogenetically activated and silenced PV or SOM in-
terneurons. PV cell types exhibiting fast firing character-
istics include BCs, AACs, and BiCs (Baude et al., 2007).
OLM cells are SOM-positive, but it is not the case that
SOM interneurons are necessarily OLM cells. However,
reconstructions of SOM cells in these studies with intrin-
sic 6 were done, confirming that they are likely OLM cells
(Huh et al., 2016). Amilhon et al. (2015) found that opto-
genetic manipulation of SOM cells modestly influenced
the intrinsic 6 rhythms. In contrast, activation or silencing
of PV cells strongly affected 6. These results thus demon-
strated an important role for PV cells but not SOM cells for
the emergence and presence of intrinsic hippocampal 6, as
given by the observed LFP recordings exhibiting 6 rhythms.

LFP recordings in this preparation had a particular sink
and source distribution in the different layers (Goutagny
et al., 2009). It is given by a single dipole characterized by
positive deflections in stratum lacunosum/moleculare
(SLM) and stratum radiatum (SR) and negative deflections
in SP and stratum oriens (SO). The dipole is illustrated in
Figure 1A. This LFP laminar polarity profile was consistent
across preparations. We note that since 6 rhythms per-
sisted even when the CA3 region was removed, excitatory
collaterals from CA3 did not seem to be a necessity for
the emergence of the rhythm and the sink/source density
profile. Thus, in our LFP model in this work, we assumed
that excitatory input to CA1 PYR cells was restricted to
the basal dendrites due to CA1 PYR cell collaterals (Gout-
agny et al., 2009).

Using a previous network model framework as a
basis

To try to understand how the complex interactions
between different inhibitory cell types contributed to 6
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LFP rhythms, a computational network framework repre-
senting CA1 microcircuitry was previously developed
(Ferguson et al., 2015). Given the ambiguous role of OLM
cells in 0 rhythms and the newly discovered connections
between OLM cells and BiCs (Ledo et al., 2012), these
network models were developed to explore how OLM-BiC
interactions influenced the characteristics of 6 rhythms.
We took advantage of previously developed PV fast-firing
cell models (Ferguson et al., 2013) and OLM cell models
(Ferguson et al., 2015) based on recordings from the
whole hippocampus preparation. Because of distal con-
tacts of OLM cells with PYR cells, a multi-compartment
PYR cell model was previously used to be able to incor-
porate this aspect in exploring the various interactions.
The network model framework is shown in Figure 1A, and
a summary of the network model is provided in Materials
and Methods. We note that the network model was de-
signed to explore cellular interactions and contributions to
the ongoing intrinsic 6 rhythms, and not to the generation
of the 6 rhythms explicitly. All inhibitory neurons were
driven by 6 frequency inputs based on experimental re-
cordings from the whole hippocampus preparation.

As schematized in Figure 1A, the inhibitory cell popu-
lations encompassed BC/AACs, BiCs and OLM cells that
were driven by experimentally derived EPSCs. These EP-
SCs were from the ongoing rhythm and were of 6 fre-
quency (Fig. 1A). Spiking output from the inhibitory cell
populations led to IPSCs on the PYR cell. They were
distributed on the PYR cell according to where the par-
ticular cell population targeted. Thus, BC/AACs to so-
matic regions, BiCs to middle apical and basal regions
and OLM cells to distal apical regions. IPSCs generated
by the different cell types are shown in Figure 1B (for
details, see Materials and Methods). In previous work, the
spatial integration of the inhibitory postsynaptic potentials
at the soma of a passive PYR cell model was used as a
simplistic LFP representation (Ferguson et al., 2015). This
representation was in fact indicative of the intracellular
somatic potential rather than the extracellular one, but it
did allow the distal OLM cell inputs relative to more
proximal PV cell inputs to be taken into consideration.
Using this computational model framework, multiple sim-
ulations were performed and it was shown that there were
parameter balances that resulted in high or low 6 power,
and where OLM cells did or did not affect the 6 power
(Ferguson et al., 2015). That is, OLM cells could play a
small or large role in the resulting 6 power depending on
whether compensatory effects with BiCs occurred as a
result of the size and amount of synaptic interactions
between these cell types. Thus, interactions between
OLM cells and BiCs in the CA1 microcircuitry seemed to
be an important aspect for the presence of intrinsic LFP 6
rhythms. However, since an ad hoc LFP representation
was used, it was not possible to do any direct compari-
sons with experimentally recorded LFPs to decipher their
output. That is, the possibility to parse out the contribu-
tion of the different cell types or identify particular inter-
actions was limited. Thus, while it was possible to show
that interactions between OLM cells and BiCs could play
an essential role in the resulting 6 power, it was not
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possible to predict any particular parameter balances or
to extract possible explanations.

In the work here, we built on this model framework and
developed biophysical LFP models. We used the inhibi-
tory spiking output generated in Ferguson et al. (2015) as
a basis for generating biophysical LFPs, and we used the
same PYR cell model. However, unlike the previous work,
we used the framework of volume conductor theory (see
Materials and Methods) and generated actual extracellu-
lar potential output as a result of the overall activity of the
inhibitory cell firings across the various layers of CA1
hippocampus. In addition, we included excitatory input
onto the basal dendrites to represent recurrent CA1 in-
puts (see schematic in Fig. 1A; for details, see Materials
and Methods) and directly compared with characteristics
of experimental LFP recordings. It is important to note
that the structure of our model here did not focus on
deciphering the generation of 6 rhythms directly. Rather,
there was the point neuron network model with the inhib-
itory cells receiving 6 frequency EPSC inputs and the
multi-compartment PYR cell model generating biophysi-
cal LFP output based on the synaptic inputs it was re-
ceiving. In this way, we were able to do extensive
parameter explorations and to focus on comparing model
and experimental LFPs to gain insight.

Overall characteristics of biophysical LFP models

From the previous modeling study of Ferguson et al.
(2015), several sets of inhibitory spiking output with par-
ticular connection probabilities and particular synaptic
conductances between OLM cells and BiCs were avail-
able. The connection probability from OLM cells to BiCs
(csp) varied from 0.01-0.33 with a step size of 0.02 pro-
ducing 16 sets of connection probabilities; synaptic con-
ductance values ranged from 0-6 nS for OLM cells to
BiCs (g<) and for BiCs to OLM cells (g,,¢) with a step size
of 0.25 nS. Thus, for a given connection probability, there
were 625 sets of spiking outputs from inhibitory cells,
where each set represented a 850-cell inhibitory network
with particular synaptic conductances. We considered a
set to be a connectivity map representing the inhibitory
cell populations.

For each connectivity map, we generated a biophysical,
extracellular LFP. A virtual electrode probe was placed
along the vertical axis of the PYR cell model to record its
LFP output in a layer dependent manner. This PYR cell
model was the “processor” of the LFP signal as it inte-
grated postsynaptic inputs from different presynaptic
populations. We computed LFPs at 15 equidistant sites
along a linear axis (Fig. 1A). The PYR cell output corre-
sponded to readouts of the postsynaptic activity elicited
by the afferent inhibitory cell populations that targeted the
PYR cell in appropriate regions, referred to as the LFP
“generator.” We note that although there was a single
connectivity map representing the randomly connected
inhibitory cell population, we performed several trials
when randomly targeting the PYR cell to ensure the ro-
bustness of our results (see Materials and Methods). To
achieve effective electroneutrality, the extracellular sink
needed to be balanced by an extracellular source, that is,
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an opposing ionic flux from the intracellular to the extra-
cellular space, along the neuron; this flux was termed the
“return current.”

We developed some initial intuition regarding the gen-
eration of our biophysical LFPs by computing them with-
out including basal excitation. That way, all of the inputs
received by the PYR cell model were inhibitory. Figure
2A,B illustrates the process and shows some examples.
Let us first focus on Figure 2Ai. Next to each cell popu-
lation in the network schematic are two examples of 1-s
raster plots of spiking outputs (from the previously com-
puted 5-s inhibitory network simulations in Ferguson
et al., 2015) produced for particular parameter sets. These
spikes gave rise to IPSCs on the PYR cell model and the
computed extracellular LFP at the somatic layer is shown
in Figure 2Aii. As shown, these particular parameter sets
produced LFPs with positive or negative deflections. Let
us next focus on Figure 2Bi. One example of a 1-s raster
plot is shown, and for this parameter set, the LFP had only
a few positive deflections, as shown in Figure 2Bii. As-
suming that one population burst in the raster plot leads
to a single peak in the LFP, there would be ~29 peaks in
the LFP for a 5-s simulation (i.e., ~5.8-Hz frequency),
since our inhibitory cell raster plots have 28-29 popula-
tion bursts. Note that the raster plots in Figure 2Bi were
not very different from the examples shown in Figure 2Ai.
We computed LFPs at all layers as represented by the 15
virtual electrodes shown in Figure 1A for the 625 sets of
inhibitory spiking outputs across gy, and g, values at a
particular connection probability cg,. The colored plot in
Figure 2Aiii shows the polarity of the LFPs at the somatic
layer, and the color plot in Figure 2Biii shows the number
of LFP peaks in the somatic layer. In Figure 2C, normal-
ized spike numbers for all interneuron populations are
shown.

As a first approximation, given the network model
framework and previous work, we can say the following
about the LFPs: those governed mainly by synaptic inputs
and not return currents were characterized by narrow
wave form shapes as the synaptic inputs from any par-
ticular interneuron population enters the PYR cell in a
synchronized fashion. This was due to the inhibitory cells
in a given population being driven by rhythmic EPSCs that
gave rise to coherently firing inhibitory cells in a given
population (see example raster plots). We note that the
EPSCs that were used in the simulations were not per-
fectly synchronized since the measured experimental
variability was included in designing the EPSC inputs to
use in the inhibitory network simulations (see Materials
and Methods). On the other hand, return currents consti-
tuted a summation of less synchronized exiting currents
that originally entered the cell at different locations. There-
fore, LFP deflections governed by return currents were
generally wider. Further, we would expect that the LFP
recorded from different layers would first and foremost be
influenced by the interneurons that project to that region.
We also note that the width of the LFP deflection would
not only be influenced by the nature of the current (syn-
aptic inputs or return currents) but also by the synaptic
time constants defining the shape of the IPSCs. IPSCs for
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the different cell populations are shown in Figure 1B,
where it can be seen that the IPSCs produced by OLM
cells and BiCs were wider relative to the IPSCs from
BC/AACs. Thus, we expected that positive LFP deflec-
tions would be recorded in locations where OLM cells,
BiCs, and BCs project, with wider LFPs for OLM cell
projection locations, and that LFPs dominated by return
currents would be recorded in locations where there were
no direct inputs from interneurons. However, due to inter-
actions between BiCs and OLM cells, this was not
necessarily the case as return currents from distant in-
terneuronal inputs could prevail in regions where other
interneurons directly projected. In fact, interactions be-
tween OLM cells and BiCs can strongly modulate the
relative balance between synaptic inputs and return cur-
rents, which in turn can strongly modulate the distribution
of sinks and sources in the resulting LFP.

The two examples of LFP output at the somatic layer in
Figure 2Aii show one with narrow positive deflections and
the other with wider negative deflections. This thus indi-
cated that the BC/AAC inputs that synapse at the somatic
layer dominated for the positive deflection LFP example
whereas BiC and OLM cell inputs that synapse more
distally dominated for the negative wider deflection LFP
example. The example in Figure 2Bji of LFP output at the
somatic layer indicated that a loss of peaks can occur due
to the superposition of synaptic inputs and return cur-
rents. Another “loss of peaks” example is shown in Figure
2Biv, and LFP output from multiple layers is shown in
addition to the intracellular somatic output. For this ex-
ample, the peak loss was also partially reflected in the
intracellular somatic output. However, loss of peaks in the
LFP output was not necessarily reflected in the somatic
intracellular recording. Note that since the PYR cell was
only receiving inhibitory input in these set of simulations,
somatic intracellular potentials always had negative deflec-
tions. How the extracellular potential features changed as a
function of the synaptic conductances between BiCs and
OLM cells is summarized in the color plots of Figure 2Aiii for
the polarity and Figure 2Biii for the number of peaks (somatic
layer).

Let us consider Figure 2Aii. We found that we can
approximately distinguish four regions as g, was in-
creased. These regions are separated by dotted lines in
Figure 2Aiii and labeled a to d. For small g, values (0-1
nS, region a) the amount of inhibition that the BiCs re-
ceived from the OLM cells was minimized allowing the
BiCs to be at the peak of their activity (Fig. 2C). Conse-
quently, the inhibition that the OLM cells and BC/AACs
received from the BiCs was maximized causing their ac-
tivities to be minimized (Fig. 2C). As a result, the extracel-
lular potential in the somatic region was governed by
return currents leading to negative polarity LFPs in the
somatic layer (i.e., mainly dark-colored in region a of Fig.
2Aiii), primarily due to the BiC synaptic inputs on the
“middle” region (SR layer) and “basal” region (SO layer) of
the PYR cell. As we increased g, (1-3.5 nS, region b), we
encountered mainly positive polarity LFPs (i.e., light-
colored in region b of Fig. 2Aiii). In region b, the inhibition
onto the BiCs was increased and thus their activity was
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Figure 2. Biophysical LFP computation: features, examples, and interneuron activities. Ai, Schematic shows two raster plot examples
for the given inhibitory cell population rasters. Aii, The resulting LFPs at the somatic layer, with positive and negative deflections is
shown for the examples, labeled with dark- or light-colored squares. Parameter values are g, = 1.5, g,s = 5.5 nS for positive and

9sp =

0.5, 9,5 = 0.75 nS for negative deflections. Aliii, The color plot on the right shows the polarity at the somatic layer, SP, electrode

4. Dotted lines delineate four regions labeled as a, b, ¢, and d. Negative polarity: dark-colored squares, positive polarity: light-colored
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continued

squares. Aiv, LFP output for all layers are shown for three examples where the polarity is negative, positive and negative at electrode
3 (left to right). Parameter values are (left to right): g5, = 0.5, g, = 0.75; gsp, = 1.5, 9ps = 5.5; 95 = 5.75, gps = 0.75 nS. Inset shows
a blow up of LFP output at electrode 13 (SLM) to show positive deflections. Also shown is the intracellular somatic potential of the
PYR cell. No basal excitation is present, cy, = 0.21. Bi, Schematic includes one raster plot example. Bii, The resulting LFP output
at SP has five peaks. A maximum of 29 peaks is possible (see text). Parameter values are g, = 2, g, = 0.75 nS. Biii, The color plot
shows the number of peaks that appear in the 5-s LFP computation at SP, electrode 4. Dotted lines delineate the same regions as
in A. Biv, An example of LFP output for all layers as well as the intracellular somatic output which also shows a loss of peaks.
Parameter values are gy, = 2.25, g, = 5.0 nS. No basal excitation is present, ¢, = 0.21. C, Interneuron activity for each interneuron
population, normalized such that the number of spikes for a given pair of synaptic conductances is divided by the maximal number
considering all pairs of synaptic conductances. Maximal number (5-s trace): 16 327 (BC/AACs), 6 808 (OLM cells), 4 589 (BiCs).

decreased, as can be seen in Figure 2C, causing a de-
crease in the amount of the inhibitory current onto the
PYR cell from BiCs. As a result, the magnitude of the
return currents caused by the BiC synaptic inputs was
decreased at the somatic layer. Simultaneously their abil-
ity to inhibit the BC/AACs was also decreased so that the
BC/AACs became more active and their direct inhibition
onto the PYR cell also increased. Since both BiCs and
OLM cells activity was low in region b, while BC/AAC
activity was increased, the somatic LFP was governed by
BC/AAC inputs rendering the extracellular LFP positive.
As we further increased g, (3.5-5 nS, region c) the si-
lencing of the BiCs increased even further and their ability
to silence the BC/AACs was further reduced. Simultane-
ously OLM cell activity increased. Thus, the somatic LFP
was influenced by direct synaptic inputs from BC/AACs
and also return currents from OLM cells (sparse dark-
coloring region c¢). Interestingly, the majority of the loss of
peaks in somatic LFP output occurred in regions b and ¢
(see blue-green pixels in the Fig. 2Biii), where superposi-
tion of synaptic inputs and return currents was mostly
occurring. That is, cancellations occurred even leading to
abolishment of the entire rhythm sometimes. Finally, for
9sp from 5.0-6 nS (region d), the BiCs were maximally
inhibited and BC/AACs were at the peak of their activity.
While we might have expected domination from the BC/
AAC synaptic inputs for these values, it turns out that
return currents (negative polarity) dominated. This can be
explained by the increased activity of OLM cells which
were also at the peak of their activity producing strong
return currents in the somatic region. In summary, light-
colored regions in Figure 2Aiii signify that BC/AACs dom-
inated the extracellular somatic potential and dark-
colored regions signify that other inhibitory cell types
(BiCs or OLM cells, or both) contributed more strongly.
In Figure 2Aiv, we show three examples of LFP record-
ings at multiple layers as well as the somatic intracellular
potential, for increasing values of g, from left to right. To
allow an appreciation of the changing magnitude of the
signal, we used the same resolution on the ordinate axis
for all LFP plots shown. On the left (g5, = 0.5 nS) we see
that the signal was governed by return currents (negative
polarity) in the entire SP (electrodes 3 and 5), in SO
(electrode 1), and in SR (electrodes 7, 9, and 11). Synaptic
events governed SLM (electrodes 13 and 15) where OLM
cells directly project leading to positive polarity. In the
middle (9s, = 1.5 nS), the LFP in SP and SO was gov-
erned by synaptic inputs (positive polarity), and in SR and
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SLM by return currents (negative polarity). As expected,
we found that the positive polarity LFP in SP here was
narrower relative to the positive polarity LFP in SLM on the
left, because the IPSCs produced by OLM cells were
wider relative to those of BC/AACs, as shown in Figure
1B. On the right where g5, = 5.75 nS, we observed a
similar trend as for the example on the left where g, = 0.5
nS with return currents dominating.

We would like to use our computational LFPs to deter-
mine how the different inhibitory cell types contributed to
0 LFPs as recorded experimentally in the in vitro whole
hippocampus preparation. As described above, our over-
all network model (Fig. 1A) was intended to capture an
intrinsic 6 rhythm in the CA1 region of the in vitro prepa-
ration. CA3 input was not required but local excitatory
input which occurs on basal dendrites (Takacs et al.,
2012) did need to be included. To do this, we took ad-
vantage of previous modeling studies (Bezaire and
Soltesz, 2013; Ferguson et al., 2015) as detailed in Mate-
rials and Methods. Including excitatory input would clearly
affect resulting biophysical LFP outputs. Specifically, the
LFP amplitude in SO might decrease even further in the
presence of basal excitation as excitatory and inhibitory
BiC inputs could cause mutual cancellations in this re-
gion. As return currents mostly exit close to the somatic
region where the surface area is larger, the effect of basal
excitation might be stronger in SO and SP since most of
the current might have exited before reaching SR and
SLM. In general, we expect there to be a range of possible
LFP characteristics based on the above LFP computa-
tions done in the absence of basal excitation. We expect
that the addition of excitatory input will influence the LFP
in non-intuitive and nonlinear ways and the intuition de-
veloped above will be helpful in deciphering and explain-
ing the contribution of the different cell populations to the
LFP.

Constraining synaptic conductances and connection
probabilities between BiCs and OLM cells

In this work, we focused mainly on OLM cells. The
previous model network framework (Ferguson et al., 2015)
was developed based on knowing that connections exist
between BiCs and OLM cells (Le&o et al., 2012). Given
this, there were two pathways to consider for how OLM
cells could influence ongoing intrinsic 6 LFP rhythms.
They can influence LFP output indirectly through disinhi-
bition of proximal/middle dendrites of the PYR cell (OLM-
BiC-PYR, indirect pathway), or directly through inhibition
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Figure 3. Example LFPs from selected and rejected parameter sets. Computed LFPs are shown across multiple layers. Top, Selected
parameter set: g5, = 6, gps = 1.25 nS. Bottom, Rejected parameter sets (left to right): g, = 0.5, g, = 0.75 nS; g, = 0.5, g,c = 3.5

nS; gop = 2.5, gps = 1 nS; ¢y, = 0.21 for all.

of distal, apical dendrites of the PYR cell (OLM-PYR,
direct pathway). As shown above, many different LFP
features can be exhibited in the absence of basal excita-
tion (Fig. 2A,B). It is interesting to note that our biophysical
LFP output did not necessarily exhibit 6 frequencies, de-
spite being driven by 6 frequency EPSC inputs (Fig. 2Bii).
This is because cancellations in the extracellular space
between synaptic inputs and return currents can result
in loss or even abolishment of the rhythm. This under-
scores the importance of modeling biophysical LFPs as
the interaction of synaptic and return currents on the
extracellular signal can strongly affect the resulting LFP
frequency.

We proceeded to include basal excitation and per-
formed a full set of computations for all connection prob-
abilities (c.,) and synaptic conductances (9, 9ps)- With
these computed biophysical LFPs in hand, we did direct
comparisons with experimental LFPs from the whole hip-
pocampus preparation in vitro. Specifically, we classified
each set of network parameters as selected or rejected
based on whether our computed LFPs were able to re-
produce two robust characteristics exhibited experimen-
tally. These were: (1) the laminar polarity profile exhibited
a single dipole with sinks in the basal dendrites and
sources in the apical dendrites, and (2) the frequency of
the LFP traces across all layers was in the 6 frequency
range. These characteristics are shown in Figure 1A. We
note that our model setup in which experimentally derived
0 frequency EPSCs were input to the inhibitory cells
means that the LFP rhythm should have a 6 frequency.
However, as we have shown above, the resulting biophys-
ical LFP frequency can be much less than 6 due to
synaptic and return current interactions and cancellations
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(Fig. 2Bii). Specifically, the frequency of the EPSCs used
from experiment is ~5.8 Hz. Thus, in enforcing the 6
frequency on our LFP computations, it was only neces-
sary to impose a lower bound. We used 3 Hz as the lower
bound for 6 range to be similar to experiment (Goutagny
et al.,, 2009). We applied a peak detection on the LFP
trace and used a threshold to avoid detecting baseline
peaks. We required that the number of peaks be larger
than 15 which given the 5-s LFP trace corresponds to 3
Hz. In Figure 3, top, we show an example of computed
LFPs across the different layers for a parameter set that
was selected. The bottom of Figure 3 shows LFP outputs
for three different parameter sets that were rejected -
incorrect polarities and frequencies are apparent. Note
that ordinate resolutions were adjusted across the layers
so that the frequency and polarity of computed LFPs can
be readily seen in each layer in viewing.

Classifying each parameter set, we summarize our re-
sults in Figure 4, where selected parameter sets are
shown in purple and rejected ones in yellow. We observed
the following: for low cg,, the plots have a checkered
appearance since small changes in g, and g, caused
the system to alternate between being selected or re-
jected. As ¢, increased, there was a clearer separation in
(9sp» Gps) Parameter space of selection or rejection. This
was observed from ¢, = 0.19 to ¢, = 0.25. In this range,
we considered the system to be robust as it was not very
sensitive to synaptic conductance perturbations. How-
ever, for ¢y, = 0.19, 0.23, and 0.25, the selected param-
eter sets were quite narrow. As cg, was further increased,
the checkered patterning returned. Note that the selected
sets were mainly affected in one direction as ¢y, changed.
That is, across g, rather than g, values. Further, we note
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Figure 4. All selected and rejected parameter sets. Parameter sets are considered as selected (purple) if computed LFPs match LFPs
from experiment in polarity and frequency (3-Hz lower bound). Otherwise, as rejected (yellow). A clear separation in parameter space

occurs for cg, = 0.21.

that in doing this classification, it was more the polarity
criteria rather than the frequency criteria of the LFP signal
that delineated selected and rejected parameter sets. This
is shown in Figure 5, where we did not apply any fre-
quency bound or used different lower frequency bounds.
While there was some change in selected and rejected
parameter sets, they were minimal.

Since there is natural variability in biological systems,
we assumed that sensitivity to small perturbations in pa-
rameter values is anathema to having robust LFP 6
rhythms. Noting that the synaptic conductance resolution
in our simulations was 0.25 nS, and that a minimal syn-
aptic weight can be estimated as larger than this (see
Materials and Methods), we considered that (9., gps)
parameter sets that did not yield at least two complete,
consecutive rows or columns of purple (selected) were
inappropriate for the biological system. That is, variability
that was less than a minimal synaptic weight would not
make sense. Looking at this in Figure 4, we first note that
there were never at least two complete purple rows for
any cg,, but there were cases of two or more complete
purple columns, namely, ¢y, = 0.03 and 0.21. However, a
complete purple column for g5, = 0 was invalid since it is
known that OLM to BiC connections exist Ledo et al.
(2012). Thus, ¢y, = 0.03 can be eliminated leaving ¢, =
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0.21 as appropriate. For this connection probability, the
transition from selected to rejected networks and vice
versa strongly depended on g, rather than on g, values,
revealing a more important role for the former. In sum-
mary, by directly comparing characteristics of our com-
puted biophysical LFPs with those from experiment, we
were able to constrain an appropriate connectivity as
cs = 0.21, with g, values of 3.5-6 nS, and the full set of
Obs Values (9s, # 0, gps # 0). We will refer to this set of
parameter values as the predicted regime. In Figure 6, we
show example LFP responses across several layers for a
set of parameter values from this predicted regime.

OLM cells ensure a robust 6 LFP signal, but
minimally affect LFP power, and only through
disinhibition

In continuing our analysis, we now focused on con-
strained parameter sets as determined above which we
termed the predicted regime (c,, = 0.21). We decom-
posed the signal to be able to examine the contribution of
the interneuron subtypes to the power of the LFP. We
separated our interneuron subtypes into two groups: PV
subtypes which are BC/AACs and BiCs, and SOM sub-
types which consist of the OLM cells here. These two
groups were represented by distinct mathematical mod-
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in Figure 4.

els of fast-firing PV and SOM inhibitory cells based on
whole-cell recordings from the whole hippocampus prep-
aration (Ferguson et al., 2015). We performed spectral
analyses of our computed LFPs and used the peak am-
plitude as a measure of the power of the 6 network
activity. The peak power was computed for each of the 15
electrodes (i.e., all layers), and we plotted the maximum
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value from all of the layers in the color plots of Figure 7.
This is illustrated on the right of Figure 7A. We first sim-
ulated the spectral LFP power when all presynaptic inhib-
itory cell populations were present. As shown in Figure
7A, a robust power feature emerged. When all presynap-
tic origin populations were present, the predicted regime
shown in purple in Figure 6, produced LFP responses
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Figure 6. Predicted regime. For ¢, = 0.21, selected parameter sets (purple) include gy, values of 3.5-6 nS, and all g, values.
Rejected sets are in purple. On the right are LFP traces from 8 electrodes for a parameter set of g, = 4.75, g, = 4.50 nS.
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whose power showed minimal variability. This is an inter-  of the predicted regime, the LFP output showed much
esting observation on its own, as the power of the LFP  more variability, and the LFP frequency across layers was
varied little across hippocampus preparations (Goutagny  not necessarily 6, as it was not part of the selected param-
et al., 2009). Thus, our predicted regime satisfied another  eter sets. For completeness, we show peak power compu-
characteristic of experimental LFPs. We note that outside  tations that were done for all connectivities in Figure 8.

July/August 2018, 5(4) e0146-18.2018 eNeuro.org



e.;leuro New Research 15 of 24

6 C =0.01 6108 610 csb=0.07_‘ & . cs_b=0.0_9; £10%

S | S (s 5 - 5 5 E

4 2 4 4 4 o 4 4 4

3 3 1K 3 =k i 3 3 el 3

2 2 2 2 2 2 i 2 il 2

18 1N 1 1 1 1 i 1

e - - =] Ki OB i s M 0 0 0 0 i el K

0123456 0123456 0123456 3456

o Cap=0.11 s ol =0.13 o5 :csb=v0.15! 6% C4,=0.17 610° (o 610°

5 (5 5 (5 5 TH 5 : 1B ] : E

4 4 4 5 4 4 on | 4 4 4 4 4

3 3 38 e i 3 3 3 3 3 3 3

2 2 2 e 2 =12 2 e | 2 2 2

1 = 1 1 1 S i : 1

0 0 (1) 0 0 25" enBeSiant! 0 0 . i5=g52. ] 0 (1) fa - 0

0123456 0123456 0123456 0123456 0123456
_ c.=0.29 5

senCp 2021 0s " . " ' 610

S5 H 5 5 5 N : 1 5

p = L5 3 4 4 4 p

3 1 3 3 3 3 3

2 05 2 2 2 2 2

1 ’ 11 1 1 1 1

0f : 0 0 M 0 0! (i w2 Nl O

01234506 0 0 0123456

[T 6 T K
S 5 125
4 4 2
3 3 H 1.5
% Fite |
0.5
0 0 0

0123456 0123456

%) Peak LFP
% Power
o (mV2/Hz)

gsb(ns)

Figure 8. Peak power for all conductances and connectivities. Note that the color scale bars are not the same for all the plots. The

plot for ¢y, = 0.21 corresponds to Figure 7A.

To examine the role of presynaptic origin populations
on the LFP we decomposed the signal by selectively
removing OLM to PYR cell connections or PV to PYR cell
connections and then computing and plotting the peak
power as described above. Selective removal of synapses
from PV cells to the PYR cell yielded an LFP response
whose presynaptic origin population was due to the OLM
cell population. The resulting LFP power was low and
depended weakly on g, (Fig. 7B). This showed that OLM
cells minimally contributed to the signal power as a pre-
synaptic origin population. Viewing this from a broader
perspective, these results indicated that disinhibition of
non-distal apical dendrites via an indirect (OLM-BiC-PYR)
pathway played a much larger role relative to a direct
(OLM-PYR) pathway in producing the LFP power. Along
the same lines, disinhibition of distal dendrites through a
BiC-OLM-PYR pathway thus did not have much of an
effect on LFP power. Figure 7C shows the result when we
selectively removed the synapses from OLM cells to the
PYR cell to yield an LFP response whose presynaptic
origin was the PV cell population. It is clear from the
magnitude of the signal powers in Figure 7C relative to
Figure 7B that the 0 power was indeed mainly due to the
component from PV cells rather than from OLM cells.
Interestingly, the previously seen robustness when all
presynaptic cell populations were present (Fig. 7A) was
now lost. To quantify all of this, we computed the mean
and SD of the peak powers in the predicted regime for
Figure 7A-C. Respectively, they were (mean, SD) in units
of mV%Hz: (5.1 X 107°,1.7 X 10”23, (9.7 x 10” 1°, 5.6 X

July/August 2018, 5(4) e0146-18.2018

107 19, (2.6 x 10”8 3.8 x 10™ ©). When all of the cell
populations were present, there was minimal variability,
and when the PV cell populations were removed, the
average power decreased five-fold and there was some
variability. However, when only PV cell populations were
present, there was an increase in the average power and
the variability was large. It seems clear that OLM cells did
not contribute much to the average LFP power but re-
moving their inputs prominently affected the robustness
of the LFP signal. Therefore, we propose that OLM cells
have the capacity to regulate robustness of LFP re-
sponses without affecting the average power.

In a recent study, Amilhon et al. (2015) showed that
SOM cells (putative OLM cells) did not appear to play a
prominent role in the generation of intrinsic LFP 6 rhythms
since there was only a weak effect on LFP 6 power when
they optogenetically silenced SOM cells. Our results are in
agreement with this observation. As shown in Figure 7B,
the contribution of OLM cell inputs to the LFP power was
small. To make a more accurate comparison with Amilhon
et al. (2015)’s OLM cell optogenetic silencing experi-
ments, we compared the power of the LFP in the pre-
dicted regime in Figure 7A (mean value of 5.1 X 10~ ° mV
?Hz) with the power of the LFP in Figure 7C for g, = 0
and g, = 0 when OLM cell to PYR cell connections were
also removed (8.5 X 10 ° mV %Hz). They were clearly
comparable. It is interesting to note that it was already
apparent from Figure 7A that OLM cells minimally af-
fected LFP power. Consider that for the parameter regime
of g4, = 0 and across all g,¢s, the LFP power magnitude
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Figure 9. LFP pattern examples in predicted regime when only either PV or OLM cell populations are present. Peak power color plots
as in Figure 7 are shown but with a different color resolution. A gray overlay is added to the plots to emphasize the predicted regime.
Three examples of LFP responses (5 s) across the different layers are shown to illustrate the different patterns observed. For each
example, spike rasters for the particular example are shown for PV cells (BiCs and BC/AACs) or OLM cells. A, PV cell LFP component.

B, OLM cell LFP component. Parameter values for left, middle and right columns are, respectively, (gsp, 9ps) =

(5.75, 1) nS.

was the same (5.1 X 10” ® mV ZHz) as the average power
of the predicted regime in Figure 7A. In this g, = 0
parameter regime, OLM cell to BiC connections were not
present but the OLM cell to PYR cell connections were
still present so that OLM cells could still contribute to the
LFP response via a direct OLM-PYR pathway. Given that
the power did not change indicates that any LFP power
contribution due to OLM cells occurred mainly via the
indirect OLM-BiC-PYR pathway. Overall, our results show
that OLM cells did participate but in such a way that their
presence would be unnoticed if one were only measuring
LFP power.

To gain insight into how OLM cells affected the robust-
ness of the LFP signal, we further examined what was
revealed with our LFP decompositions. We observed that
with PV or OLM cells removed, the impaired LFP output
could be grouped into certain categories based on their
laminar LFP profiles. In Figure 9, we show the peak power
plots for the PV cell (Fig. 94) and OLM cell (Fig. 9B)

July/August 2018, 5(4) e0146-18.2018

(5, 2.75), (5.5, 0.5),

decomposition components in which the non-predicted
regime was overlaid with gray. For each component, we
show three examples of the characterized LFP profiles
identified in the groupings. Raster plots that corre-
sponded to each cell population are shown above the
examples in the figure. It is evident that the different LFP
patterns cannot be intuited from the raster plots alone.
These examples illustrate the various cases of impaired
LFP responses that occurred when OLM or PV cell con-
nections to the PYR cell were removed.

For the middle LFP response examples (low g, and
high g,) of Figure 9, we note that OLM cells and BC/
AACs had maximal activities and BiCs had minimal activ-
ities (Fig. 2C). Thus, synaptic current influences were
obvious at the layers where OLM or BC/AACs contact,
and return currents at other layers. Inappropriate polarity
across the layers was manifest. This pattern of impaired
LFP response occurred in about a quarter of the PV cell
LFP component parameter sets, and in less than half of
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the OLM cell LFP component parameter sets. For the PV
cell LFP component, most of the other parameter sets
yielded LFP responses in which there was no rhythm, as
shown in the right example of Figure 9A. Interestingly, in
the rest of the cases (less than a third), there was a loss of
rhythmicity in all layers except for the somatic layer as
illustrated in the left example. These patterns show that
there was an ongoing “battle” between basal excitation
and PV cell inputs that can yield a wide range of LFP
powers from low (no rhythm, right example) to high (left
and middle examples). For the majority of the OLM cell
LFP component parameter sets, there was a loss of rhyth-
micity as shown in the left and right examples of Figure
9B. From the temporal profile and polarity, it was clear
that the high amplitude LFP peaks were due to basal
excitatory inputs. For larger g, values, OLM cells were
less active (Fig. 2C) and LFP responses across the layers
became dominated by peaks due to basal excitation
rather than synaptic and return currents due to OLM cells.
Overall, cancellations and rhythm loss occurred due to
interactions between OLM cells’ synaptic and return cur-
rents and excitatory inputs. As summarized in the peak
power plots of Figure 7C or Figure 9A, PV cell inputs alone
were not capable of sustaining the robustness throughout
the predicted regime and the impaired LFP signals
showed a large variability. With OLM cell inputs alone,
there was low LFP power either because of loss of rhyth-
micity or because of low amplitude rhythms (Fig. 7B or
Fig. 9B peak power plots).

With and without basal excitation

As one might expect, including basal excitation to in-
coming inhibitory inputs from different cell populations
added to the complexity of untangling nonlinear, interact-
ing components producing the LFP. We relied on our
developed intuition when basal excitation was not in-
cluded (Fig. 2A,B) and our LFP decompositions to help
reveal the different roles that OLM cells and PV cells might
play in LFP 6 rhythms. Specifically, we can understand
that the loss of LFP rhythm at some layers likely occurred
because of having a “balance” of synaptic and return
currents for various conductance values leading to LFP
rhythm cancellation or an inappropriate negative polarity
domination (Fig. 2Aiii,Biii). Thus, in finding that the LFP
power was a robust feature in the predicted regime of
synaptic conductance and connection probabilities, we
were able to understand that it was critically the OLM cell
population that brought about this robust feature. How-
ever, this robust feature was apparent only when basal
excitation was included. This is clearly visualized in Figure
10, where we plot the peak power color plots with and
without basal excitation when all cells were present or
with only OLM cell or PV cell LFP components. Removal
of basal excitatory inputs in the case when all cells were
present (Fig. 10, top) led to a loss of robustness. The
mean and SD in the predicted regime without basal exci-
tation was 6.2 X 10~ ® and 8.0 X 10~ ° mV %Hz, respec-
tively. While the mean was comparable to when basal
excitation was present, the SD was much larger (see
values with basal excitation above). Coactivation of inhi-
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bition and excitation was clearly important for this robust
feature to emerge.

From the LFP decompositions and different LFP pat-
terns expressed (Fig. 7B), and OLM cell activities (Fig. 2C),
we can understand that the contribution of OLM cells was
more dependent on g, than g, with the basal excitation
affecting the peak power robustness more for larger g,
values. This was apparent in the color variation of the
plots of the OLM cell LFP component in Figure 10, middle.
It was larger with basal excitation (left) than without basal
excitation (right) for larger g, values. This was reflected in
the mean and SD without basal excitation (5.2 X 10~ '°,
2.2 X 10™ ' mV ?Hz) that was smaller than with basal
excitation (see values with basal excitation above). With
only the PV cell LFP component, the LFP 6 rhythm was
disrupted as the interactions between basal excitation
and PV inhibitory inputs were missing the OLM cell inputs.
Specifically, the mean and SD without basal excitation
was (8.0 X 10”2, 1.1 X 10~ & mV 2Hz) which was smaller
than with basal excitation (see values with basal excitation
above). In essence, the inclusion of basal excitation can
be considered as “adding” to the magnitude and variance
of the LFP power when OLM cells or PV cells were
examined separately. In combination, a synergistic effect
between inhibition and excitation occurred to generate a
robust regime, a mean power with minimal variance. From
Figure 2C, it can be seen that the PV cells (BC/AACs and
BiCs) had activities that were more dependent on g, than
on g,s, and that BC/AACs were relatively more active than
BiCs in the predicted regime. Thus, at larger g, values
when OLM cells were less active, BC/AACs would con-
tribute more to keeping a synergistic balance with the
basal excitation.

LFP power across layers

As illustrated in Figure 7A, the color peak power plots
are the power in the layer (particular electrode) where the
power was maximal. To fully express this, we plotted the
maximum LFP power across the dendritic tree for all
parameter sets in the predicted regime. This is shown in
Figure 11A with insets showing the same for the OLM cell
(top) and PV cell (bottom) LFP components. From this, we
see that the maximum LFP power was recorded at elec-
trode 4, and that with only the OLM cell component, the
power was distributed more widely and with only the PV
cell component, more narrowly focused around the soma.
This thus shows that the two populations differentially
influenced the location of LFP maxima. That the LFP
power showed no discernible variability when all the cell
populations were present, and that there was clear vari-
ability when not all of the cell populations were present is
obvious in this Figure 11A. We did several additional sets
of simulations to explore whether changes in the synaptic
weights on the PYR cell would affect whether the robust
power feature in the predicted regime would still be pres-
ent. In all the simulations presented so far, we used
synaptic weights that did not bias the effect of one cell
population type over the other based on their synaptic
input location. So, for example, OLM cell inputs that were
the furthest away from the soma had the largest synaptic
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Figure 10. Peak power plots with and without basal excitation. The color plots represent peak power as described in Figure 7 and
with a gray overlay as in Figure 9. Note that different color resolutions are used here to facilitate comparison for particular cell
populations (i.e., any row). With and without basal excitation is shown on the left and right columns, respectively. Top, All cell
populations. Middle, OLM cell LFP component. Bottom, PV cell LFP component.

weight. In doing this, we were following what was done
previously in Ferguson et al. (2015) who used “unbiased”
synaptic weights as well as using the same synaptic
weight for all of the cell types. In using the same synaptic
weight for all the cell types, we found that the robust
power feature in the predicted regime remained (data not
shown).

As described and shown above, it was already clear
that OLM cells via a direct OLM-PYR pathway minimally
contributed to the LFP 6 power. To show this directly, we
did several, additional simulations where we changed the
synaptic weight from OLM cells to the PYR cell. As an
example, in Figure 11B, we show that increasing the
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synaptic weight by almost an order of magnitude de-
creased the peak power by only ~20%.

Estimating the number of PYR cells that contribute
to the LFP signal

It is challenging to know how many cells contribute to
an extracellular recording. The hippocampus has a regular
cytoarchitecture with a nearly laminar, stratified structure
of PYR cells (Andersen et al., 2006). This arrangement
together with PYR cells being of similar morphologies and
synaptic input profiles means that we can assume that
any given PYR cell will generate a similar electric field
leading to an additive effect in the extracellular space with
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Figure 11. Laminar power and peak power changes with changing synaptic weights. A, Computed power at the different electrode
locations to show laminar power distribution, for all sets of parameter values in the predicted regime. Top inset, Laminar power for
OLM cell LFP component. Bottom inset, Laminar power for PV cell LFP component. Schematics shows the PYR cell model with the
15 extracellular electrodes and the different network configurations. B, Changing the synaptic weight from the OLM cells to the PYR
cell does not lead to much change in the peak power, as illustrated by the peak power at electrode 4. Parameter values: g, = 5.25,
9ps = 5.00 nS. Synaptic weights of 0.00067, 0.001, 0.002, 0.003, and 0.004 uS are shown.

multiple cells in resulting LFP dipole recordings. Further,
for the in vitro intrinsic 6 LFP generation being considered
in this work, the focus can be justified to the couple of
synaptic pathways that we explored, and incoming inputs
were synchronized amplifying the additive effect.

To estimate how many PYR cells contributed to an
extracellular LFP recording in the in vitro whole hip-
pocampus preparation, we defined the “spatial reach” of
the LFP as the radius around the electrode where the LFP
amplitude was decreased by 99%. Using our biophysical
computational LFP models with parameter values taken
from the predicted regime, we found that the spatial reach
is 300 um as measured extracellularly close to the soma
since the LFP decreased from 10,000 to 100 nV within this
radius. This is shown in Figure 12, where the dotted arrow
represents this radius. Therefore, from a “neuron-centric”
approach the LFP declined to 1% of its original power
within 300 um. From an “electrode-centric” point of view
this means that if we were to place an electrode extracel-
lularly to the soma of a given neuron then that electrode
would pick up signal from neurons within 300 um as any
neuron 300 um further away would contribute to the
recorded signal by <1% of its maximum power. To esti-
mate the number of cells present within this spatial extent
we turned to literature. Taking advantage of detailed
quantitative assessment and modeling done by Bezaire
and colleagues (Bezaire and Soltesz, 2013; Bezaire et al.,
2016), there are ~311,500 PYR cells in a volume of 0.2
mm? of “SP” tissue (see model specifics in Bezaire et al.,
2016, their Fig. 1). Given our spatial reach radius estimate,
a cylindrical volume of SP would be 0.014 mm® or ~7% of
the total number of PYR cells which is ~22,000. In this
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Figure 12. Spatial attenuation. We estimated the spatial extent
of the generated LFP using our models. PYR cell model mor-
phology is shown with calculated signal decrease from an elec-
trode positioned near the cell soma. The dotted arrow shows the
extent of the spatial reach of the signal that is taken as a 99%
decrease in the signal, and is ~300 um. Parameter values used
are from the predicted regime; g4, = 5, 9ps = 5.75 nS, ¢y, =
0.21.
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way we estimated that there would be ~22,000 PYR cells
that contributed to the LFP signal. We note that this would
be an upper bound, as we assumed correlated activity
across PYR cells and homogeneous extracellular electri-
cal properties.

Discussion

To a large extent, understanding brain function and
coding requires that we are able to understand how os-
cillatory LFP signals are generated (Einevoll et al., 2013;
Friston et al., 2015; Hyafil et al., 2015). Cross-frequency
coupling analyses of LFP signals has led to ideas under-
lying learning and memory functioning (Canolty and
Knight, 2010), and it is always important to do careful
analyses (Scheffer-Teixeira and Tort, 2016). Further, given
that particular inhibitory cell populations and abnormali-
ties in 6 rhythms are associated with disease states (Col-
gin, 2016), we need to consider how different cell types
and pathways contribute to LFP recordings. Ultimately,
the challenge is to bring together LFP studies from exper-
imental, modeling and analysis perspectives. In this work,
we make steps toward this challenge by gaining insight
into the contribution of OLM cells to intrinsic 6 rhythms as
exhibited by an in vitro whole hippocampus preparation.

6 rhythms and summary of results

The existence of 6 rhythms (3-12 Hz) in the hippocam-
pus has long been known, and these prevalent rhythms
are associated with memory processing and spatial nav-
igation (Colgin, 2013, 2016). These rhythms are present
when the animal is actively exploring and during REM
sleep. Further, they can be separated into higher or lower
frequencies that are atropine resistant or atropine sensi-
tive, respectively (Buzsaki, 2002; Colgin, 2013, 2016).
Recent work has shown that low 6 rhythms were elicited
in rats with fearful stimuli and high 6 with social stimuli
(Tendler and Wagner, 2015). In vitro models of 6 rhythms
in the hippocampus have been developed (Gillies et al.,
2002) as well as network mathematical models (Neymotin
et al., 2011; Hummos and Nair, 2017), but it is challenging
to bring about a mechanistic understanding of 6 rhythms
in vivo due to their various forms and pharmacological
sensitivities combined with the interactions that occur
between the hippocampus and other brain structures.

While it is clear that different interneuron subtypes are
involved in 6 rhythms (Colgin, 2013, 2016), it is difficult to
untangle the cellular contributions to resulting 6 rhythms
exhibited in extracellular LFP recordings. That the re-
quired circuitry for 6 rhythms has been shown to be
present in local circuits of the hippocampus (Colgin and
Moser, 2009) is both useful and helpful as it becomes
more likely that biophysical LFP models can be linked to
a cellular-based circuit understanding of 6 rhythms. We
took advantage of the in vitro whole hippocampus prep-
aration that spontaneously expressed intrinsic 6 rhythms
(Goutagny et al., 2009), and previous inhibitory network
models developed for this experimental context (Fergu-
son et al., 2015), to build biophysical LFP models.

The LFP is generated on the basis of transmembrane
currents. This means that the LFP is a weighted sum of
inward and outward currents. How the LFP changes as a

July/August 2018, 5(4) e0146-18.2018

New Research 20 of 24
function of location is not trivial. In our work here, when
the LFP is governed by synaptic inputs the LFP peaks are
narrower since the synaptic inputs are synchronized be-
cause of the coherent inhibitory spike rasters. On the
other hand, LFP signals governed by return currents
would produce LFP peaks that are less narrow as the
signal slows down as it travels down the dendrites pro-
ducing a time lag. This all thus translates to synaptic input
location dependencies. Thus, while we can visualize and
appreciate the synergistic balances between excitation
and inhibition from different cell populations, we note that
these combinations are not easily seen as summated
balances. Signal decompositions and intuitions from
many simulations are required. We leveraged our LFP
models to make direct comparison with experimental LFP
characteristics. This allowed us to constrain coupling pa-
rameters which in turn led us to understand the cellular
contribution of interneuron subtypes, specifically OLM
cells, to intrinsic 6 LFP rhythms.

We showed how the extracellular 6 field recorded along
the cellular axis of a PYR cell was affected by the mag-
nitude of the inhibitory synaptic currents inserted along its
dendritic arbor. Fluctuations in the magnitude of the total
inhibitory input occurred due to alterations in synaptic
strength balances of the inhibitory networks. Our models
exhibited network states in which interactions between
OLM cells and BiCs could invert the polarity of the re-
corded signal and produce extracellular potentials of high
or low magnitude. We also distinguished regimes where
these cellular interactions preserved the frequency of the
signal versus those that led to lags or abolishment of the
extracellular LFP rhythm. When we applied experimental
characteristics of 6 frequencies and polarities to our bio-
physical LFP models, a clear selection emerged and thus
we were able to constrain parameter values regarding
connectivities. Specifically, we found that the connection
probability from OLM cells to BiCs needed to be 0.21 and
that synaptic conductances from OLM cells to BiCs had
to be larger than 3.5 nS, and we called this the predicted
regime.

Unexpectedly, we found that this predicted regime also
exhibited a robust power output. That is, so long as
parameter values were within the predicted regime, the
power did not change (Fig. 7A), and in this regime we saw
that BiCs were mostly silenced, BC/ACCs were signifi-
cantly active while OLM cell activity decreased from high
to low values as g, increased (Fig. 2C). By decomposing
the signal, we revealed that OLM cell inputs minimally
contributed to the LFP power unlike the other cell popu-
lations (BiCs and BC/AACs or PV cells). The power of the
OLM cell LFP component on its own, although low,
showed some variation in the predicted regime [coeffi-
cient of variation (CV) < 1]. On the other hand, the power
of the PV cell LFP component was a couple of orders of
magnitude higher and showed more variation (CV > 1) in
the predicted regime. This indicates that OLM cells con-
tributed to LFP power robustness without contributing to
average power whereas PV cells contributed to average
power but their effect was more sensitive to perturbations
in OLM-BIC interactions. Therefore, their contribution was
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variable. It is however interesting to note that the PV LFP
component average power was larger than the average
power of the predicted regime with all cells being present.
Thus, our results indicated that adding OLM cells in the
network can overall cause a small decrease in LFP aver-
age power as compared to when only PV cells were
present and of course induce robustness. It was also
interesting to observe that in almost half of the cases the
OLM cell LFP component was arrhythmic or non-
oscillatory despite the fact that OLM cells were driven by
0-paced EPSCs. That is, OLM cell inputs alone in most
cases were not able to generate a 6 LFP signal as re-
corded in the extracellular space of the PYR cell although
OLM cell populations themselves were firing at 6 fre-
quency. Further LFP signal analysis decomposition
showed that removing only basal excitation disrupted the
robustness of the predicted regime. This suggests that a
synergy of OLM cell inputs and basal excitatory inputs as
coactivation of distal inhibition and proximal excitation is
important to produce robustness in the predicted regime.
Overall, an essential aspect in comparing model and ex-
periment LFPs to predict model parameters and decipher
cellular contributions was to match sources and sinks at
different layers. Thus, having recordings from multiple
layers is important.

Morphologic details, synaptic locations, and related
studies

As the main contribution to the LFP is thought to stem
from synaptic input to neurons and the subthreshold den-
dritic processing, various studies have investigated how
morphologic characteristics and intrinsic resonances
shape the features of the LFP signal. In most cases input
synapses are activated according to Poissonian statistics
(Lindén et al., 2010; keski et al., 2013; Ness et al., 2016).
However, in our study here, the origin population con-
sisted of point neuron cell representations that had been
constrained based on experimental patch clamp record-
ings from the whole hippocampus preparation. We used a
scheme which is a combination of point neuron origin
populations and a multi-compartment PYR cell model
which served as a processor of synaptic inputs and pro-
duced the LFP. This scheme is conceptually very similar
to the hybrid scheme proposed in Hagen et al. (2016).

One factor modulating the amplitude of LFPs was re-
lated to the somatodendritic location of synaptic inputs on
the PYR cell tree. Different populations of GABAergic
interneurons target different dendritic domains and the
domain-specific targeting of various interneurons sup-
ports the hypothesis of domain-specific synaptic integra-
tion in CA1 PYR cells (Spruston, 2008). In CA1 PYR cells,
distal and middle apical dendrites comprise two distinct
dendritic domains with separate branching connected by
a thick apical dendrite. This cytoarchitectonic separation
of the cluster of distal dendrites relative to middle and
proximal dendrites was shown to critically reduce the
effect of distal EPSCs to somatic excitability (Srinivas
et al., 2017). The presence of a single apical dendrite with
many obliques in stratum radiatum caused a large shunt-
ing of EPSCs traveling from the tuft dendrites to the soma.
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Thus, we can appreciate our observation that OLM cells,
which target distal dendrites, minimally affected LFP
power in SP considering the limited ability of distal inhi-
bition to reach more proximal and somatic regions of the
CA1 PYR where maximum power was recorded. This is
not just due to the distal location of these inputs but more
due to the cytoarchitectonic separation of the cluster of
distal dendrites relative to middle and proximal dendrites.
This separation prohibited inhibitory inputs in distal re-
gions from effectively propagating to somatic and proxi-
mal regions of CA1 PYR cells and thus being reflected in
the extracellular space.

We can further consider our results in light of another
theoretical modeling study by Gidon and Segev (2012),
which showed that inhibitory inputs can affect excitatory
inputs locally and/or globally, depending on the relative
locations of the excitatory and inhibitory synapses. In
particular, this can help us understand the loss of robust
power in the predicted regime after removal of OLM cells.
The predicted regime consists of different connectivities
that generated different spiking patterns that gave rise to
fluctuations in inhibitory input in different synaptic loca-
tions. First, inhibitory input hyperpolarized the membrane
potential, which resulted in shunting of the adjacent den-
dritic compartments. Activation of excitatory synapses
within the shunted compartments will thus generate
smaller depolarization, compared with non-shunted den-
drites (“local” effect). Second, the local shunting would
suppress excitatory input in a nonlinear fashion at loca-
tions that were not directly affected by the shunting
(“global” effect). Thus, when inhibitory inputs were acti-
vated simultaneously with excitatory inputs, the average
(i.e., across trials) evoked membrane potential within
shunted dendritic compartments should be smaller com-
pared with compartments that had no inhibitory input. At
the same time, excitatory effects throughout the entire
dendritic tree would be reduced in a nonlinear fashion,
and which can be quantified as the change (with vs
without inhibitory input) of the trial-to-trial variability of the
membrane potential. In our case the activation of excit-
atory inputs occurred in regions not close by the OLM cell
inhibitory inputs, thus the overall power did not increase
but the robustness was affected. In Gidon and Segev
(2012), the authors examined the spread of shunt level
implications using a CA1 reconstructed neuron model
receiving inhibition at three distinct dendritic subdomains:
the basal, the apical, and the oblique dendrites as inner-
vated by inhibitory synapses. They found that the shunt
level spread effectively hundreds of micrometers centrip-
etally to the contact sites themselves spanning from the
distal dendrites to the somatic area. This observation thus
showed that the somatic area was indeed influenced by
shunting inhibition which means that excitatory input non-
linearities in our model will be reduced in the presence of
global inhibition in the somatic area leading to a decrease
in variability and thus robustness in the membrane poten-
tial. Of course, the LFP is a measurement of transmem-
brane currents and not membrane potential. However, the
reduction of excitatory input mediated non-linearities will
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also reduce the variability in the distribution of return
currents and thus the variability in the LFP.

Limitations and future considerations

Our present study was limited in terms of not consid-
ering more inhibitory cell types (Bezaire et al., 2016) and
by considering ongoing intrinsic 6 rhythms since 6 fre-
quency inputs were used (Fig. 1). However, our inhibitory
network models were constrained by the experimental
context and our less complex model representations en-
abled us to explore many thousands of simulations and
directly compare our biophysical LFPs with experimental
LFP features. This aspect was key in allowing us to con-
strain parameter value sets and to gain insights.

6 rhythms are foremost generated due to subthreshold
activity and dendritic processing of synaptic inputs. Here,
we used a passive PYR cell model as the spiking com-
ponent has been shown to mainly contribute to the LFP at
frequencies higher than 90 Hz (Schomburg et al., 2012),
while the active voltage-gated channels that were elimi-
nated here were shown to influence LFP characteristics
more prominently in frequencies above the 6 range
(Reimann et al., 2013). Thus, although the presence of
voltage-gated channels will influence the exact distribu-
tion of return currents, we thought that it was a reasonable
simplification to not include them in this study. Indeed, in
an additional set of simulation (data not shown), we ob-
served that the presence of hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels on the PYR cell
did not influence the sink-source LFP profile and fre-
quency examined here, although it did affect the wave
form characteristics.

Another limitation is the usage of a single PYR cell to
predict network dynamics. However, we note here that
since the LFP is a linear summation of the transmembrane
currents in the extracellular space (Equation 1), incorpo-
rating more PYR cells could result in a linear additive
effect in the extracellular space. This would lead to the
same LFP profiles as in the case of a single cell only
significantly magnified provided that the cells have a sim-
ilar morphology, physically arborizing in ways that facili-
tate superposition rather than cancellations of fields, and
receive similar presynaptic inputs. Indeed, there is a ho-
mogeneous cytoarchitecture disposition of the PYR cells
across the CA1 layer (Andersen et al., 2006) and is one of
the factors responsible for the extracellular sinks and
sources recorded in CA1. Also, PYR cells receive similar
presynaptic inputs from the presynaptic populations
which project on the same layers across cells. For this
reason, we do think that the conclusions derived from the
single cell LFP output will remain on the network level to
some extent. Of course, important variabilities across
PYR cells also exist and considering them in future stud-
ies will be important (Soltesz and Losonczy, 2018). There-
fore, careful network modeling will be required to assess
the network-generated LFP output.

Extracellular studies suggest that the main current gen-
erators of field 6 waves are the coherent dendritic and
somatic membrane potential fluctuations of the orderly
aligned PYR cells (Winson, 1978; Buzsaki and Eidelberg,

July/August 2018, 5(4) e0146-18.2018

New Research 22 of 24

1983; Brankack et al., 1993). Thus, distal and local as-
cending pathways onto PYR cells can in principle contrib-
ute to extracellular LFP deflections. To understand 6
rhythms one needs to consider the populations projecting
onto the PYR cells in CA1. During in vivo behaviors,
medial septum and entorhinal cortical inputs onto CA1
PYR cells are prominent modulators of the amplitude,
phase and wave form features of 6 rhythms in conjunction
with local inhibitory and excitatory cells. However, spatio-
temporal coincidence of inputs makes separation difficult
and thus it is challenging to determine cellular contributions
to LFP recordings. As there is significant spatiotemporal
overlap on PYR cell dendrites across ascending pathways it
would be hard to disentangle the cellular composition of
these pathways and assess the cellular contribution to 6 LFP
characteristics. As shown in previous studies (Makarova
et al., 2011) blind separation techniques such as Indepen-
dent Component Analysis produce poor results when trying
to disentangle combinations of rhythmic synaptic sources
with extensive spatiotemporal overlap. By focusing on intrin-
sic 6 rhythms in the in vitro whole hippocampus preparation
here, we reduced the spatiotemporal overlap of different
pathways and unraveled the cellular composition of the
different pathways projecting to the PYR cell. We were thus
able to decipher the contribution of OLM cells to intrinsic 6
rhythms. This work could potentially be used as a basis to
understand OLM cell contributions during in vivo 6 LFP
recordings.

Moving forward we aim to take advantage of the in-
sights gained here to build hypothesis-driven 6 generating
networks. In this way, we hope to be able to determine the
contribution of different cell types and pathways to LFP
recordings that are so heavily used and interpreted in
neuroscience today.
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