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Abstract
One of the major challenges in visual neuroscience is represented by foreground-background segmentation. Data from
nonhuman primates show that segmentation leads to two distinct, but associated processes: the enhancement of
neural activity during figure processing (i.e., foreground enhancement) and the suppression of background-related
activity (i.e., background suppression). To study foreground-background segmentation in ecological conditions, we
introduce a novel method based on parametric modulation of low-level image properties followed by application of
simple computational image-processing models. By correlating the outcome of this procedure with human fMRI
activity, measured during passive viewing of 334 natural images, we produced easily interpretable “correlation images”
from visual populations. Results show evidence of foreground enhancement in all tested regions, from V1 to lateral
occipital complex (LOC), while background suppression occurs in V4 and LOC only. Correlation images derived from
V4 and LOC revealed a preserved spatial resolution of foreground textures, indicating a richer representation of the
salient part of natural images, rather than a simplistic model of object shape. Our results indicate that scene
segmentation occurs during natural viewing, even when individuals are not required to perform any particular task.
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Introduction
In the scientific journey toward a satisfying understand-

ing of the human visual system, scene segmentation rep-
resents a central problem “for which no theoretical

solution exists” (Wu et al., 2006). Segmentation into fore-
ground and background is crucial to make sense of the
surrounding visual environment, and its pivotal role as an
initial step of visual content identification has long been
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Significance Statement

Foreground-background segmentation has been considered critical to form discrete object representations from
continuous sensory percepts. We developed a pre-filtering approach which overcame typical limitations in
modeling brain responses to complex stimuli and could be generalized to related processes. Our findings
provide novel support to the hypothesis that foreground-background segmentation of natural scenes occurs
during passive perception, sustained by the distributed activity of multiple areas across the visual processing
stream. Specifically, while foreground information is enhanced along the entire visual pathway, V4 and lateral
occipital complex (LOC) show a background suppression effect, though retaining texture information from the
foreground. Our observations challenge the idea that these regions of the visual system may primarily encode
simple object representations based on silhouette or shape features only.
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theorized (Biederman, 1987). Indeed, according to Fowl-
kes et al. (2007), humans can produce consistent seg-
mentations of natural images. However, although more
recent approaches based on deep convolutional net-
works produced promising results (He et al., 2017), both
the computational and neurophysiological processes that
underlie scene segmentation are still a matter of debate.

To date, numerous studies found evidence of texture
segmentation and figure-ground organization in the early
visual cortex of nonhuman primates (Lamme, 1995; Lee
et al., 1998; Poort et al., 2012; Self et al., 2013) and
humans (Kastner et al., 2000; Scholte et al., 2008; Kok
and de Lange, 2014). It has been showed that the identi-
fication of salient visual attributes arises from a region-
filling mechanism that targets neural populations mapping
relevant points in space (Roelfsema, 2006). In particular, a
recent study on monkeys attending artificial stimuli re-
vealed an early enhancement of V1 and V4 neurons when
their receptive fields covered the foreground and a later
response suppression when their receptive fields were
located in the stimulus background (Poort et al., 2016),
extending results from a previous study (Lamme et al.,
1999). Thus, the primate brain groups together image
elements which belong to the figure, showing an en-
hanced activity for the foreground and a concurrent sup-
pression of the background.

However, from an experimental viewpoint, the role of
figure-ground segmentation has primarily been demon-
strated by means of non-ecological stimuli (e.g., binary
figures, random dots, oriented line segments and tex-
tures). It should be noted that previous reports demon-
strated how models of brain responses to artificial stimuli
are suboptimal in predicting responses to natural images
(David et al., 2004; Felsen and Dan, 2005). Although two
recent studies investigated border-ownership in monkeys
with both artificial and natural stimuli (Hesse and Tsao,
2016; Williford and von der Heydt, 2016), a proof of the
occurrence of foreground-background segmentation in
the human brain during visual processing of naturalistic
stimuli (e.g., natural images and movies) is still lacking.
This pushes toward the development of novel methods
specifically designed for testing segmentation in ecolog-
ical conditions.

In light of this, we investigated foreground enhance-
ment and background suppression, as specific processes
involved in scene segmentation during passive viewing of
natural images. We used fMRI data, previously published
by Kay et al. (2008), to study brain activity patterns from
seven visual regions of interest (ROIs): V1, V2, V3, V3A,
V3B, V4, and lateral occipital complex (LOC) in response
to 334 natural images, whose “ground-truth” segmented
counterparts have been included in the Berkeley Segmen-
tation Dataset (BSD; Arbeláez et al., 2011).

To this aim, we developed a novel pre-filtering modeling
approach to study brain responses to complex, natural

images without relying on explicit models of scene seg-
mentation and adopting a validated and biologically plau-
sible description of activity in visual cortices. Our method
is similar to other approaches where explicit computa-
tions are performed on representational features, rather
than on the original stimuli (Naselaris et al., 2011). For
instance, these methods have been recently used to in-
vestigate semantic representation (Huth et al., 2012;
Handjaras et al., 2017) or boundary and surface-related
features (Lescroart et al., 2016). However, as opposed to
the standard modeling framework, according to which
alternative models are computed from the stimuli to pre-
dict brain responses, here, low-level features of the stimuli
are parametrically modulated and simple descriptors
of each filtered image (i.e., edges position, size and ori-
entation) are aggregated in a fixed model (Fig. 1). The
correspondence between the fixed model and fMRI rep-
resentational geometry related to intact images, was then
evaluated using representational similarity analysis (RSA;
Kriegeskorte et al., 2008). Notably, this approach can also
be exploited to obtain highly informative “correlation im-
ages” representing the putative computations of different
brain regions and may be generalized to investigate dif-
ferent phenomena in visual neuroscience.

Materials and Methods
To assess differences between cortical processes in-

volved in foreground-background segmentation, we em-
ployed a low-level description of images (edge position,
size and orientation), defined by a weighted sum of the
representational dissimilarity matrices (RDMs) of four
well-known computational models (Fig. 2D). These mod-
els are based on simple features (edge position, size and
orientation), whose physiologic counterparts are well
known (Marr, 1982). The model was kept constant while
the images were parametrically filtered and iteratively cor-
related with representational measures of brain activity
through RSA. For each ROI, this pre-filtering modeling
approach led to a pictorial and easily interpretable repre-
sentation of the optimal features (contrast and spatial
frequencies) of foreground and background of natural
images (i.e., correlation images). The analytical pipeline is
schematized in Figure 2.

Stimuli and behavioral segmentation of foreground
and background

We selected from the 1870 images used by Kay et al.
(2008) a subsample of 334 pictorial stimuli which are also
represented in the BSD 500 (Arbeláez et al., 2011). For each
BSD image, five to seven subjects manually performed an
individual ground-truth segmentation, which is provided by
the authors of the dataset (http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/grouping/resources.html). Al-
though figure-ground judgment is rather stable across
subjects (Fowlkes et al., 2007), we selected the largest
patch, manually labeled as foreground, among the behav-
ioral segmentations, to build a foreground binary mask. For
each image, this mask was then down-sampled and applied
to the original stimulus to isolate the foreground and the
background pixels (Kay et al., 2008).
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fMRI data
The fMRI data used in this study are publicly available

at http://crcns.org/data-sets/vc/vim-1 (Kay et al., 2011).
Two subjects (males, age: 33 and 25) were acquired using
the following MRI parameters: 4T INOVA MR, matrix size
64 � 64, TR 1 s, TE 28 ms, flip angle 20°, spatial resolution
2 � 2 � 2.5 mm3. For each subject five scanning sessions
(seven runs each) were performed on five separate days.
The stimuli were 1870 greyscale natural images with di-
ameter 20° (500 pixels), embedded in a gray background,
and were presented for 1 s, flickering at 5 Hz, with an ISI
of 3 s. Subjects were asked to fixate a central white
square of 0.2° (4 pixels). Seven visual ROIs (V1, V2, V3,
V3A, V3B, V4, and LOC) were defined and brain activity
patterns related to stimulus presentation was extracted
from these regions. For additional details on pre-proce-
ssing, retinotopic mapping and ROIs localization, refer to
Kay et al. (2008).

Computational models
In accordance with a previous fMRI study that, to the best

of our knowledge, has tested the highest number of com-
putational models, we selected four untrained models: two
showing highest correlations with brain activity patterns in
early visual areas, and the others, showing highest correla-
tions with LOC (Khaligh-Razavi and Kriegeskorte, 2014). All
these models are based on biologically inspired features,
such as Gabor filters and image gradient and comprise:

GIST (Oliva and Torralba, 2001), Dense SIFT (Lazebnik et al.,
2006), Pyramid Histograms of Gradients (PHOG; Bosch
et al., 2007), and Local Binary Patterns (LBP; Ojala et al.,
2001). For an exhaustive description of the four models, and
links to MATLAB codes, see Khaligh-Razavi (2014) and
Khaligh-Razavi and Kriegeskorte (2014). Our model choice
was also motivated by the fact that the stimuli were gray-
scale and had a fixed circular aperture. Thus, we excluded
descriptions based on color or silhouette information, as well
as pretrained convolutional neural networks which are bi-
ased toward the global shape of the image (Kubilius et al.,
2016).

RSA
For each filtered image, we collected feature vectors

from the four computational models (PHOG, GIST, LBP,
and Dense SIFT), and RDMs were then obtained (1 minus
the Pearson correlation metric). These four RDMs were
normalized in a range between 0 and 1 and combined to
obtain the fixed biologically plausible model of the stimuli
(for a graphical representation of the process, see Fig.
2D). The four model RDMs were combined through a
weighted sum, based on an estimation of their correlation
with the representational model of brain activity. Single
subject RDMs were similarly computed using fMRI activity
patterns for each of the seven ROIs, and then averaged
across the two subjects. We used Spearman’s � to assess
the correlation between the RDM from each step of the

Figure 1. Comparing the standard modeling approach and the pre-filtering modeling approach. A, In the standard modeling pipeline,
different models are compared. After extracting features from the stimuli, competing feature vectors can be used to predict brain
activity in an encoding procedure, whereas their dissimilarities can be used in a RSA. Finally, the model that better predicts brain
responses is discussed. B, In our pre-filtering modeling approach, different filtered versions of the original stimuli are compared.
Various biologically plausible filtering procedures are applied to the stimuli before compute a unique feature space according to a
given fixed and easily interpretable model. In our approach, a single model is employed and the step showing the highest correlation
with brain activity (or representational geometry) of each filtering procedure is used to build a post hoc correlation image. While the
standard modeling approach is theoretically more advantageous, as its output is a fully computable model of brain activity, it cannot
be applied when reliable explicit models of perceptual processes do not exist yet, as in the case of scene segmentation. Alternative
attempts to reconstruct visual stimuli from brain activity have been previously reported using multivariate techniques (Stanley et al.,
1999; Thirion et al., 2006; Miyawaki et al., 2008; Nishimoto et al., 2011).
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image filtering procedures and the RDM of each brain
ROI. To obtain unbiased estimations of the correlation
between models and fMRI, a 5-fold cross-validation pro-
cedure based on a weighted sum of the models was
developed: model weights were first estimated trough
linear regression on a portion (80%) of the RDMs, and the
correlation with fMRI data were then computed based on
the remainder of the RDMs (20%). The correlation values
derived from this procedure were averaged across the five
folds, to obtain a unique estimate of the similarity between
image features and brain activity. This analysis was per-
formed independently in each of the seven ROIs, and the
SE for each correlation value was estimated with boot-
strapping of the stimuli – 1000 iterations (Efron and Tib-
shirani, 1993).

In addition, as each ROI may show a distinct signal-to-
noise ratio, we computed a noise estimation by correlat-
ing the brain RDMs extracted from the two subjects. This
procedure allows for qualitative comparison between dif-

ferent ROIs and could help in estimate how well each
model explains fMRI RDMs given the noise in the data.

Foreground enhancement testing
A permutation test was performed to statistically as-

sess the enhancement of the information retained in the
behavioral segmented foreground. In this test both the
“fovea-to-periphery” bias that characterizes natural im-
ages, and possible differences in contrast between fore-
ground and background were controlled (Fig. 2A). For
each iteration, the 334 foreground masks were shuffled
and a random foreground segmentation was associated
to each stimulus. The root mean square (RMS) contrast of
each obtained segmented image was matched to that of
the behaviorally segmented counterpart. Of note, this set
of randomly-segmented images had the same distribution
of masked portions of the visual field as the one from the
behavioral segmentation, so the same amount of informa-
tion was isolated at each permutation step. This proce-
dure was repeated 1000 times, to build a null distribution

Figure 2. Analytical pipeline. A, Foreground enhancement test: the set of segmented stimuli is tested against a null distribution of
1000 permutations. Each permutation is built by randomly shuffling the 334 behavioral foreground masks and matching the RMS
contrast of the behaviorally segmented counterpart. This analysis controls for size, location, and contrast of the foreground when
testing whether behavioral segmentations explain each ROI RDM better than chance. B, Background suppression test: the correlation
between brain RDMs and each step of the background filtering procedure is tested against the correlation determined by the intact
stimuli. While information is filtered out, correlation can increase or decrease, depending on the sensitivity for background related
information in each ROI. A progressive decay indicates that a region actually processes the background, while a significant increase
suggests that background is suppressed. C, Filtering steps for the contrast or spatial frequencies filtering. D, From left to right:
features for each model were extracted from the stimuli; the dissimilarity (1-Pearson’s r) between each stimulus pair was computed
and aggregated in four RDMs; the obtained RDMs were normalized in a 0–1 range; finally, the four RDMs were linearly combined in
the fixed model, which was then correlated to the fMRI RDM obtained from each ROI.
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of alternative segmentations: four examples of random
segmentation are shown in Figure 2A. For each permuta-
tion step, features were extracted from each randomly
segmented image and RSA was performed using the
procedure described above.

Parametric filtering procedures
To investigate differential processing of foreground and

background in the visual system, we employed three
different filtering procedures (contrast; through alpha
channel modulation; low- and high-pass filtering of spatial
frequencies) applied parametrically (four steps each) to
the foreground or the background. For each filtering pro-
cedure, the four manipulated images are represented in
Figure 2C. For low- and high-pass filtering, we employed
a Butterworth filter (5th order), linearly sampling from a
log-transformed distribution of frequencies ranging from
0.05 to 25 cycle per degree, while keeping the RMS
contrast fixed.

Background suppression testing
To test background suppression, we performed a two-

tailed permutation test. In each ROI, we computed the
difference between the correlation of the intact version
of the stimuli and each step of the background filtering
procedures (Fig. 2B). Afterward, a permutation test
(10,000 iterations) was performed by random sampling
two groups from the bootstrap distributions, obtaining
a null distribution of correlation differences. Reported
results are Bonferroni corrected (for the 13 compari-
sons in each ROI).

Correlation images
For each ROI, the effects of the filtering procedures

were combined, to build correlation images. To this aim
we used the filtering step with the highest correlation
between the fixed model and RDMs from fMRI data, for
foreground and background respectively. In detail, we
averaged the best images for the low- and high-pass
filters and multiplied each pixel for the preferred alpha-
channel value (contrast).

Significance testing
To assess the statistical significance of the correlations

obtained with RSA in all the above-mentioned filtering
procedures, we built a robust ROI-specific permutation
test (1000 iterations), by randomly sampling voxels of the
occipital lobe not located in any of the seven ROIs. We
labeled these voxels as “control-voxels.” This procedure
has the advantage to be resilient to biases in fMRI data
(Schreiber and Krekelberg, 2013), instead of simply taking
into account the distribution of the RDM values, as in
Khaligh-Razavi and Kriegeskorte (2014). In addition, the
procedure that we developed is also useful to control for
the effects related to number of voxels and to the signal-
to-noise ratio of each ROI.

First, for each ROI we computed the SE of the ROI-
specific noise estimation with bootstrap resampling of the
stimuli (1000 iterations). Second, a number of control
voxels equal to the number of voxels was randomly se-
lected within each ROI, and the activity of these control

voxels in response to the stimuli were used to build a null
RDM. Third, the correlation between the null RDMs of the
two subjects was computed. However, since we aimed at
matching the signal-to-noise ratio of the null distribution
to that of each ROI, the null RDM was counted as a valid
permutation only if the single subject RDMs correlated to
each other within a specific range (i.e., ROI-specific noise
estimation � SE). Finally, for each step of the filtering
procedures, each of the 1000 ROI-specific null RDMs
were correlated with the fixed model RDM to obtain a null
distribution of 1000 � values. A one-tailed rank test was
used to assess the significance of the � of the fixed model
with brain RDMs. For each ROI, we controlled for multiple
comparisons (27 tests), through Bonferroni correction.

Code accessibility
All analyses have been implemented in MATLAB (Math-

Works Inc.) using in-house developed code (available at
https://bit.ly/2rC27hY). All code is also available as Ex-
tended Data 1.

Results
Foreground enhancement and background suppres-

sion can be tested in ecological conditions following a
simple argument: when attempting to predict brain activ-
ity of a visual ROI with a specific model, the goodness-
of-fit depends on the model inputs, e.g., the spatial
information provided. Thus, the correlation between fil-
tered images and fMRI representational patterns evoked
by their intact counterpart can be used to verify specific
hypotheses on visual processing (Fig. 2). In this study, we
posit that evidence of preferential processing (i.e., en-
hancement) should depend on the shape of the fore-
ground instead of the size, the location or the contrast of
the segmented region processed through the model. In
this regard, a random sampling procedure of foreground
segmentations across stimuli would offer a proper choice
to account for all these aspects, ultimately testing whether
behavioral segmentations provide a better prior for en-
hancement. On the other hand, background filtering can
lead either to a decay or an increase in correlation with
brain representational patterns. The former indicates that
background-related information is, at least to some ex-
tent, processed, whereas the latter denotes that back-
ground information is suppressed, since embedding it in
the model is not different from adding noise.

Comparison of intact and behaviorally segmented
images

The correlation between RDMs computed using the
fMRI patterns from each of the seven visual ROIs and
three descriptions of the stimuli (intact, isolated back-
ground, and isolated foreground) were tested (Fig. 3;
Table 1). Results show significant correlations (p � 0.05
Bonferroni corrected) between the intact description of
images and fMRI RDMs in V1, V2, and V3. The segmented
foreground RDM shows a significant correlation in V2, V4,
and LOC, while the segmented background achieves sig-
nificant correlations in V1 and V2 only. Of note, the cor-
relation yielded by one of the descriptions approaches the
ROI-specific SNR estimation (i.e., the maximum reachable
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correlation given the noise of the data), thus confirming
the validity of the fixed model employed (Wu et al., 2006).

Foreground is enhanced in all the tested regions
We tested whether the behavioral foreground segmen-

tation from BSD represented a better predictor of RDMs
derived from fMRI activity, as compared to alternate con-
figurations obtained by shuffling the segmentation pat-
terns across stimuli (Fig. 2A). The correct foreground
configuration yielded a significantly higher correlation as
compared to the examples from the shuffled dataset (i.e.,
a null distribution obtained with a permutation test;
Table 2), thus suggesting that the enhancement of

foreground-related information occurs during passive
perception of natural stimuli in all the tested ROIs (V1: p �
0.006; V2: p � 0.001; V3: p � 0.014; V3A: p � 0.002; V3B:
p � 0.005; V4: p � 0.001; LOC: p � 0.001).

In addition, this analysis rules out two potential con-
founding effects. One related to a fovea-to-periphery bias
in our image set. In fact, as already observed in literature,
natural images are typically characterized by objects lo-
cated at the center of the scene, see for instance the
object location bias represented in Alexe et al. (2010; their
Fig 3B). However, since the spatial distribution and num-
ber of pixels were kept constant at each permutation step,
we replicated the same fovea-to-periphery bias in the null

Figure 3. Comparison of intact and behaviorally segmented images. The graphs show the correlation between the intact (green) and
segmented versions (blue: isolated foreground; red: isolated background) of the images and brain RDMs (n � 55611). Dashed bars
stand for significant correlations as resulting from the permutation test (p � 0.05, Bonferroni corrected; 1000 iterations). Asterisks
indicate significant differences between correlation values (p � 0.05, Bonferroni corrected). Error bars represent the SE estimated with
bootstrapping. Dashed lines represent the SNR estimate for each ROI, while gray shaded regions indicate its SE.

Table 1. Comparison of intact and behaviorally segmented images

ROI Intact Foreground Background
Spearman’s � p value Spearman’s � p value Spearman’s � p value

V1 0.091 � 0.008 �0.001� 0.03 � 0.008 0.006 0.035 � 0.008 �0.001�

V2 0.084 � 0.005 �0.001� 0.035 � 0.007 �0.001� 0.039 � 0.004 �0.001�

V3 0.044 � 0.007 �0.001� 0.025 � 0.008 0.08 0.02 � 0.007 0.29
V3A 0.023 � 0.004 0.34 0.017 � 0.005 0.256 0.018 � 0.007 0.127
V3B 0.036 � 0.009 0.017 0.028 � 0.006 0.02 0.017 � 0.009 0.186
V4 0.038 � 0.015 0.027 0.043 � 0.006 �0.001� 0.013 � 0.007 0.915
LOC 0.038 � 0.008 0.015 0.038 � 0.012 �0.001� 0.015 � 0.009 0.543

* p � 0.05 Bonferroni corrected.

Table 2. Statistical analysis

Data structure Type of test Power
a Single correlation values Nonparametric permutation test p � 0.05 Bonferroni corrected
b Single correlation values Nonparametric permutation test p � 0.05
c Single correlation values Nonparametric permutation test p � 0.05 Bonferroni corrected
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distribution. The other confound was related to potential
differences in contrast between foreground and back-
ground. To account for this, in the permutation test, we
matched the RMS contrast of each random segmentation
to that of the ground-truth segmentation obtained from
BSD. Overall, these control procedures minimize the
chance that the observed enhancement is driven by loca-
tion, size, or contrast of the foreground.

Background suppression occurs in higher cortical
areas

As the correlation between the background RDM and
RDM derived from fMRI activity is significant in V1 and V2
only (Fig. 3), we hypothesized that background-related
information is suppressed in “higher” visual cortices. No-
tably, Poort et al. (2016) described background suppres-
sion as a different, but associated, phenomenon with
respect to foreground enhancement. Thus, to better char-
acterize where and how background suppression occurs
in humans attending to natural images, a further analysis
was performed by parametrically filtering out the back-
ground of each image, varying its contrast or spatial
frequencies (low- and high-pass filtering; Fig. 2C). As the
correlation between the representational model of V3A,
V3B, and those derived from intact, isolated foreground,
and isolated background images is not significant (p �
0.05 Bonferroni corrected), these ROIs were not further
investigated.

When comparing the correlation value of the intact
version of the stimuli and the correlation value of each
background filtering step, we found that V1, V2, and V3
show a progressive decay, indicating that the background
is actually processed by these regions (p � 0.05, Bonfer-
roni corrected). On the other hand, in V4 and LOC, filtering
the background produces significantly higher correlations
(p � 0.05 Bonferroni corrected), thus indicating that back-
ground information is not different from noise (Fig. 4).
These findings suggest that background suppression is
actually performed by higher cortical areas, as also de-
picted in correlation images (Fig. 5).

Of note, to validate the proposed method, we per-
formed a simulation of the fMRI experiment using a fully
connected layer of a pretrained convolutional neural net-
work (AlexNet fc6; Krizhevsky et al., 2012). The RDM
correlation between each contrast filtering step and the
representational geometry from the net (i.e., responses to
intact images) was computed as in the fMRI analyses (i.e.,
fixed model). Then, we assessed ground truth computa-
tion of the net by showing it the images at each filtering
level, thus checking its sensitivity to background manip-
ulation. Results (data not shown) demonstrate that our
pre-filtering modeling approach correctly reveals the
ground-truth computation of the net.

Discussion
In the present study, we illustrated how the manipula-

tion of low-level properties of natural images, and the
following correlation with patterns of brain responses dur-
ing passive viewing of the intact stimuli, could disclose
the behavior of different regions along the visual pathway.

Employing this pre-filtering modeling approach, we
tested whether scene segmentation is an automatic pro-
cess that occurs during passive perception in naturalistic
conditions, even when individuals are not required to
perform any particular tasks, or to focus on any specific
aspect of images. Here, we were able to collect three
different pieces of evidence confirming our hypothesis on
the mechanisms involved in scene segmentation.

First, by using RSA, we demonstrated that representa-
tional models built from fMRI patterns show a significant
correlation with isolated foreground in V2, V4, and LOC,
while a significant correlation with isolated background is
achieved in V1 and V2 only.

Second, our analyses specifically found that foreground
enhancement is present in all the selected visual ROIs,
and that this effect is driven neither by the foreground
contrast, nor by its size or location in the visual field. Thus,
indirect evidence of figure-ground modulation of natural
images could be retrieved in the activity of multiple areas
of the visual processing stream (Roelfsema, 2006; Roelf-
sema and de Lange, 2016). This is consistent with a
recent study, which reported that border-ownership of
natural images cannot be solved by single cells but re-
quires a population of cells in monkey V2 and V3 (Hesse
and Tsao, 2016).

Finally, a proof of segmentation can be represented by
the significant suppression of background-related infor-
mation in V4 and LOC. On the contrary, earlier regions
across the visual stream, from V1 to V3, have a uniform
representation of the whole image, as evident at first
glance in the obtained correlation images (Fig. 5). Overall
these results further support the idea that foreground
enhancement and background suppression are distinct,
but associated, processes involved in scene segmenta-
tion of natural images.

Foreground segmentation as a proxy for shape
processing

Of note, our proposed pre-filtering modeling approach
produces a visual representation (i.e., correlation image)
of how information is selectively coded by a specific
population of interest (e.g., LOC). Further interpretations
on the obtained visual representation may result more
empirical and, similarly to other computational neuroim-
aging methods (e.g., Inverted Encoding Models; Liu et al.,
2018), should be grounded on previous neurophysiologi-
cal knowledge. For instance, the correlation image of LOC
could be interpreted as resulting from two alternative
mechanisms: LOC could preferentially process the fore-
ground as a whole, while suppressing the background, or
it could act as a “feature detector,” whose neurons are
selectively tuned toward a single visual attribute (e.g., the
whiskers of a cat), without actively performing any sup-
pression. Either way, what our method clearly reveals is
that LOC is selective for object texture and shape prop-
erties and is unaffected by background-related informa-
tion. At the same time, previous knowledge suggests that
an active process, rather than a passive feature-matching
mechanism, determines the observed results (Roelfsema
and De Lange, 2016).
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Figure 4. Background suppression in the human visual system. Correlation between brain activity and contrast, low- and high-pass
filtering applied to the background (blue) and, as a control, to the foreground (red). Filled dots mark significant correlations (p � 0.05,
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Furthermore, the observed behavior of V4 and LOC is
consistent with several investigations on shape features
selectivity in these regions, and in their homologues in
monkey (Carlson et al., 2011; Hung et al., 2012; Lescroart
and Biederman, 2013; Vernon et al., 2016). In fact, the
extraction of shape properties requires segmentation (Lee
et al., 1998), and presumably occurs in brain regions
where background is already suppressed. As mentioned
before, correlation images reconstructed from V4 and
LOC are characterized by a strong background suppres-
sion, while the foreground is preserved. This is consistent
with a previous neuropsychological observation: a bilat-
eral lesion within area V4 led to longer response times in
identifying overlapping figures (Leek et al., 2012). Hence,
this region resulted to be crucial for accessing foreground-
related computations, and presumably plays a role in
matching the segmented image with stored semantic
content in figure recognition. In accordance with this, a
recent hypothesis suggests the role of V4 in high-level
visual functions, such as features integration or contour
completion (Roe et al., 2012).

The preserved spatial resolution of foreground descrip-
tive features (i.e., texture) in V4 and LOC (as shown in Fig.
5) represents an additional noteworthy aspect that arises
from our data. The progression from V1 toward higher-
level regions of the cortical visual pathway is associated
with a relative increase in receptive fields size (Gattass
et al., 1981, 1987, 1988; Dumoulin and Wandell, 2008;
Freeman and Simoncelli, 2011; Kay et al., 2015). How-
ever, it should be kept in mind that regions such as V4
demonstrate a complete representation of the contralat-
eral visual hemifield, rather than selective responses to
stimuli located above or below the horizontal meridian
(Wandell and Winawer, 2011). The evidence that the fore-
ground portion of correlation images maintains fine-
grained details in V4 and LOC seems to contrast a popular
view according to which these regions are more tuned to
object shape (i.e., silhouettes), instead of being selective

for the internal configuration of images (Malach et al.,
1995; Grill-Spector et al., 1998; Moore and Engel, 2001;
Stanley and Rubin, 2003). However, it has been shown
that foveal and peri-foveal receptive fields of V4 do ac-
commodate fine details of the visual field (Freeman and
Simoncelli, 2011) and that the topographic representation
of the central portion of this area is based on a direct
sampling of the primary visual cortex retinotopic map
(Motter, 2009). Therefore, given the fovea-to-periphery
bias found in our stimuli and in natural images, it is
reasonable that an intact configuration of the foreground
may be more tied to the activity of these brain regions,
and that a richer representation of the salient part may
overcome simplistic models of objects shape (e.g., silhou-
ettes). Our results are also consistent with a recent study
on monkeys that demonstrates the role of V4 in texture
perception (Okazawa et al., 2015).

Moreover, it is well known that selective attention rep-
resents one of the cognitive mechanisms supporting fig-
ure segmentation (Qiu et al., 2007; Poort et al., 2012), as
suggested, for instance, by bistable perception phenom-
ena (Sterzer et al., 2009), or by various neuropsychologi-
cal tests (De Renzi et al., 1969; Bisiach et al., 1976). In the
present experiment, participants were asked to simply
gaze a central fixation point without performing any overt
or covert tasks related to the presented image. Nonethe-
less, we found evidence of a clear background suppres-
sion and foreground enhancement, suggesting that scene
segmentation is mediated by an automatic process that
may be driven either by bottom-up (e.g., low-level prop-
erties of the foreground configuration), or top-down (e.g.,
semantic knowledge) attentional mechanisms. Neuro-
physiological studies suggest that segmentation is more
likely a bottom-up process, as border-ownership assign-
ment occurs as early as 70 ms (Williford and von der
Heydt, 2016), followed by later region-filling mechanisms
(i.e., enhancement and suppression; Self et al., 2013). A
limit of our study is that we cannot provide any further

continued
Bonferroni corrected) while colored shaded areas represent the SE estimates. Dashed lines represent the SNR estimate for each ROI,
while gray shaded regions indicate its SE. Arrows stand for significant differences (p � 0.05, Bonferroni corrected) between each
filtering step and correlation values for the intact version (up: background suppression; down: progressive decay). Results show that
for early regions (V1–V3) background-related information is relevant, since the correlation significantly decays due to filtering (p �
0.05, Bonferroni corrected); on the other hand, V4 and LOC show an opposite effect, suggesting that background is suppressed in
those regions.

Figure 5. Correlation images. To visually represent these results, we combined the different filtering procedures (contrast, low- and
high-pass filtering) of the step showing the highest correlation with the representational model from each ROI.
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information related to these mechanisms and their tem-
poral dynamics, given the limited temporal resolution of
fMRI and the passive stimulation task. However, a recent
study (Neri, 2017) investigated behavioral and electrophysi-
ological responses to BSD images, intact or manipulated in
several different ways, including spatial frequencies filtering
and warping, in subjects who were asked to reconstruct a
corrupted image region. Results showed that reconstruction
of patches elicits enhanced responses when masking tar-
geted the behaviorally segmented contours, rather than the
contrast energy of the images. Moreover, this effect occurs
earlier than 100 ms and is not altered by semantic process-
ing or spatial attention.

Facing the challenge of explicit modeling in visual
neuroscience

One of the major goals of visual neuroscience is to
predict brain responses in ecological conditions (Felsen
and Dan, 2005). In this sense, the standard approach in
investigating visual processing implies testing the corre-
lation of brain responses from a wide range of natural
stimuli with features extracted by different alternative
computational models. This approach facilitates the com-
parison between performances of competing models and
could ultimately lead to the definition of a fully computable
model of brain activity. However, the development of
explicit computational models for many visual phenom-
ena in ecological conditions is difficult. Indeed, many
current theories, especially those concerning mid-level
processing, have been hardly tested with natural images,
as testified by the extensive use of artificial stimuli (Caran-
dini et al., 2005; Wu et al., 2006). As a matter of fact, it is
often impossible both to extract and to control for relevant
features in natural images, and thus, there is no way to
compute a predicted response from complex stimuli.

Moreover, even if computer vision is a major source of
computational models and feature extractors, often its
objectives hardly overlap with those of visual neurosci-
ence. Computer scientists are mainly interested in solving
single, distinct tasks (e.g., segmentation, recognition,
etc.), while, from the neuroscientific side, the visual sys-
tem is considered as a general-purpose system that could
retune itself to accomplish different goals (Medathati
et al., 2016). Consequently, while computer science typ-
ically employs solutions that rely only seldom on previous
neuroscientific knowledge, and its goal is to maximize
task accuracy (e.g., with deep learning), visual neurosci-
ence somehow lacks of solid computational models and
formal explanations, ending up with several arbitrary as-
sumptions in modeling, especially for mid-level vision
processing, such as scene segmentation or shape fea-
tures extraction (for a definition, see Kubilius et al., 2014).

In light of all this, we believe that the manipulation of
a wide set of natural images, and the computation of a
fixed model based on low-level features, can offer a
simple and biologically plausible tool to investigate
brain activity related to higher-order computations, and
that representational models offer an easily account-
able link between brain activity and continuous stimuli
descriptions (Nili et al., 2014). In fact, the results of this

exploratory approach can be depicted and are as intu-
itive as descriptions obtained through formal modeling
(Fig. 5), highlighting interpretable differences rather
than data predictions.

Moreover, our study indicates that the sensitivity of
representational models built on fMRI patterns can repre-
sent an adequate tool to investigate complex phenomena
through the richness of natural stimuli. Representational
models fit this purpose: even if are summary statistics
obtained from the dissimilarities between actual brain
activity, they are independent from a priori assumptions
on anatomic relationships between brian regions, or on
correspondences between voxels and units of computa-
tional models, as in the case of voxelwise encoding or
decoding (Kriegeskorte and Kievit, 2013).
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