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Abstract

Efficient clearance of dopamine (DA) from the synapse is key to regulating dopaminergic signaling. This role is
fulfilled by DA transporters (DATs). Recent advances in the structural characterization of DAT from Drosophila
(dDAT) and in high-resolution imaging of DA neurons and the distribution of DATs in living cells now permit us to
gain a mechanistic understanding of DA reuptake events in silico. Using electron microscopy images and
immunofluorescence of transgenic knock-in mouse brains that express hemagglutinin-tagged DAT in DA neu-
rons, we reconstructed a realistic environment for MCell simulations of DA reuptake, wherein the identity,
population and kinetics of homology-modeled human DAT (hDAT) substates were derived from molecular
simulations. The complex morphology of axon terminals near active zones was observed to give rise to large
variations in DA reuptake efficiency, and thereby in extracellular DA density. Comparison of the effect of different
firing patterns showed that phasic firing would increase the probability of reaching local DA levels sufficiently high
to activate low-affinity DA receptors, mainly owing to high DA levels transiently attained during the burst phase.
The experimentally observed nonuniform surface distribution of DATs emerged as a major modulator of DA
signaling: reuptake was slower, and the peaks/width of transient DA levels were sharper/wider under nonuniform
distribution of DATs, compared with uniform. Overall, the study highlights the importance of accurate descriptions
of extrasynaptic morphology, DAT distribution, and conformational kinetics for quantitative evaluation of dopa-
minergic transmission and for providing deeper understanding of the mechanisms that regulate DA transmission.
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Dopamine (DA) modulates motor control, cognition, and drug addiction. Understanding the mechanism of
dopamine transmission is essential to designing therapies for neurologic disorders. We developed a
multiscale model using advances in imaging and high-performance computing technologies, which per-
mitted us to perform spatially realistic simulations of dopamine reuptake. Simulations show large temporal
and spatial variations in the local density of dopamine depending on the morphology of the synaptic/
extrasynaptic region near dopamine release site and on firing pattern. Dopamine clearance is less efficient
under heterogeneous distribution of dopamine reuptake transporters, compared with a uniform distribution
with the same average surface density. Dopamine reuptake transporters membrane distribution, accessi-
bility of dopamine reuptake transporters outward-facing conformation, and large fluctuations in dopamine
klevels emerge as key features that modulate dopaminergic transmission. j
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Introduction

Midbrain dopaminergic neurons have a strong influence
on striatum functions such as motor and action planning,
cognitive functions, and motivation (Roeper, 2013). Dys-
regulation of dopaminergic transmission leads to impair-
ment of these activities, resulting in disorders such as
Parkinson’s disease (PD; Hoang, 2014), attention deficit/
hyperactivity disorder (ADHD; Wu et al., 2015), and drug
addiction (Nutt et al., 2015). A mechanistic understanding
of dopamine (DA) transmission events is essential to de-
veloping therapeutic strategies, because many behavioral
states strongly correlate with DA release and/or reuptake
(Tsai et al., 2009; Sulzer et al., 2016).

DA release to the synapse is activated by excitatory
stimulation and exhibits patterns similar to neuronal fir-
ings. DA excitatory signaling proceeds by activation of DA
receptors on binding DA molecules. DA rapidly diffuses
from the active zone (AZ; or release site) to extrasynaptic
regions in the extracellular (EC) medium. DA transporters
(DATs), membrane proteins usually located on the surface
of presynaptic axon terminals, regulate DA signaling by
removing excess DA from extrasynaptic regions (Torres
et al., 2003; Vaughan and Foster, 2013). DATs are targets
for addictive substances, which inhibit their function (Am-
ara and Sonders, 1998), thus resulting in excess (neuro-
toxic) DA levels in the EC region (Di and Imperato, 1988),
whereas low levels of DA cause motor impairments asso-
ciated with PD (Lotharius and Brundin, 2002). In addition,
reuptake by DATSs, the rate of DA diffusion from the AZ to
the extrasynaptic region (Taylor et al., 2013), and the
frequency and patterns of action potentials (APs; Tsai
et al., 2009) are known to modulate the efficiency of DA
signaling.

The dynamics of DA reuptake by DATs has been a focal
topic in modeling efforts, at both the cellular and molec-
ular levels (Mortensen and Amara, 2003). Early efforts at
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the cellular level adopted a well-mixed model focusing on
predicting the DA concentration at certain regions of the
brain, such as the nucleus accumbens or dorsal striatum
(Garris et al., 1994). The effect of EC DA concentration on
the activation of DA receptors (Viggiano et al., 2004), as
well as spatial/volume exclusion/transmission properties
affecting EC DA levels, have been included in later volume
transmission (VT) models (Cragg et al., 2001; Cragg and
Rice, 2004; Rice and Cragg, 2008; Dreyer et al., 2010;
Dreyer and Hounsgaard, 2013; Sulzer et al., 2016). These
studies highlighted a need for considering the distinc-
tive diffusion and uptake characteristics of the EC mi-
croenvironment. Yet, no quantitative models/
simulations have been developed or performed to date
that would permit us to assess how the complex ge-
ometry of DA terminals and the spatial distribution and
conformational dynamics of DATs alter dopaminergic
signaling. Advances in imaging DA neurons and visual-
izing individual DATs (Block et al., 2015) now enable us
to reconstruct in silico the detailed morphology near
AZs and examine the time evolution of DA release and
reuptake with the help of MCell, software originally
developed (Stiles et al., 1996; Kerr et al., 2008; Czech
et al., 2009) for spatiotemporally realistic simulations of
synaptic signaling events.

In addition to cellular structure and heterogeneities, the
conformational dynamics of DATSs is a determinant of DA
transport efficiency. Recent crystal structures of Drosoph-
ila DAT (dDAT; Penmatsa et al., 2013, 2015; Wang et al.,
2015) have opened the way to structure-based studies of
DAT dynamics. Simulations based on these structures
helped elucidate the sequence of molecular events that
take place during the transport cycle of the human ortho-
logue, hDAT (Cheng and Bahar, 2015; Khelashvili et al.,
2015; Razavi et al., 2017; Cheng et al., 2018). We are now
able to make reasonable approximations for the kinetic
scheme and parameters associated with the DAT trans-
port cycle based on statistical analyses of the full-atomic
trajectories and free energy calculations.

Here, we present an integrated model of synaptic sig-
naling in DA neurons developed from cellular and molec-
ular structures and molecular dynamics. We investigate
the effects of (1) the conformational kinetics of DATSs, (2)
the spatial complexity of DA terminals and AZs based on
fluorescence images, (3) the firing patterns, phasic versus
tonic, and (4) the heterogeneous distribution of DATs on
the plasma membrane based on experimentally ob-
served DAT density fluctuations. Simulations reveal the
strong dependence of local DA levels as well as overall
DA clearance efficiency on the local geometry of axon
terminals. They also reveal that the presence of DAT
clusters (consistent with the DAT density heterogene-
ities observed in high-resolution images; Block et al.,
2015) causes a reduction in the efficiency of DA re-
uptake compared with uniformly distributed DATs with
the same average surface density. This effect becomes
more pronounced with increasing heterogeneity of the
surface distribution of DATSs.
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Materials and Methods

Confocal imaging of immunolabeled DATSs in
transgenic mouse brains

The procedure for preparing and imaging acute brain
slices from transgenic knock-in mice of either sex ex-
pressing DAT molecules tagged with the hemagglutinin-A
(HA) epitope (HA-DAT; (Rao et al., 2012) has been de-
scribed in previous works (Rao et al., 2013; Block et al.,
2015). Briefly, brains were submerged into an ice slush of
oxygenated artificial cerebrospinal fluid (ACSF), and 0.8-
mm-thick sagittal slices were cut using microtome blades
and a stainless-steel slicing block. The subcellular local-
ization of cell-surface HA-DAT molecules was deduced
from intact living DA neurons in acute sagittal brain slices
as detected by mouse anti-HA antibodies with Cy3-
conjugated anti-mouse antibodies (Block et al., 2015).
Slices were incubated in ACSF at room temperature with
1 ng/ml mouse anti-HA antibodies for 1 h. After removing
unbound antibodies, slices were incubated for 1 h at 4°C
in ACSF with 2.5 ug/ml Cy3-conjugated anti-mouse Fab
fragments.

We have not observed substantial differences in
HA-DAT distribution between live-cell and postfixation
labeling with HA antibodies, suggesting that axonal vari-
cosities revealed by DAT staining were not the result of
blebbing during the labeling procedure of live slices. We
found that binding of antibodies to live neurons followed
by fixation provides much superior image quality and
lower signal-to-noise ratio compared with the conven-
tional protocol of fixation first and then staining with an-
tibodies. Importantly, live-neuron staining protocol allows
labeling of cell-surface DATSs, which is important for de-
fining the distribution of DATs on the neuronal surfaces in
the model. Observations of DAT endocytosis (Block et al.,
2015), normal lateral membrane mobility of DAT, and
healthy mitochondria in dopaminergic neurons from slices
kept alive for at least 2 h were indicative of functional
neurons in these slices. Moreover, DA neurons labeled
as described above have been observed to exhibit
pH-dependent vesicular trapping of antipsychotic
drugs (Tucker et al., 2015).

To obtain high-resolution 3D images of DA neurons, a
z-stack of 18 confocal images at 400-nm interstack dis-
tance was acquired 10 um deep from the cut face of the
slice through the 561 filter channel using a spinning disk
confocal system based on a Zeiss Axio Observer Z1
inverted fluorescence microscope (with 63X Plan Apo PH
NA 1.4 objective), equipped with a computer-controlled
Spherical Aberration Correction unit, Yokogawa CSU-X1,
Vector photo manipulation module, Photometrics Evolve
16-bit EMCCD camera, Hamamatsu CMOS camera, en-
vironmental chamber, and piezo stage controller and la-
sers (405, 445, 488, 515, 561, and 640 nm), all controlled
by SlideBook 6 software (Intelligent Imaging Innovation).

Our image reconstruction and modeling described be-
low are based on the combination of light microscopy
images of slices and electron microscopy images (Block
et al., 2015) that were obtained on intact animals after
cardioperfusion fixation.
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In silico reconstruction of DA axonal terminals in the
striatum

We reconstructed in silico a 10 X 10 X 7.2-um volume
from the above described striatal region (Fig. 1A-C) using
a semiautomated 3D reconstruction algorithm (Turetken
et al.,, 2016). The size of the simulation box was large
enough to allow for diffusion of DA over a sufficiently
broad EC region, in accord with previous estimates (Ven-
ton et al., 2003), and the reconstruction yielded a realistic
representation of both the heterogeneous shape of axonal
terminals and the surface distribution of individual DAT
molecules. The reconstructed region contained 13 axon
terminals (Fig. 1D). The corresponding volumes and sur-
face areas (listed in Table 1) were calculated using the
NeuroMorph (Jorstad et al., 2015), a Blender add-on that
uses triangular meshes to evaluate the surface area and
corresponding normal to determine the volume of each
tetrahedron. The total volume occupied by the 13 axon
terminals was 101.03 um®, and the corresponding total
surface area, 337.16 um>.

The DA axonal terminals reconstructed in silico
contained six varicosities, i.e., 3D globular regions with
densely expressed DATSs, distributed over three DA ter-
minals: one of the largest terminals had three varicosities,
another had two, and the remaining varicosity was on a
third terminal. AZs lie within varicosities but are not usu-
ally populated with DAT molecules (Block et al., 2015);
accordingly, subregions (of varicosities) that lacked DAT
molecules within at least a 50-nm radius were identified
as AZs. The region between DAT-expressing cells (de-
tected by fluorescence microscopy) and others (not visi-
ble) was represented by an interstitial (void) space of
30-nm thickness surrounding the DAT-expressing termi-
nals (Fig. 1E). This led to a void fraction of 0.21, consistent
with previous estimates (Cragg et al., 2001), or an overall
volume of 155.35 um? (Table 1) that formed available for
DA diffusion. These narrow regions form the synaptic
clefts and extrasynaptic regions available for the diffusion
of DA molecules. The number of AZs for a given volume
was verified to be comparable to that used in other stud-
ies (Dreyer et al., 2010).

Next, we describe the placement of DAT molecules on
the membrane of axonal terminals. To investigate the
effect of DAT surface distribution heterogeneities on the
efficiency of DA reuptake, we examined four cases (Fig.
2). Case 1 refers to the uniform distribution (Fig. 2A), taken
as p(DAT) = 800/um?, based on the electron microscopy
images of gold particle labeled HA-DAT, assuming 10%
labeling efficiency (Block et al., 2015). Case 2 is a non-
uniform (bimodal) distribution (Table 2; Fig. 2B), set forth
in accord with the actual distribution of DATs observed in
experiments. High-density regions were detected in the
fluorescence images as continuous bright regions (Fig.
1C). These regions covered ~10% of the plasma mem-
brane area, and ~90% of DATs were localized in these
regions. The surface densities of DATs in the high- and
low-density regions were taken as p, = 6339/um? and
p; = 50/um?, respectively. In case 3, the distribution is
again bimodal, similar to case 2, but the central parts of
the high-density regions from case 2 are selected as the
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Figure 1. Reconstruction of the morphology of DA neuronal axons. A, HA-DAT distribution in different regions of mouse brain
including midbrain (mb) and striatum (str) acquired from sagittal slices. The slices were labeled with HA11 antibody detected with
Cy3-conjugated Fab IgG fragments (HA, red). Nonspecific staining of vasculature (vasc) is also highlighted. White scale bar, 2 mm.
B, Maximal-projection image of the first five (starting 10 um deep from the edge of the slice) confocal sections of the 3D image from
striatal region. The slice labels are same as those in A. Green scale bar, 10 um. C, Maximal projection of the first five sections of 3D
image of the small striatal region, used to construct the simulation environment (inset), magnified from B. Blue scale bar, 1 um. D,
3D reconstruction of the region shown in C, visualized using CellBlender (Bartol et al., 2015b), an add-on for Blender 2.78
(http://www.blender.org). Different colors refer to 13 different axonal varicosities (DA terminals). The remaining portions are occupied
by cells that do not express DAT. The location of six AZs are shown by the labels 1-6. The dashed line indicates an AZ that is not
visible from this perspective. E, Full isometric view of the simulation box. White circles indicate the locations of three AZs.

new very-high-density regions, with p,, = 30,000/um?
) o ) and p, = 50/um? elsewhere, which leads to a sharper
Table 1.Geometric characteristics of axon terminals heterogeneity in the spatial distribution of DATSs (Fig. 2C).

reconstructed’ for simulations In case 4, DATs are assumed to be clustered in the
Available® immediate neighborhood of AZs, as a mimic for conven-
Surface surface tional synaptic models where DATs act as gatekeepers
Subsystem V(um)® area (um)® area (um)®  near the synaptic cleft (Fig. 2D; Rothstein et al., 1994;
DA axons Danbolt, 2001), and DAT surface concentrations in high-
Terminal 1 1.22 6.8 547 and low-density regions are the same as in case 3. The
E:m:gg: § 2;1.22 gg'g ?ggg histograms in Fig. 2E-H describe the probability distribu-
Terminal 4 15.84 56.33 51.11 tion of the distances of DAT molecules from the closest
Terminal 5 4.72 25.14 2514  AZ
Terminal 6 1.71 10.12 10.12
Terminal 7 0.82 5.57 5.57 MCell simulations of DA release and reuptake events
Terminal 8 2.04 12.94 12.94 in DA neurons
Terminal 9 15.32 46.86 39.08 Spatiotemporally realistic simulations were performed
Terminal 10 15.18 58.65 95.5 using MCell (Stiles et al., 1996; Bartol and Stiles, 2001;
Terminal 11 3.85 18.99 18.98 Kerr et al., 2008), a 3D reaction-diffusion system solver
Term!nal 12 9.69 34.31 81.75 that allows users to reconstruct complex geometries, de-
Terminal 13 2.58 12.35 9.64 fine the subcellular localization of discrete molecules, and
Total for all terminals 101.03 367.71 337.16 . . . A
Non-DA-expressing cells ~ 463.62 1058.00 0 s_|mulate the_|r dypamlcs. The parameters used in simula-
DA axons + other cells 564.65 1425.71 337.16 tions are given in Table 2. Unimolecular reactions are
Available EC volume? 155.35 scheduled according to defined reaction rates, and bimo-
lecular reactions occur with predefined probabilities that
;gf)itr;?nz)c(ipf)rimsir;)tﬁlagﬁ;a frsosT E?Eloﬁgr?]t ?|2.0(20:r?3)- (for the simulation box of are chosen to match bulk reaction rates. Collisions be-
10X 10X 72 amiy 0 K tween molecules are detected by ray-tracing algorithm.
3Excluding those at the simulation box boundaries. We adopted Neumann boundary conditions similar to
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Figure 2. Four space-dependent models of different plasma distributions of DATs. A-D, Distant (left) and magnified (right) view of the
axon terminals in cases 1-4. Each color shows a different terminal, and the red dots represent the DATs. The white regions in A
represent the regions with high fluorescence intensity, and those regions are filled with high density of DATs (red dots), magnified in
B, where the blue region shows the AZ. The red patches in B-D illustrate high-density regions where ~90% of DATs are clustered.
E-H, Distance distribution of DATs to closest AZ center, from 140 independent simulations.

those used in recent simulations of Ca®* signaling (Bartol
et al., 2015c), i.e., DA molecules are subjected to reflec-
tive boundary conditions at the simulation box walls. In
addition, to reduce the bias from reflective boundaries,
terminals within 1 um of the box boundary were assumed
to be inactive, such that the available surface area on DA
axon terminals was 337.16 um? (see Table 1).

The probability of a release succeeding an action po-
tential depends on multiple factors (Dreyer et al., 2010),
including the content of DA in the striatum (/5,; Bannon
et al., 1981), the ratio of the amount of total DA released
per action potential (R; Gubernator et al., 2009), the vol-
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umetric density of DA terminals at AZs (p,,,; Doucet
et al., 1986), and the number of DA molecules released
per quantum (N,; Pothos et al., 1998). The parameters are
given in Table 2, which yielded a release event probability
of 6% (Dreyer et al., 2010). Each AZ has a release site
located at its center; and on a release event, a total of Ny
DA molecules is assumed to be released from the release
site. DA diffusion was modeled as a pseudorandom walk
with a fixed time step of At = 0.1 us. The distribution of
DA step sizes yielded an average of 13.3 nm using a DA
diffusion coefficient of 4 X 10® cm?/s. A time step of 100
us was used for the slow events, such as the transition of
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Table 2. Parameters and properties used in MCell simula-
tions

Parameter Value Unit
DA diffusion coefficient? 4.00 X 107 cm?/s
Vesicle release probability® 0.06

Average firing rate of DA neurons® 4.00 Hz
DA released per release event @ 3250 n

OF — OF= rate constant (k,,)° 9.60 x 106 M~ s
OF — IF# rate constant (kng)® 20.00 s
IF+ — IF rate constant (kg,)® 5.00 s

IF <> OF forward rate constant (k,4)° 2.00 s™!

IF <> OF reverse rate constant (ky,)® 8.00 s
Total axonal surface area’ 337.16 um?

Uniform DAT surface density, p(DAT)",9 800 1/um?
High DAT surface density, p,(DAT)"," 6,339 1/pum?
Low DAT surface density, p,(DAT)’ 50 1/um?
Very high DAT surface density, p,,(DAT) 30,000 1/pum?
DA density of neurons, Ipa 9.3 ug/cm?®
Ratio of the total DA released per AP, R 0.05%

Density of DA terminals, p;em, 0.104 1/pum?

2From Rooney and Wallace (2015).
bReported in Dreyer et al. (2010)

“See Dreyer et al. (2010).

dSee Pothos et al. (1998).

¢Estimated from molecular computations.
fDerived from Block et al. (2015).

9Case 1 in Fig. 2.

"High-density region in case 21; see Fig. 2.
iow-density region in cases 2-4.
iVery-high-density region in cases 3 and 4.

DAT to reuptake-ready (EC-exposed outward-facing)
state release of its cargo. 140 independent runs, each of
10 s, were performed to extract statistically significant
results.

Conformational dynamics of DAT

Our recent dual-boost accelerated molecular dynamics
(@MD; Hamelberg et al., 2007; Miao et al., 2013) and
conventional MD (cMD) simulations of DAT dynamics
showed that the DA transport cycle by DAT can be ap-
proximated by four basic steps (Fig. 3; Cheng and Bahar,
2015; Cheng et al., 2018): (1) recognition and binding of
DA (and cotransported Na™ ions) from the EC region to
DAT in the outward-facing (OF) state—we designate the
substrate- and Na*-bound (or loaded) OF state as OF:;
(2) global structural change of DAT from OF: to inward-
facing loaded (IF=) state; (3) release of cargo to the IC
region (IF+ — IF); and (4) reverse transition of the un-
bound/apo DAT from IF to OF state. The respective
forward rate constants are denoted as k5, Kos, ka4, and
k41, and reverse rate constants are ky4, Kap, K43, and kq,
(Fig. 3).

The molecular events of DA binding and unbinding to
DAT generally involve local conformational changes, and
their energetics can be estimated using established free
energy calculation methods. We used two methods: (1)
alchemical free energy calculation with free energy per-
turbation (FEP) method (Pohorille et al., 2010) and (2)
potential of mean force (PMF) calculations using the
adaptive biasing force (ABF) method (Chipot and Hénin,
2005), based on cMD trajectories. The FEP calculations
yielded a binding free energy change of AG,;,, = —7.8
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kcal/mol (Cheng et al., 2018), in excellent agreement with
the experimental value of —7.4 kcal/mol (Dar et al., 2006;
Huang and Zhan, 2007). MD simulations indicated that the
average time required to bind a DA molecule originally
placed at a distance of 15 A from the binding site is ~125
ns. To convert this number into the binding rate constant
k4o, we performed the following operation. First, using an
EC DA concentration of 7.5 nM (Feifel et al., 2003), we
calculated the density of DA molecules to be 7.5 x 107°
mol/nm® X 6.02 X 10%® molecules/mol = 4.5 X 10°°
molecules/nm?. The free volume (excluding that occupied
by DAT itself) for DA translocation originally located at a
separation of 15 A from the binding was evaluated to be
2 nm® using POVME (Durrant et al., 2011). The number of
DA molecules colliding with DAT based on this accessible
volume is 2 nm® X 4.5 x 10° = 9 X 10™°, which also
represents the a priori probability/frequency of collision of
a given DA molecule. This leads to an effective binding
time of 125 ns/9 X 107° = 13.88 s. By normalizing with
respect to EC DA concentration, the bimolecular reaction
constant is determined as (1/13.88 s)/7.5 X 107° = 9.6 X
10° M "s7 .

We further observed that (1) the binding of Na™ ions
was fast (<100 ns) and the subsequent binding of DA
readily prompted the closure of the EC gate such that the
escape of DA (and ions) back to the EC region was
negligibly small, i.e., ko; << ky,; (2) no DA efflux to EC
region was detected (i.e., k3 = k3o ~ 0); (3) the DA-free
(with Na*/Cl~ bound) OF—IF transition (k,,) was two to
three times slower than that in the DA-loaded transition
(kos)—Na™- and substrate-binding allosterically promoted
a cooperative transition to IF* state (Cheng and Bahar,
2015; Bahar et al., 2015), but such cooperativity was not
observed in the apo state; and (4) the DA-free IF—OF
transition (k,;) was even slower than the OF—IF transition
(k44) owing to the difficulty in closing the intracellular gates
(Cheng et al., 2018). The global OF «> IF transition rates
were thoroughly examined in microsecond aMD simula-
tions of DA-free DAT, which showed that the population of
reuptake-ready (OF) conformers was lower than that of IF
(or other intermediate) conformers by a factor or 4, or
ky4/k41 =~ 4 (Cheng et al., 2018). These considerations
provided us with robust information on the relative rates of
the individual steps and led to the rate constants in
Table 2, the absolute values of which were verified to be
compatible with experimentally observed turnover rates
and steady-state concentrations of DA molecules.

To investigate the sensitivity of DA reuptake efficiency
to DAT conformational kinetics, we also performed global
sensitivity analysis with respect to rate constants in Fig. 3.
We performed 729 independent runs with different com-
binations of k5, K3, k34, K41, @and k4,4, which we varied by
three orders of magnitude. The results are presented in
Fig. 4. Each blue dot represents the outcome, EC DA
concentration in the simulation box, [DA]gs, from one run.
A broad range of [DA]g¢ values, from 0.1 to >100 nM, are
observed, yet an increase in DA binding rate k4, results in
a more efficient clearance and thereby lower DA levels in
the EC region (Fig. 4A). A similar trend is detected with an
increase in the transition rate k,,; from IF to OF, which
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Figure 3. Schematic representation of the sequence of events occurring during the transport cycle of DAT. A succession of four major
states is observed in MD simulations: unbound and DA/ion-bound outward-facing states (OF and OFx) followed by unbound and
bound inward-facing states (IF and IF*). The corresponding hydration patterns (water molecules in white and pink spheres) and
interactions of intra- and extracellular gating residues (R85-D476 and R60-D436, respectively, in stick representation) are displayed.
Green arrows indicate the transitions that were observed and evaluated in molecular simulations (see Table 2). The events indicated
by the red arrows were unlikely (k,;) or not observed (k5, and k,3) in MD runs. Curved arrows refer to the binding or unbinding of DA
(purple, space filling), cotransported Na* ions Na1 and Na2 (yellow spheres), and the chloride ion (blue sphere).

exposes more reuptake-ready DATSs to the EC region (Fig.
4C), and the reverse transition induces the opposite effect
(Fig. 4D). An even sharper effect is observed on plotting
[DAJec against the ratio kq4/k4q, highlighting the impor-
tance of the equilibrium population of the OF and IF states
of DAT after releasing its cargo (Fig. 4E). The examination
of the relative effects of DA binding (k;,) versus back-
transition to the IF state (k,,) for the OF DAT also indicates
that the OF DAT level is a major determinant of [DA]gc
(Fig. 4F) Further quantitative assessment of the statistical
significance of these observations using Spearman rank
correlation coefficients confirmed that the binding rate
constant ky, and the ratio k4,/k,; are two major determi-
nants of DA clearance efficiency. No clear effect was seen
for k,5 (Fig. 4B) or ks, (data not shown).

Code accessibility

The MCell software and the input files for the spatial
models implemented in MCell are freely available to the
community. The model files developed in this study can
be accessed as Extended Data 1 or GitHub repository
at https://github.com/cihankayacihan/dopamine_striatum_
mcell. The only requirement for repeating the simulations

January/February 2018, 5(1) e0298-17.2017

is to download the MCell software (http://www.mcell.org)
version 3.4 and use it together with the model files. The
available files include information on geometry, mole-
cules, reactions, surface classes, and release patterns in
addition to output trajectories and MCell simulation pa-
rameters.

Results

In silico turnover and [DA]g. at half-maximal rate
conform to experimental data

We first verified that MCell simulations yielded macro-
scopic properties consistent with experimental data. We
calculated the turnover rate by adopting in our simulations
the same protocol as that adopted in experiments (Rao
et al., 2013): multiple runs are performed for a series of
initial concentration of DA in the EC region, [DA],, and in
each case, the mass of DA molecules transported per unit
time is measured. The number of DA molecules trans-
ported per second, V.. under saturation conditions
(IDA]gat is of the order of tens of micromoles per liter) is
used to evaluate the turnover rate as the ratio of V., to
the total number B, of DAT molecules present in the

eNeuro.org
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Figure 4. Results from global sensitivity analysis performed for kinetic parameters representing DAT conformational dynamics. Yellow
dots represent the default parameters used in the present study, and blue dots show the results obtained by using as input random
combinations of the parameters (k;,, K»3, k34, k41 @nd ky,4) and their ratios. Results for k5,, which are very similar to those for k,3, are
not shown. The red curves indicate the mean values and the standard error for successive bins of width 0.5. The Spearman correlation
coefficients are —0.71, 0.01, -0.01, —0.44, 0.44, 0.63, and -0.48, in the six respective panels.

4

system. In our simulation environment, B, = 220,000, Amara, 2001), and 1.8/s (Prasad and Amara, 2001; Beum-
based on fluorescence microscopy data (Block et al., ing et al., 2008; Rao et al., 2013).

2015). To evaluate the turnover rate in silico, we counted The average DA level in the EC medium, [DA]gs, ob-
the number of DAs transported as a function of [DA], and  served in silico after reaching steady-state conditions was
examined for each concentration the number of DAs 7.8 nm (Fig. 5A). The physiologic concentration of DA in
translocated per second. This led to a reuptake rate of 1.2 the striatum varies between 5 and 50 nm (Owesson-White
X 10° DAs/s at saturation (V,,,). Division by B,,.., gave a et al., 2012), consistent with the large fluctuations (of the
turnover rate of 0.55/s, which is comparable to the re-  order of A[DAJgc =~ =10 nm) we observed in [DAJgc. Note
ported values of 0.2/s (Rao et al., 2013), 0.9/s (Prasad and  that the saturating concentration for DATs is estimated to
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Figure 5. Time evolution of DA concentration and DAT conformational states averaged over 140 independent MCell runs. A,
Extracellular DA concentration, [DA]c. The average concentration reached under steady-state conditions is 7.8 nM, and the standard
deviation of the concentration is indicated by the shaded region is A[DA]g; =~ 10 nM. B, The number of DAT molecules, in the unbound
inward- or outward-facing state (IF: red; OF; blue), denoted as N(IF) and N(OF), respectively, as a function of time. C, D, The average
numbers of DATs in substrate-bound OF= and IF* states, N(OF*) and N(IFx), respectively. The light blue bands show the variance
observed in multiple simulations.
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 t=700ms

Figure 6. Snapshots from MCell simulations of DA release and reuptake by DATs on DA terminals. Snapshots from an equilibration
simulation of 1 s, initiated by a release event at t = 0, and followed by AP firings at 4-Hz frequency are displayed, visualized using
Blender. Color code: red, DA; white, OF DAT; green, IF DAT. The purple region shows an axon terminal that is inactive during the
simulations. Initially, all DATs are in the OF state (A). A release event at 1 ms is shown in B, and another at 5 ms (C), where most of
the DATSs reside in the OF state. DA molecules diffuse to extrasynaptic regions in <10 ms. D, The high population of DATs in the IF

state reached at ~700 ms.

be ~10 um (Prasad and Amara, 2001; Rao et al., 2013).
Simulations yielded a substrate concentration at half-
maximal rate, K,,, value, of 2.2 um, which falls within the
broad range of reported experimental values of 50 nM to
6.6 um (Prasad and Amara, 2001; Beuming et al., 2008;
Rao et al., 2013). These data confirm that MCell model
and simulations reproduce macroscopic quantities con-
sistent with observables such as the average DA concen-
tration in the EC region at half-maximal rate and the
overall turnover rate. Next, we make a closer examination
of microscopic properties.

DAT conformers reach a dynamic equilibrium within
100s of milliseconds

First, we examined the equilibration of the simulated
system under uniform surface distribution of DAT mole-
cules on the axonal membrane. The four snapshots in Fig.
6 (and Video 1) illustrate the initial DA release events and
the gradual equilibration of the conformational states of
DATs. All DAT molecules are assumed to be in the OF
state at t = 0 (white dots on the surface of the terminals).
Simulations start with a first release event (at AZ 1; Fig.
6A), followed by firings with Poisson distribution. The
released DA molecules (red dots) rapidly diffuse to the

January/February 2018, 5(1) e0298-17.2017

vicinity of the release site, as illustrated in the snapshots
att = 1 and 5 ms (Fig. 6B,C). At t = 700 ms, we observe
a broad spatial distribution of DA (Fig. 6D).

Fig. 6D shows that most of DATSs reside in the IF state
(colored green) at t = 700 ms. This is consistent with the
equilibrium probabilities of the four DAT conformers
(19.86% OF, 79.90% IF, 0.05% OF=*, and 0.19% IFx),
which is reached within 500 ms. Fig. 5B-D displays the
time evolution of the population of the different states of
DAT, averaged over 140 independent runs of 10-s dura-
tion each. Most of the DATSs fluctuate between unbound
OF and IF states, whereas the bound states (OF* and IFx)
are short-lived. Because of their scarcity, the numbers of
DATs in IF+ and OFx* states show significant fluctuations
during simulations (indicated by the light blue band in Fig.
5C,D).

DA levels exhibit large fluctuations depending on AZ
structure and DAT surface distribution

We present in Fig. 5A the time course of the DA con-
centration in the EC region, [DA]gs, averaged over 140
runs, which exhibited a standard deviation of ~10 nm
about the mean value of 7.8 nm. These are global fluctu-
ations, i.e., they refer to the average behavior of the
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Video 1. DA release, diffusion, and reuptake events in the pres-
ence at the early (equilibration; 100s of milliseconds) and later
(up to 4 s) of MCell simulations. Color code: red, dopamine;
green, inward-facing DAT; white, outward-facing DAT. For the
first 10 ms, interframe time interval is 1 ms; between 10 and 1000
ms, itis 10 ms; in the rest, 100 ms. To emphasize release events,
the frequency of snapshots is reduced between 3.5 and 4 s.
Multiple release events are observed, including one at 3.8 s
where a closeup view of the corresponding AZ is displayed.
[View online]
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overall microenvironment simulated by MCell. A look at
local time- and space-resolved patterns of DA levels, on
the other hand, reveals even broader fluctuations depend-
ing on the AZ and the particular space or time window
examined. The curves in Fig. 7A display the time evolution
of the local concentration, [DA],,.a» Within a spherical shell
of 1.5-um thickness, with respective inner and outer radii
of 1 and 2.5 um (i.e.,, 1 = r < 2.5 um) centered at the
release site, after a release event from the release site on
each of the 6 AZs. Results represent the averages over
multiple release events (140 per AZ) observed within the
time interval 0 <t < 40 ms.

A considerable variation in the maximum level of DA
reached and in the succeeding decay rate is observed in
Fig. 7A, depending on the AZ that discharges the DA
molecules. For AZ 2 and AZ 3, [DA],,.o can reach 20-25
nm, but for AZ 6 it remains <7 nm. AZ 2 and 3 are on a
surface-exposed region of axon terminal 2, in close prox-
imity of non-DAT-expressing cells (Fig. 1C). AZ 6, how-
ever, lies inside a cavity on axon terminal 4 that harbors a
large density of DATSs (Fig. 1C), hence the rapid depletion
of the released DA. Other AZs (1, 4, and 5) show an
intermediate behavior, because although they are ex-
posed to the EC region, the DAT level in their vicinity is
also relatively high (according to fluorescence images).

To examine the effect of neuronal region structural
complexity, computations were repeated for a hypothet-

30 T T T T T | T
A AZ 1 AZ 4
| AZ 2 AZ5
20 H Vo AZ3 AZ6 -

[DA]/ocal(nM)

— — Ellipsoid

[DA]Iocal(nM)

time (ms:)

100

active zone 6

r=0.5um

0.01 1
time (ms)

100

Figure 7. Time evolution of DA levels in the EC region after a single release event in different AZs. A, Time evolution of EC DA levels
within a spherical shell of inner radius r; = 1 um and outer radius r, = 2.5 um centered at the AZ or top of the ellipsoid for six different
AZs and ellipsoid geometry with same volume and surface area (labeled AZ1-AZ6 and ellipsoid, shown in different colors and
patterns; see inset labels). B,C, Local concentration of DA within spherical regions of radius 0.5 um (blue) and within spherical shells
of 0.5 =r <1 um(red), 1 =r <25 um (green), and 2.5 = r < 5 um (black), near AZ4 (B) and AZ6 (C), as labeled.
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Table 3. Structural properties near AZs®

Active Void Distance to

zone fraction Tortuosity closest DAT (um)
1 0.35 1.22 0.20

2 0.22 1.38 0.21

3 0.20 1.56 0.24

4 0.31 1.28 0.20

5 0.37 1.36 0.89

6 0.36 1.23 1.22

2Within a spherical region of 2.5-um radius centered around the release
site.

ical EC region with a simplified (ellipsoidal) geometry that
preserved the same EC volume and neuronal surface area
as those of the simulated system, together with the same
number of DAT molecules on the surface, thus maintain-
ing the same DAT surface density as the above system.
DA reuptake evaluated for the same spherical shell (Fig.
7A, dashed black curve) centered around the release site
was observed to be faster than that occurring in the
realistic environment. The faster removal of DA molecules
is due to the more efficient diffusion of DA in this hypo-
thetical environment devoid of irregularities/obstacles.

To make a further quantitative assessment of the role of
the AZ geometry and local structural heterogeneity in
affecting the different time evolutions of DA clearance
observed in Fig. 7A, we examined the tortuosity and void
fraction in the vicinity (within 2.5-um radius) of each of the
6 AZs. The results are presented in Table 3. Both prop-
erties affect [DA],,.: the clearance of DA is less efficient
when the void fraction is low, and the tortuosity is high
(e.g., AZ 3 followed by AZ 2). Although void fraction
appears to have a dominant effect, tortuosity becomes an
important factor when distinguishing the rise time and
peak height between AZs that exhibit similar void frac-
tions. AZ 6 has a high void fraction and a low tortuosity,
which leads to a rapid reuptake of DA. Another variable
we examined is the distance to the closest DAT (Table 3),
but it does not have a substantial effect because the
diffusion is rapid.

Overall, these results show that (1) the different time
evolution of [DA],,.. in response to DA release from dif-
ferent AZs can be traced back to differences in tortuosity
and void fractions and (2) the adoption of uniform tortu-
osity and void fraction for all AZs would not provide a
realistic representation of the heterogeneous synaptic
structure, nor would it account for the differential reuptake
efficiency originating from these local geometric effects.

Fig. 7B,C further illustrates the variations in [DA]ca
within gradually increasing distance ranges with respect
to the release sites in AZs 4 and 6. [DA],.y Within a
spherical volume of radius r = 0.5 um remains >10 um for
~1 ms after DA release from AZ 4, and that within 0.5 =
r < 1.0 um rises more slowly and temporarily reaches 1
M (Fig. 7B). Comparison with AZ 6 shows the lower
[DA]ocar Near the release site (r < 0.5 um) and the deple-
tion of DA at t = 100 ms (Fig. 7C). The large variations in
[DA]ocay due to stochasticity and heterogeneity of the
release sites occur during the entire course of the simu-
lations.
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The variations in [DA],., are critically important be-
cause, although [DA]gc may not be sufficient for activating
DA receptors, [DA],.o Or the corresponding fluctuations
A[DA] may bring the local DA concentration above the
threshold levels required for activating even low-affinity
receptors. These results underscore the significance of
considering the space-dependent, stochastic nature of
DA density fluctuations for estimating the probability
of DA receptor activation in complex microenvironments.

Cellular structural complexity modulates the
fractional occupancy of high-affinity DA receptors

Dopaminergic signals are transmitted on DA receptor
activation. There are five different types of DA receptors,
commonly classified as D1-like (D1, D5), which have low-
affinity for DA (ECs, ~1 um), and D2-like (D2, D3, D4),
which have high affinity (ECs, ~10 nm; Rice and Cragg,
2008). As shown in Fig. 7B,C, [DA] .., may reach 10-100
uM near an AZ, immediately after vesicular discharge, and
low-affinity receptors may be activated if they are in prox-
imity. However, DA molecules rapidly diffuse from the
release site and the synaptic cleft (of ~0.25-0.5-um ra-
dius) to extrasynaptic regions, such that synaptic [DA]
decreases by ~3 orders of magnitude within tens of
milliseconds.

We evaluated the fractional occupancy f(f) of high-
affinity DA receptors after a release event for each of the
6 AZs. For the calculation of occupancy, high- and low-
affinity receptors were assumed to be uniformly distrib-
uted on the membrane of all pre- and postsynaptic cells,
similar to previous approaches (Dreyer et al., 2010). Note
that the activation of low-affinity receptors requires high
[DA]oear Values, and such high concentration levels are
temporarily attained only in the proximity of the release
sites. So, in practice, only those low-affinity receptors
located sufficiently close to the AZs will be activated. As
for high-affinity receptors, they are likely to be activated at
all locations. To evaluate the fractional occupancy of
high-affinity DA receptors for each of the 6 AZs, we
analyzed 140 X 6 = 840 runs as follows: we divided the
simulation box into cubic grids of 1 fl (107'° L), and we
counted the number of DA molecules in each cube, to
obtain the local concentrations. If the latter was zero at all
time points, the cube was labeled as an excluded volume
(inaccessible to DA molecules); otherwise, the probability
of satisfying the threshold level (10 nM) for high-affinity
receptors was evaluated for each AZ as a function of time
elapsed after DA release. The results are presented in Fig.
8A. f(t) temporarily reaches a maximum f, ., before it
decays to near zero within ~100 ms. f,,,,, shows a strong
dependence on the release site, varying from 0.27 (site 6)
to 0.78 (site 3), again indicating the importance of the local
environment.

To compare our results with those predicted by the VT
model, we first evaluated the two parameters of the mod-
el: the tortuosity of the terminals and the void fraction of
cytoplasmic regions accessible to DA diffusion (Dreyer
et al., 2010). To this aim, we randomly selected 5000 pairs
of mesh points and evaluated the ratio of their shortest arc
distance along the surface to the corresponding Euclid-
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Figure 8. Expected fractional occupancy (or percentage saturation) of DA high-affinity receptors in response to successive releases.
Fractional occupancy as a function of time is based on the probabilistic occurrence of saturation conditions ([DA],;ca = 10 NM) in the
synaptic region associated with each AZ. Results are shown for different AZs (as labeled) in response to single release (A), two
releases with 50-ms interspike interval (B), and four releases with 30-ms interspike intervals (C). Results from the VT model are shown

for comparison in A and B.

ean distance. This gave an average tortuosity of 1.79. The
void fraction was 0.21, as noted above (Table 1). The
results are displayed by the dashed curves in Fig. 8A,B.
Fig. 8A reveals several differences between the predic-
tions of the VT model and those obtained by MCell
simulations. The VT model predicts a higher percentage
saturation (based on 10-nm threshold value), a slower
binding kinetics (indicated by the longer time to reach the
maximal occupancy), and faster decay kinetics, com-
pared with MCell predictions. Furthermore, the VT model
reaches saturation conditions after two releases with
50-ms spike interval (Fig. 8B)—a level not reached in
MCell simulations even after four spikes with interspike
interval shortened to 30 ms (Fig. 8C). Finally, the VT model
cannot capture the variations in [DA],,.., depending on the
AZs (or their specific structure or nearby DAT density).

Phasic firing favors high transient levels in [DA]
while retaining the average [DA]gc

We investigated the effect of distinctive release pat-
terns, tonic and phasic (Goto et al., 2007), on DA reuptake
efficiency. Tonic firing was implemented as random spikes
generated from a Poisson distribution at 4-Hz frequency
(Dreyer et al., 2010), and phasic firing consisted of a burst
phase for 0.25 s at 20-Hz frequency followed by a pause
of 1 s (Fig. 9A), both yielding the same average frequency.
The time evolution of [DA]gc was examined under those
two firing patterns for five different models: a well-mixed
system (Fig. 9B) and four spatially realistic models derived
from image data (cases 1-4 in Fig. 2), which differ in the
membrane distribution of DATs. The cases are (1) uniform
(Fig. 9C), (2) nonuniform (Fig. 9D), and (3 and 4) sharply
nonuniform with two different localizations of high-density
regions (Fig. 9E,F; see Table 2 for corresponding surface
densities). Each panel displays 140 curves, each corre-
sponding to an independent run.

Tonic and phasic firing patterns elicit markedly different
fluctuations in [DA]gc. Tonic firing shows irregular fluctu-
ations (left panels in Fig. 9B—F and Video 2), which usually
remain <60 nwm in Fig. 9B-D, whereas phasic firing in the
same cases (right panels and Video 3) easily exceeds 60
nmM, especially when the surface density of DATs is non-
uniform (Fig. 9D). Sharply nonuniform distributions of
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DATs (Fig. 9E,F) give rise to increased [DA]gc, while the
difference in the fluctuation behavior of [DA]gc under tonic
and phasic firing persists. These results suggest that
phasic firing could more readily favor low-affinity DA re-
ceptor activation, although the average [DA]g¢ values over
the entire duration of simulations are comparable (Table 4),
consistent with the same average firing frequency shared
between the five cases.

A closer examination of the transient DA levels within the
synaptic region reveals the difference between phasic and
tonic firing. We defined [DA],,,, as the transient DA level
within a sphere of 0.5-um radius centered at a release site
and examined [DA],, after a single release event. Fig. 10
displays the mean (central dark curve) and the standard
deviation (light curves and shade) in [DA],,, for tonic (Fig.
10A,C) and phasic (Fig. 10B,D) firing, under uniform (case 1;
Fig. 10A,B) and nonuniform (case 2; Fig. 10C,D) distributions
of DATs. Similar to the results for the overall EC (synaptic
and extrasynaptic) region (Fig. 9C,D), phasic firing tempo-
rarily leads to a higher accumulation of DA in the synapse
compared to tonic, which can more readily activate the
high-affinity DA receptors (the dashed line indicates the
threshold concentration, 10 nm, for their activation).

Finally, we computed the fractional occupancy of low-
affinity receptors (Vivo et al., 2006; Casado et al., 2009)
during the burst and pause periods of phasic firing and
overall period of tonic firing. The results summarized in
Table 5 show that the probability of reaching the threshold
DA level of 1 um for binding low-affinity DA receptors is
enhanced by a factor of 2-5 in the burst phase of phasic
firing, compared with tonic firing. Further computations
by adopting a Michaelis—-Menten type occupancy
model with half-maximal substrate concentration (K,,)
of 10 nm for high-affinity receptors and 1 um for low-
affinity receptors confirmed the same behavior. In the
latter model, the occupancy of DA receptors as a func-
tion of [DA],,ca IS given by

[DA ]Ioca/

O([DAJiocar) = m ,

and the results in the last column of the Table 5 are
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Figure 9. Comparative analysis of global EC DA levels under different firing patterns and the effect of the complexity of cell geometry
and the heterogeneity of DAT surface density. A, Schematic description of the firing patterns: tonic (upper bar) and phasic (lower bar).
Each color represents a different firing frequency. Tonic firing has a constant vesicular release frequency of 4 Hz throughout the
complete duration of the simulations (here shown for 4 s). Phasic firing has burst periods of 0.25 s with a firing frequency of 20 Hz
separated by pauses of 1 s. B-F, Time evolution of [DA]g. for five models: well-mixed (background colored red); MCell with uniform
distribution of DATs (background in green); MCell with nonuniform distributions of DATs (cases 2-4 in Fig. 2; background in blue,
magenta, and gray, respectively), presented for tonic (left) and phasic (right) firing patterns. Each panel displays the results from 140
individual trajectories from independent runs. G,H, Probability distributions of log [DA]c; level observed in different runs, shown for
tonic (G) and phasic (H) firing patterns. The respective insets show the behavior in the range log[DAg-/nM] > 1.5. Results for ellipsoid
geometry are presented in cyan. The principal semi-axis lengths of the ellipsoid are 8.73, 1.44, and 4.36 um, which yield the same

surface area and volume with the realistic geometry.

obtained on integration over snapshots at 1-us intervals
in 140 trajectories.

Nonuniform surface distribution of DATs is a major
modulator of the strength and intensity of DA
signaling

Results in Fig. 9 and Table 4 reveal the strong depen-
dence of DA clearance efficiency on DAT surface distri-
bution. DA reuptake is significantly more efficient with a
uniform surface distribution of DATs than with a nonuni-
form distribution, as evidenced by the relative heights of
the peaks at low concentrations in the histograms dis-
played in Fig. 9G,H and the average [DA]c values listed in
Table 4. We investigated the differences among well-
mixed, simple spatial (ellipsoid), and complex realistic
geometries while keeping the EC volume, surface area,
and total density of DAT fixed. Results suggest that the
approximation of the axonal morphology by a simplified
(ellipsoidal) geometry yields results comparable to those
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predicted by a well-mixed model. Inclusion of realistic
geometry, on the other hand, leads to a broad range of
results depending on the specific AZ (Figs. 7 and 8) and
the surface distribution of DATs (Fig. 9G,H).

The most efficient clearance is observed in MCell sim-
ulations with uniform distribution of DAT. The bimodal
distribution of DATSs, on the other hand, shows a distinctive
distribution of [DA]z skewed toward higher concentrations,
or a significantly suppressed DA reuptake efficiency, as can
be seen more clearly in the insets, irrespective of the firing
pattern (Fig. 9G,H). This effect becomes more pronounced
with increasing heterogeneity of DAT distribution, i.e., going
from case 2 to cases 3 and 4.

For a more critical assessment of the duration and
intensity of excitatory stimulation induced in response to
the two firing patterns, and under different spatial distri-
butions of DATs, we analyzed the peak heights and
widths in Fig. 9B-F. The results in Fig. 11 confirm that DAT
spatial distribution is a major determinant of dopaminer-
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Video 2. Dynamics of DA molecules and time evolution of [DA]g
under tonic firing. Same color code as in Video 1. The total duration of
the movie is 5 s. The bottom plot displays the time evolution of [DAJg
during the course of simulations. [View online]

gic signaling strength and duration, whereas the effect of
different firing patterns is moderate. In particular, the
histograms of the peak widths in Fig. 11A,B, and peak
heights in Fig. 11C,D clearly show that bimodal DAT
distribution (black and magenta curves) leads to more
sustained and stronger excitations compared to uniform
(or well-mixed) cases (green and blue curves), originating
from less efficient removal of DA. Note that the bimodal
distribution was selected to mimic the physiologic density
heterogeneities observed in high-resolution images (Fig. 1
and Table 2). The effect of DAT density heterogeneity,
manifested by an overall suppression in DA reuptake, is
further accentuated in sharply heterogeneous distribu-
tions of DATs (cases 3 and 4). The most probable peak
heights in those cases are of the order of hundreds of
nanomoles per liter and may result in neurotoxicity. Taken
together, these results demonstrate that heterogeneity of
DAT density can modulate DA signaling.

A comparison between cases 3 and 4 further shows
that the placement of DATSs in the close neighborhood of
the AZs does not increase clearance. The diffusion of DA
is fast enough to sample extrasynaptic regions, and the
localization of DATs with respect to the AZ has a minimal
effect. These results suggest that the mechanism of local

January/February 2018, 5(1) e0298-17.2017

New Research 14 of 21

80

60 b R

40 R

20 b B

=
=
[
=}
S
2
2
a
b
]
<
<
o
o
w

] 05 1 15 2 25 3 35 4 4.5 5
time/s
Video 3. Dynamics of DA molecules and time evolution of [DA]gc
under phasic firing. Same color code as in Video 1. The time
span of the movie is 5 s. [View online]

clearance as envisioned by the gatekeeper model (Roth-
stein et al., 1994) does not necessarily increase reuptake
efficiency.

To examine the change in DA reuptake behavior pos-
sibly induced by DAT 2D displacement, we repeated the
simulations by allowing DAT 2D diffusion with a coeffi-
cient of 3 X 107 cm?/s on the plasma membrane (Fig.
12). Comparison of the initial and final (at the end of 10-s
simulations) averaged over 140 independent runs showed
that no significant change occurred in the position of

Table 4. [DA]_, values (mean = SEM) under different condi-
tions

Space DAT distribution [DAlgc = A [DAlgc (nM)
Tonic Phasic
Well-mixed DA? 8.16 = 0.92 8.29 = 1.41
Ellipsoid geometry 8.21 £ 0.85 8.33 £ 1.44
Complex space
Case 1 Uniform® 7.54 + 0.86 6.93 + 1.92
Case 2 Nonuniform® 16.59 + 1.26 1419 £ 2.44
Case 3  Sharp bimodal® 33.12 +3.13  29.65 + 4.49
Case 4 Sharp bimodal® 32.49 + 2.86 32.89 + 3.68

2 Space/structure-independent. All other cases are in realistic DA neuronal
geometry.

b DAT densities for uniform and nonuniform (bimodal) distributions; see Table 2.
¢Case 2 (p, = 6339/um? and p, = 50/um?).

dCases 3 and 4 (p, = 30,000/um? and p, = 50/um?; see Figs. 2 and 11).
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Figure 10. Time evolution of DA level in the synapse after a release event. A-D, [DA],,, as a function of time for tonic (left) and phasic
(right) firing, under uniform (top) and nonuniform (bottom) distribution of DATs. The mean and variation in [DA],, within 1 um collected
from 140 independent runs are displayed. Results are shown for the time interval 2.5-3.75 s as a single firing block, representative
of dynamic equilibrium reached under stationary conditions. The thick line in the middle of cloud is the mean value over all runs, and
the cloud represents the standard deviation, highlighting the large fluctuations in the synaptic DA levels.

DATs, owing to the slow diffusion of DATs compared with
the time scale of simulations. Overall, these results show
that increasing heterogeneity in the surface distribution of
DAT leads to lower DA clearance efficiency and/or stron-
ger and more sustained signaling.

Discussion

Overview
In the present study, we reconstructed in silico the 3D
structure of DA terminals, the location of AZs, and the

Table 5. Percentage of high- and low-affinity DA receptors that can potentially bind DAs?

DAT distribution
Uniform (case 1)

Nonuniform (case 2)

DA receptor Firing pattern
type and stage

High affinity

Tonic

Phasic burst

Phasic pause
Low affinity

Tonic

Phasic burst

Phasic pause
High affinity

Tonic

Phasic burst

Phasic pause
Low affinity

Tonic
Phasic burst
Phasic pause

Percent probability of DA binding to DA receptors
Based on saturation Based on Michaelis—
threshold levels Menten kinetics

40.26 45.98
45.09 51.80
4.54 50.07
0.40 2.22
1.10 4.64
0.06 1.92
71.14 63.84
65.88 62.70
72.05 64.5
0.35 3.47
1.97 5.47
0.03 297

2The burst period is 2.5-2.75 s after DA release, and the pause 2.75-3.75 s (see Fig. 10).
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Figure 11. Distribution of peak heights and widths for EC DA levels. Results are presented for four different types of DAT distribution
on the plasma membrane, in addition to the well-mixed case. The curves are color-coded, as labeled. The probability distributions
of peak widths (A and B) and peak heights (C and D) are presented for tonic (tonic) and phasic (bottom) firing patterns.

spatial distribution of DATs based on electron and fluo-  under different conditions. We determined the spatiotem-
rescence microscopy data with transgenic mice (Block poral distribution of DA molecules in the synapse and
et al., 2015) and conducted a series of MCell simulations  extrasynaptic regions in response to different firing pat-
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Figure 12. A, Probability distributions of [DA]g¢ level under lateral DAT diffusion, shown for tonic and [DA]gc. Green, blue, and red
represent uniform DAT distribution, nonuniform DAT distribution, and nonuniform DAT distribution with lateral diffusion of DAT,
respectively. B, Probability distributions of DAT distances to closest AZ from 140 independent simulations for the nonuniform DAT
distribution with (red) and without (blue) lateral diffusion.
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terns and in the presence of different surface distributions
of DATs. These simulations show the effects of the syn-
aptic and extrasynaptic morphology, as well as the het-
erogeneity of DAT surface distribution (as observed in
experiments), on the overall efficiency of DA clearance
and the probability of activating high- and low-affinity
receptors. Heterogeneous distribution of DATs is shown
to reduce the clearance efficiency, the effect being
sharper with increased heterogeneity, and not affected by
DAT 2D diffusion on the plasma membrane. Although DA
dynamics is diffusion-controlled in general, a global sen-
sitivity analysis indicated that the DA-binding rate of DAT
and the relative population of its outward- and inward-
facing conformers in the apo state (denoted as OF and IF)
had major effects on DA reuptake efficiency. Overall, the
results underscore the utility of conducting spatiotempo-
rally realistic simulations in elucidating the dependence of
dopaminergic signaling on both the surface distribution
and conformational mechanics of DATSs.

Recent MCell simulations of glutamatergic signaling
based on EM images of hippocampal neuropil for inves-
tigation of the effect of spatial heterogeneities (Kinney
et al.,, 2013; Bartol et al., 2015a, c) also indicated the
importance of including the microenvironment for an ac-
curate description of the electrophysiology and biochem-
istry of neurotransmission events. No such simulations
had been performed for DA neurons to date, mainly be-
cause of the lack of high-resolution image data of DA
terminals for reconstituting in silico the simulation envi-
ronment. Recent advances in imaging DA neurons (Block
et al., 2015) permitted us to overcome this barrier. Fur-
thermore, improved understanding of the structural dy-
namics of DAT (Cheng and Bahar, 2015; Cheng et al.,
2015; Gur et al., 2017) helped us build a simplified kinetic
scheme (Fig. 3) that we adopted in MCell simulations.

DA reuptake simulations require spatially extended
(~10%-um?) structural models

The simulation of dopaminergic signaling events pres-
ents new challenges compared with that of neurotrans-
mission in glutamatergic synapses. The transporter cycle
rate in the latter case is ~35 glutamate molecules/s per
glutamate transporter, whereas the rate in dopaminergic
neurons is 1-5 DA molecules/s per DAT (Wadiche et al.,
1995; Povlock and Schenk, 1997; Prasad and Amara,
2001; Rice et al., 2011). Thus, simulation of DA clearance
requires longer computing times. In addition, glutamate
transporters are localized in pre- and postsynaptic re-
gions and mostly in the surrounding glia in the close
neighborhood of the AZ (Seal and Amara, 1999; Danbolt,
2001). DATSs, on the other hand, are preferentially located
in the extrasynaptic regions of the axons and dendrites,
and most of the reuptake events take place at sites distal
from the AZs (Nirenberg et al., 1996; Rice et al., 2011;
Block et al., 2015). Realistic simulations of such spatially
distributed events require the adoption of model systems
composed of multiple synapses, multiple AZs, and heter-
ogeneous distributions of multiple DAT clusters. We re-
constructed in silico a relatively large (10 X 10 X 7.2-um)
striatal region.

January/February 2018, 5(1) e0298-17.2017

New Research 17 of 21
Spatial irregularities and hindrance in the interstitial
region between neurons limits DA receptor
activation

Our simulations show that under conditions that repro-
duce physiologic levels of DA and turnover rates (Prasad
and Amara, 2001; Beuming et al., 2008; Rao et al., 2013),
the complex geometry of DA terminals modulates the
occupancy of high-affinity DA receptors to <100%, even
under sustained, elevated stimulation conditions (Fig.
8A-C), consistent with the concept of a dead space
(Kamali-Zare and Nicholson, 2013). In contrast, less de-
tailed partial differential equation models (Dreyer et al.,
2010) and algebraic models (Cragg and Rice, 2004) pre-
dict full occupancy of high-affinity receptors under the
same conditions. This difference invites attention to the
effect of EC spatial irregularities on dopaminergic signal-
ing efficiency in the brain (Sykova and Nicholson, 2008).

Heterogeneous surface distribution of DAT reduces
the effectiveness of DA clearance

EM and fluorescence images showed that the distribution
of DAT is heterogeneous in different parts of the striatum
(Block et al., 2015). Recent studies indicate that the popu-
lation of DATs may vary depending on the membrane cur-
vature (Caltagarone et al., 2015). Notably, selected DAT
mutants that have disrupted OF conformations do not ac-
cumulate in filopodia, suggesting that access to the OF/OF*
state may be a prerequisite for DAT to populate the
filopodia (Caltagarone et al., 2015). Further examination
showed that binding of cocaine and its fluorescent analog
JHC1-64 also alters the plasma membrane distribution of
both wild-type and mutant DATs. Cocaine binding arrests
DAT in the OF state, and cocaine-bound DATs predomi-
nantly localize in the filopodia (Ma et al., 2017). Likewise,
zinc binding, also known to stabilize the OF state, led to
an increase in the level of DAT mutants in the filopodia.
These observations suggest that the membrane curvature
is a determinant of DAT clustering, with the convex shape
of the filopodia favoring the localization of OF DATs.
Furthermore, clustering of OF DATs could remodel the
membrane to induce an overall outward bending (Ma
et al.,, 2017). The present study suggests that such tar-
geting of axonal protrusions by OF DATSs, along with their
membrane-remodeling capacities, may regulate DA re-
uptake.

The total number of DAT molecules was sufficiently large
in current simulations (~200,000) to ensure normal DA clear-
ance consistent with physiologic levels. However, simula-
tions repeated with the same number of DATs distributed
nonuniformly on the neuronal membranes showed a reduc-
tion in reuptake capacity that became more pronounced
with increasing surface density heterogeneity. The surface
distribution of DATs indeed emerged as a major determinant
of the efficiency of reuptake, or conversely, the strength and
duration of excitatory signaling (Figs. 9 and 11).

In principle, one might expect that the increased pop-
ulation of DATs in dense regions would counterbalance
the effect of lower surface area coverage on DA reuptake
efficiency. However, DA diffuses fast enough to escape
from these dense regions after a few encounters, resulting
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in reduced DA reuptake. These observations further sup-
port the importance of adopting a realistic representation
of the heterogeneity of DAT surface distribution, espe-
cially with low copy numbers of neurotransmitters, for a
realistic assessment of DA reuptake capacity.

Firing patterns determine the relative levels of
inhibitory versus excitatory responses

Our simulations revealed that the average [DA]¢ exhib-
ited little dependence on firing pattern, provided that the
average firing frequency was maintained, but the local
levels within a synapse or close to DA release sites ex-
hibited strong dependencies. The size of the fluctuations,
A[DA], in DA levels were relatively small in tonic firing but
large in phasic firing, especially at the burst phase and
under sustained phasic firing (Fig. 9B—F). Low-affinity DA
receptors need two orders of magnitude larger DA con-
centrations than high-affinity receptors to get activated.
As a result, the activation of low-affinity receptors is lim-
ited, if not unlikely, with tonic firing (Table 5). Phasic firing,
on the contrary, induces a larger variance in both global
and local DA concentrations and is two to five times more
likely to activate low-affinity receptors during the burst
phase of DA signaling (Table 5). Previous work showed
that the D1 receptors are mostly localized at the postsyn-
aptic membrane (Cadet et al., 2010), and our simulations
show that only those low-affinity receptors localized near
the synapse can be activated. In the case of high-affinity
receptors, on the other hand, proximity to release site is
not a requirement for being activated: high-affinity recep-
tors located on distal regions may be equally activated.

DA receptors regulate the activity of DA neurons. One
distinction between high- and low-affinity DA receptors is
the type of response they elicit in the cell, inhibitory or
excitatory (Keeler et al., 2014), after their activation on DA
binding. D1-like receptors, which are usually low-affinity
receptors, are involved in excitatory signaling, whereas
D2-like receptors trigger inhibitory signaling processes.
High-affinity receptors may be activated by both phasic
and tonic firing. However, our simulations suggest that
low-affinity receptors would be rather activated on phasic
firing.

Among D2-like receptors, D2 autoreceptors are known
to be key regulators of DA transmission, located on most
axon terminals (Ford, 2014). Although D2-like receptors
are usually high-affinity receptors, D2 autoreceptors exist
in both high- and low-affinity states, and recent studies
indicate that the functionally relevant D2-autoreceptors
are predominantly in low-affinity state. Their inhibitory
action is particularly important to suppressing DA release
from presynaptic cells under prolonged bursts of action
potentials. They suppress DA release in the striatum by
several mechanisms, e.g., by inhibiting the voltage-gated
calcium channels that trigger exocytotic DA release or
increasing DAT activity or surface expression (Ford,
2014). Previous studies suggested that tonic firing does
not raise [DAJgc to levels sufficiently high to activate D2-
autoreceptors (Beckstead et al., 2007; Ford, 2014). The
low probability of binding low-affinity receptors under
tonic firing demonstrated in the present simulations is
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consistent with the functioning of D2-autoreceptors as
low-affinity receptors.

A previous model modified the probability of DA release
on an action potential according to high-affinity receptor
occupancy (Dreyer and Hounsgaard, 2013). In our current
model, receptor occupancy has not been coupled to DA
release and reuptake. However, our modeling framework
allows for implementing a mechanistic model that incor-
porates the mediation of DA release and DAT expression
by D2-autoreceptors. Such an extension may be key to
improved interpretation of DA reuptake dynamics at lon-
ger time scales and under disease states.

The modeling framework is extensible to analyzing
the effect of psychostimulants on DA reuptake
dynamics

DAT kinetics is often described by the alternating ac-
cess model (Vaughan and Foster, 2013). Most cell-level
models of DA transport at the cellular level assume an
immediate transition from IF to OF state right after DA
release to the cell interior (Cragg and Rice, 2004; Rice and
Cragg, 2008; Sulzer et al., 2016), and the transition from
OF to IF in the unbound form is not explicitly considered.
In contrast, molecular simulations revealed a complex
dynamics (Cheng and Bahar, 2015), which we reduced to
a four-state kinetic model (OF, IF, OF%, and IFx). The
translocation and release events after substrate binding
are much faster compared with the return of apo IF state
to OF state and succeeding substrate binding event,
which depends on prior probabilities of encounters be-
tween DAT and DA molecules. These features result in
short lifetimes for the bound forms of DAT and the dom-
inance of the relative populations of the unbound OF and
IF states in determining the overall clearance rate (Fig. 5).
In particular, the balance between the OF and IF states (or
the ratio of the associated rate constants, k;4/k4;, Using
detailed balance principle) emerged as a major determi-
nant of reuptake efficiency, as it directly defines the frac-
tion of reuptake-ready (OF) DATSs.

Previous x-ray crystallographic studies (Penmatsa
et al., 2015; Wang et al., 2015) as well as structure-based
simulations (Cheng et al., 2015) have shown how the
conformational state of DAT and substrate binding affinity
may change in the presence of different antidepressant
and psychostimulants drugs, such as cocaine and am-
phetamine (AMPH). Antidepressants usually arrest DAT in
OF state [and the same effect has been observed for the
homolog serotonin transporter in the presence of antide-
pressants (S)-citalopram or paroxetine (Coleman et al.,
2016)], thus preventing the progress of the transport cy-
cle, and causing an increase in EC DA levels. On the other
hand, the occupancy of the Zn®"-binding site (Stockner
et al., 2013; by zinc or other transition metals) reduces the
DA binding affinity of DAT (Li et al., 2017). The current
modeling framework can readily be extended to incorpo-
rate such effects through suitable readjustment of kinetic
parameters in Fig. 3.

AMPH, on the other hand, appears to be a substrate for
DAT that competes with DA for transport (Zhu and Reith,
2008). AMPH is also known to promote both DA efflux
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(reverse transport from the cell interior to the EC region)
and DAT internalization (Wheeler et al., 2015). The current
simulations focused on the influx of DA from the EC region
to the presynaptic cell interior, but the modeling frame-
work is readily extensible to simulating DA efflux as well.
Other extensions of the present framework could incor-
porate the effects of DAT internalization, membrane po-
larization (Richardson et al., 2016), or perturbations at the
membrane-proximal N-terminal residues (Sorkina et al.,
2009). Thus, the present study opens the way to quanti-
tative modeling of the effects of antidepressants, psycho-
stimulants, and substances of abuse on the deregulation
of DA signaling.
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