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Abstract

Our ability to recognize objects across variations in size, position, or rotation is based on invariant object
representations in higher visual cortex. However, we know little about how these invariances are related. Are some
invariances harder than others? Do some invariances arise faster than others? These comparisons can be made
only upon equating image changes across transformations. Here, we targeted invariant neural representations in
the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation.
Across the recorded population, IT neurons generalized across size and position both stronger and faster than to
rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural
networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in

a temporal order reflective of their underlying computational complexity.
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ignificance Statement

We effortlessly recognize objects despite changes in their position, size, and viewpoint, but the relationship
between these invariances is poorly understood. Here, we compared the magnitude and dynamics of object
invariances in monkey inferotemporal (IT) cortex, an area critical for object recognition. We find that
invariances developed in a fixed temporal order across the visual response: size and position invariance
developed first, followed by rotation and viewpoint invariance. This hierarchy of invariances was not a trivial
outcome of low-level visual representations but rather reflected their computational complexity as evi-
kdenced by an analogous ordering of invariances in deep neural networks. j

~

Introduction

Object recognition is challenging, in part because the
images of an object can vary widely across viewing con-
ditions. Our ability to recognize objects across variations
in viewing conditions is based on invariant or tolerant
object representations in the higher visual areas (Connor
et al., 2007; DiCarlo et al., 2012). These neural represen-
tations have been best studied in the monkey inferotem-
poral (IT) cortex, an area critical for object recognition,
whose neurons are invariant to size, position, and view-
point (Perrett et al., 1991; Ito et al., 1995; Wallis and Rolls,
1997; Hung et al., 2005; Zoccolan et al., 2007; Li et al.,
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2009; Ratan Murty and Arun, 2015). While these invari-
ances themselves are well established, we know little
about how they are related. For instance, are some invari-
ances harder than others? Are some invariances solved
faster than others in the brain? A previous study has
compared size and position invariance dynamics in hu-
man MEG but without equating size and position changes
(Isik et al., 2014). Such comparisons are uninterpretable
because if position changes were smaller than size
changes, neural responses would also change less for
position than size, leading to larger position invariance.
Conversely, if position changes were larger than size, it
would lead to the opposite result. Thus, it is critical to
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Figure 1. Schematic of experiment design. To compare invariances in the brain, we designed stimuli in which the net change in the
image was identical across a number of identity-preserving transformations. A, For balanced change level 1, we transformed the
reference image in either size, position, in-plane rotation or view (i.e., in-depth rotation), with the constraint that the net change in
the image is equal (depicted by A1). B, Same as A but for change level 2.

compare invariances after equating
across transformations.

Our goal was to perform a balanced comparison of
object invariances in IT neurons. We selected four basic
identity-preserving transformations: size, position, in-
plane rotation (denoted as rotation) and in-depth rotations
(denoted as view). For each change level, we equated the
net change in pixel intensity across size, position, rota-
tion, and view (Fig. 1). We recorded the responses of IT
neurons to these stimuli to compare the magnitude and
dynamics of invariant object representations. Our main
finding is that there are systematic differences in the
dynamics of invariance, size invariance developed early in
the neural response, followed by position, and then by
rotation and view invariance. By comparing with compu-
tational models of early and late visual areas, we show
that these differences are not a trivial consequence of
low-level representations but reflect their computational
complexity.

image changes
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Materials and Methods

All animal experiments were performed according to a
protocol approved by the Institutional Animal Ethics Com-
mittee of the Indian Institute of Science and the Commit-
tee for the Purpose of Control and Supervision of
Experiments of Animals, Government of India. Most ex-
perimental methods and procedures have been previ-
ously described in other studies performed using the
same animals (Ratan Murty and Arun, 2017). Therefore,
only the details specific to this study are described below.

Neurophysiology

We recorded from 127 visual neurons from the left IT
cortex of two monkeys (Macaca radiata, male, aged 7
years; 83 neurons from monkey Ka and 44 neurons from
monkey Sa). Results were qualitatively similar in each
monkey. Recording locations were verified to be in the
anterior ventral IT cortex. Recordings were performed
using a 24-channel multicontact electrode (Plexon Up-
robe, Plexon) using standard neurophysiological meth-
ods.

Behavioral task

Animals were trained to perform a fixation task. On
each trial, a fixation dot appeared on which the animal
was required to fixate. On attaining fixation a series of
eight stimuli were presented for 200 ms each and an equal
inter-stimulus interval, and the animal was rewarded with
juice for successfully maintaining its gaze within a window
measuring 3° centered on the fixation dot. Although the
fixation window was relatively large, post hoc analyses
showed that the animals’ eye position remained closely
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centered throughout the trial (standard deviation of eye
position during a trial, averaged across all sessions: 0.27°
around the horizontal, 0.38° around the vertical).

Stimuli and trial design

We used 10 naturalistic objects. These included four
animals (camel, cow, deer, and dog) and six inanimate
objects (four cars, a motorbike, and a shoe). All objects
were rendered using 3D modeling software (Autodesk
3DS Max 2012, Academic License) and were presented
against a black background (all 10 objects are displayed
across the figures). For each object, we defined the view
at which it was most elongated as the reference. The
reference views of all objects were and scaled to have a
longer dimension of 5.5°. We rotated this reference view in
depth by two levels: 30° and 75°. To equate the different
invariances, we calculated for each object the summed
absolute difference across pixel intensities between the
reference image and view 1 (say A1) and between the
reference image and view 2 (say A2). To create the equiv-
alent position-shifted images, we shifted the reference
image until the net image change exactly matched the two
change levels A1 and A2. This procedure was repeated
for size and rotation. This procedure is depicted schemat-
ically in Figure 1. This ensured that the net image change
is exactly the same for changes in size, position, rotation,
or view. Because each object transforms differently with
viewpoint, the exact variation in size/position/rotation that
produced an equivalent net image change was different
for each object (average scaling in size across objects:
0.87 = 0.02X and 0.71 = 0.02X for level-1 and level-2
changes, respectively; position change: 0.9 = 0.1° and
was 2.7 *= 0.2° contralateral relative to fixation; rotation
change: 11.1° = 1.1° and 39.6° = 5.6°).

Trial design

Each trial consisted of 8 stimuli presented in pseudo-
random order with the constraint that two versions of the
same object never occurred consecutively in a trial. Each
stimulus was presented a total of eight times across trials.

Invariant object decoding analyses

We performed a population decoding analysis to mea-
sure the overall invariance of the neural population (Hung
et al., 2005). To this end, we represented the response of
the entire population as a multidimensional vector with
each entry representing the activity of one neuron. We
then trained a multi-class linear classifier (classify func-
tion, MATLAB) to decode object identity using response
vectors in each trial across the reference image of all
objects and tested this classifier on trials corresponding
to the transformed object images (and vice versa). The
decoding accuracy reported is the decoding accuracy
obtained on test data on which the classifier was never
trained. This approach yields an upper bound for the
information conveyed by the entire neural population were
it to be recorded simultaneously.

Computational models
We tested several model representations as detailed in
the text. These are elaborated below. In each model, the
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response to a given image is taken as a vector of activity
across all model units. The first model is the pixel model,
where model units are simply pixels and unit activation is
simply the pixel gun intensity (0-255). The second model
is a standard V1 model comprising Gabor filters at various
spatial frequencies and orientations, with input and output
normalization (Pinto et al., 2008; Ratan Murty and Arun,
2015). The output of the model was the activity of
1080000 model V1 units which were used as the feature
vector. The third model was a pretrained state-of-the-art
deep neural network implementation (VGG-16, http://
www.vlfeat.org/matconvnet/pretrained/) with 3 X 3 con-
volutional layers and 16 weight layers (Simonyan and
Zisserman, 2015). Note that the network was not specif-
ically trained on our stimuli. For each layer, we calculated
the pairwise dissimilarities across the reference objects
across units (as one minus the correlation between unit
activations) and calculated the match with the pairwise
dissimilarities observed in IT neurons. The conv-5 layer
showed the highest match (r = 0.78, p < 0.00005) be-
tween the deep neural network and IT and therefore was
used for further investigation. Subsequent layers includ-
ing the fully connected layer yielded qualitatively similar
results (i.e., view and rotation invariance were weaker
than size and position invariance).

Reliability of the IT representation

To estimate the reliability of the IT representation, we
calculated the average correlation between the dissimi-
larities obtained from two independent halves of the re-
corded neurons (across many splits). This average
correlation underestimates the true reliability, since it is
calculated across two halves rather than the entire data.
We therefore took as the true reliability of the IT data the
Spearman-Brown corrected correlation which adjusts for
this underestimate. The corrected correlation is given by
rc = 2r/(r + 1), where r is the split-half correlation.

Results

We recorded the responses of 127 visual neurons from
the left IT cortex of two monkeys during a fixation task.
The stimuli consisted of images of naturalistic objects
whose reference images were modified across four
identity-preserving transformations: size, position, rota-
tion, and view (Fig. 1). Each transformation had two levels
of change. For each level, the net pixel change (i.e., the
net absolute difference in pixel intensities) in the image
was equated across all transformations. This allowed us
to perform a balanced comparison of invariances in IT
neurons.

Do IT neurons maintain their selectivity across
transformations?

The responses of an example IT neuron are shown in
Figure 2 for a subset of the objects tested. Although the
response is modulated to some degree by the identity-
preserving transformations, the neuron tended to main-
tain its preference for the same objects. To quantify
invariance, we calculated for each neuron the correlation
between its responses (i.e., firing rate in a 50- to 200-ms
window after image onset) to the reference and trans-
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Figure 2. Example IT neuron. Responses of an example IT neuron for a subset of six objects across all transformations (levels 1 and
2 for size, position, rotation, and view). In each subplot, the starting point is the image onset time, each row is a single trial and ticks
indicate spike times. The histogram above the raster represents the firing rate in 20-ms bins.

formed images of all objects (Fig. 3A). Across neurons,
small image changes (level 1) resulted in strong invariance
in all cases, and the magnitude of invariance did not differ
significantly (Fig. 3B; p > 0.05 for all pairwise compari-
sons, sign-rank test on invariances across neurons).
Roughly half of all recorded neurons showed statistically
significant (o < 0.05) correlations in their responses to the
reference and transformed stimuli (average significant
correlations: 0.81, 0.78, 0.77, and 0.77 for size, position,
size, and viewpoint, respectively, across 51, 54, 63, and
51 neurons).

For large image changes (level 2), invariance did not
reduce for position and size (p > 0.05, sign-rank test
comparing level 1 and 2). Close to half of all neurons
(42%) showed significant tuning correlation (average sig-
nificant correlation: 0.78, 0.79 across 51 and 57 neurons,
respectively, for size and position invariance). Importantly,
invariance was weaker for rotation and view compared
with size and position (sign-rank test comparing invari-
ances across neurons; Fig. 3B). The weaker invariance
was also evident in the smaller fraction (28%) of neurons
with a significant tuning correlation for rotation and view
(average significant correlation: 0.76 and 0.69 across 38
and 35 neurons, respectively). This fraction was signifi-
cantly smaller than the fraction of neurons invariant for
size and position (p < 0.00005, »? test). We conclude that
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rotation and view invariance are weaker in magnitude
compared with size and position invariance.

Dynamics of tuning correlation

To examine how these invariances develop over time in
the neural response, we calculated the tuning correlation
in 20-ms time bins during the image presentation period.
For small image changes (level 1), all four invariances
were equally strong in magnitude, and attained their peak
nearly simultaneously (Fig. 3C). For larger image changes
(level 2), there were differences in how invariances devel-
oped over time: size and position invariance were stron-
ger in magnitude (during 80-110 ms) compared with
rotation and view invariance (Fig. 3D, gray bar; p < 0.05
on rank-sum test comparing invariances across neurons
for each time bin). This trend was also reflected in the
peak latencies of these signals, although the differences
did not attain significance (Fig. 3D; p > 0.05, sign-rank
test on invariances across neurons). We conclude that
size and position invariance emerge earlier compared with
rotation and view invariance in IT neurons.

Dynamics of invariant object decoding

In the preceding section, we characterized the average
invariance across neurons, but a sophisticated population
decoder might read out object identity more efficiently by
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Figure 3. Dynamics of invariance in IT neurons. A, To quantify size invariance, we calculated the correlation between the responses
to the reference images of all objects (top row) and the responses to size-transformed images of these objects (bottom row). B,
Average size, position, rotation, and view invariance across all neurons for balanced change level 1 (left) and level 2 (right). Error bars
indicate SEM. Asterisks indicate statistical significance (x is p < 0.05, #* is p < 0.005, ###* is p < 0.0005, **** is p < 0.00005). C,
Average size, position, rotation, and view invariances (for change level 1) in 20-ms bins during the image presentation period (200 ms).
Vertical dashed lines indicate the peak latency for each invariance type. The average normalized neural response (across all cells and
stimuli) is displayed (cyan dashed line) for comparison. D, Same as C but for larger changes (level 2). The gray bar near the x-axis
represents the time period during which the average of size and position invariance was significantly larger than the average of rotation
and view invariance (p < 0.05, rank-sum test across invariances of 127 neurons in each time bin).

relying more on informative/invariant neurons. To assess
this possibility, we trained linear classifiers on trial-wise
neuronal responses to the reference images of all objects
and tested them on the responses to the transformed
images (Fig. 4A; see Materials and Methods). The accu-
racy of the resulting classifier therefore measures the
overall invariance of the neuronal population.

For the population response measured in a 50- to
200-ms window, the invariant population readout for
small (level 1) changes was well above chance across
size, position, rotation, and view transformations (Fig. 4B).
However, view generalization was significantly smaller in
magnitude compared with the others (Fig. 4B; p < 0.05,
rank-sum test on trial-wise decoding accuracy for all pairs
of invariances). For larger image changes (level 2), invari-
ant object decoding remained significantly above chance
for all transformations but was weaker for both rotation
and view compared with either size or position (Fig. 4B; p
< 0.005, rank-sum test on trial-wise decoding accuracy).
Thus, size and position invariant decoding are stronger
than rotation and view invariant decoding in IT neurons.

To assess the dynamics of invariant decoding, we re-
peated the above analyses on the firing rate of the neu-
ronal population in 20-ms time bins. For small image
changes (level 1), size, position, and rotation invariant

March/April 2017, 4(2) e0333-16.2017

object decoding had similar dynamics. However, view
invariant decoding was significantly weaker in magnitude
early on the response (Fig. 4C, gray bar; p < 0.05, rank-
sum test on trial-wise decoding accuracy for view com-
pared with others). These trends were reflected in the
peak latencies of these signals as well (Fig. 4C). We
assessed the statistical significance of the latency differ-
ences using bootstrap resampling: we sampled neurons
repeatedly with replacement and calculated the peak la-
tency each time. We then performed a statistical compar-
ison using 100 bootstrap-derived peak latency estimates
(the number was matched roughly to the number of cells).
As an alternative measure we also calculated the fraction
of estimates in which the peak latency for view invariant
decoding was larger than that of position, size, or rotation.
This revealed a statistically significant difference in la-
tency for view compared with position and rotation invari-
ant decoding (Fig. 4C; p < 0.00005, sign-rank test; view
decoding latency was later than position and rotation
decoding latency 84% and 81% of the estimates). How-
ever, view decoding latency did not differ from that of size
invariant decoding (Fig. 4C; p > 0.05, sign-rank test, view
> size latency 34% of the time).

For large image changes (level 2), the magnitude and
dynamics of different invariance showed clearer differ-
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Figure 4. Dynamics of invariant population decoding in IT. A, To quantify invariant decoding at the level of the neural population, we
trained linear classifiers to identify objects in their reference images, and asked whether the same classifiers would generalize to
transformed object images (in this case, to size 1). High decoding accuracy implies strong size invariance. B, Invariant object
decoding accuracy for size, position, rotation, and view for change level 1 (left) and change level 2 (right). Error bars indicate the SEM
accuracy across trials. Asterisks indicate statistical significance as before. C, Invariant object decoding accuracy for level 1 changes
of size, position, rotation, and view calculated in 20-ms time bins throughout the visual response period. Thick lines indicate mean
decoding accuracy, and shaded regions indicate the standard deviation estimated from 100 bootstrap estimates obtained by
sampling neurons with replacement. The dotted line indicates chance decoding performance (10%). The gray bar near the x-axis
represents the time bins during which view decoding was significantly smaller than size, position, and rotation decoding (p < 0.05,
rank-sum test across trial-wise decoding accuracy for view versus others). The average normalized neural response (across all cells
and stimuli) is displayed (cyan dashed line) for comparison. D, Same as C but for change level 2.

ences. View and rotation invariant decoding attained a
peak significantly later compared with size and position
(Fig. 4D; p < 0.00005, sign-rank test across 100
bootstrap-derived estimates comparing view/rotation
with size or position; view latency > size latency in 96% of
estimates, view > position latency in 84% of estimates,
rotation > size latency in 97% of estimates, and rotation
> position latency in 78% of the estimates). View invariant
decoding accuracy was also significantly weaker than
both position and size decoding (p < 0.05, rank-sum test
on trial-wise accuracy from 50-200 ms). Finally, there was
no significant difference between the dynamics of view
and rotation invariance (p > 0.05, sign-rank test on boot-
strap estimates; view latency > rotation latency in 52% of
the samples). Size and position invariance also showed
subtle but significant differences in their dynamics: posi-
tion invariance peaked later than size invariance (peak
latency: 100 and 120 ms for size and position; p <
0.00005, sign-rank test on bootstrap samples; position >
size latency in 95% of the estimates). To confirm that
these differences are still present in subsets of neurons
invariant to each transformation, we repeated the above
analyses on the top 20/50/60 neurons with the highest

March/April 2017, 4(2) e0333-16.2017

tuning correlation for each transformation. This too
yielded qualitatively similar results.

To sum up, the population decoding analyses reveal a
clear temporal order in the magnitude and dynamics of
invariance: size invariance peaks early, followed by posi-
tion and then followed by rotation and view invariance.

Do invariances covary across neurons?

The observed differences between invariances could be
driven by different groups of neurons invariant to different
transformations, or by the same set of neurons invariant
across all transformations. We investigated this issue in
two ways: First, we asked whether the strength of invari-
ance covaries across transformations. For instance, we
plotted the rotation invariance of each neuron against its
position invariance. This revealed a significant correlation
across all neurons (r = 0.53, p < 0.0005; Fig. 5A). In other
words, a neuron that is strongly rotation invariant is also
strongly position invariant. This was true of all pairs of
invariances as well (Fig. 5B).

Next, we examined the degree of overlap between
neurons invariant for different level-2 transformations and
compared this with the overlap expected if these two
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Figure 5. Invariances covary across neurons. A, Position invariance plotted against rotation invariance across all neurons for level 1
changes. The dashed line is the unit slope line and the solid line represents the best linear fit. Position invariant neurons are marked
by black circles, rotation invariant neurons are marked by red plus symbols, and all other cells are marked using gray circles. B,
Correlations between all pairs of invariances across neurons. Asterisks represent statistical significance as before.

properties were independently distributed. For instance,
since 51 of 127 neurons (40%) show size invariance and
57 of 127 neurons (45%) show position invariance, the
number of neurons expected to show both invariances
assuming the two properties are independently distrib-
uted would be 23 neurons (0.4+0.45 = 18% of 127).
Likewise the number of neurons expected to show size
invariance but not position invariance would be 28
[0.4%(1-0.45) = 22% of 127]. In this manner, we compiled
the expected number of cells in all four possible combi-
nations (size invariance present/absent X position invari-
ance present/absent) which yielded the expected vector
of counts [23 34 28 42]. We compared this with the
observed vector of counts for size and position, which
was [31 26 20 50]. These two counts were significantly
different from each other, as assessed using a ¥° test (p =
0.006). We conclude that size and position invariance are
not independently distributed, i.e., covary across neurons.
In this manner, we found that size, position, rotation, and
view invariance co-occurred significantly more frequently
across neurons than expected had they occurred inde-
pendently (p < 0.05 for all pairwise comparisons, ¥° test;
p = 0.072 for size versus view).

Based on the above, we conclude that the same pop-
ulation of neurons tend to be invariant across all identity-
preserving transformations.

Are invariant neurons clustered anatomically?

To investigate whether invariant neurons tended to oc-
cur at specific anatomic locations, we calculated the cor-
relation between average invariance of each neuron
(across all transformations) with the anterior-posterior,
medial-lateral, and depth coordinates of the recorded
sites (combined after subtracting the mean within each
animal). This revealed no systematic correlation (r =
—0.09, 0.07, and 0.12 for anterior-posterior, medial-
lateral, and depth coordinates; all p > 0.1). Thus, invariant
neurons show no anatomic clustering at least across the
spatial scales sampled in our study.

March/April 2017, 4(2) e0333-16.2017

Does invariance for similar stimuli emerge later?

So far, we have characterized the overall invariance to a
diverse set of objects. We confirmed that differences in
invariance dynamics was robustly present across many
random subsets of objects. However, it is possible that
similar objects may show different invariance dynamics.
To investigate this possibility, we repeated the invariant
object decoding analyses on level-2 changes of three
groups of objects: similar animate objects (camel, cow,
deer, dog), similar inanimates (four cars), and dissimilar
objects (car, animal, motorbike, shoe).

We obtained qualitatively similar results across the dif-
ferent stimuli sets. Invariant object decoding accuracy
was better for size and position compared with rotation
and view as before, but accuracy was higher overall for
dissimilar objects compared with similar objects (average
decoding accuracy for size, position, rotation, and view:
52%, 55%, 49%, and 32% for similar animates; 43%,
43%, 32%, and 29% for similar inanimates; 82%, 66%,
50%, 43% for the dissimilar objects). This is consistent
with the finding that dissimilar objects show higher view-
point invariance in IT neurons (Ratan Murty and Arun,
2015). The time course of invariant decoding also showed
delayed decoding of rotation and view compared with
size/position (peak latency for size, position, rotation, and
view: 120, 140, 160, 180 ms for similar animates; 120,
120, 100, 140 ms for similar inanimates; 100, 100, 120,
160 ms for dissimilar objects). We conclude that size/
position invariance is consistently stronger and develops
earlier compared with rotation/view regardless of object
structure.

Do invariances vary in their computational difficulty?

The above results show that rotation and view invari-
ance are harder and arise later compared with size/posi-
tion invariance in IT neurons. This hierarchy of invariances
could be inherited from low-level visual representations or
reflect the computational complexity of achieving these
invariances. To investigate this issue, we examined two
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Figure 6. Comparison with computational models. To investigate whether the invariance differences observed in IT are a trivial
consequence of low-level visual representations or reflect the underlying complexity, we compared the IT representation with several
models: pixel, V1, and initial and later layers of a deep neural network i.e. DNN (see text). A, Average invariance, measured as the
tuning correlation between reference images and transformed images across objects for the pixel model. The bars indicate the mean
tuning correlation and the error bars indicate the SEM across all units. B-E, Same as A, but for the V1, DNN layer 2, DNN conv-5,
and IT neurons. F, Pairwise dissimilarity between all pairs of 90 stimuli for the pixel model. The match to IT indicates the correlation
between this matrix and the observed dissimilarities in IT (depicted in J). G-I, Same as F but for the V1, DNN layer 2, and DNN conv-5
layer, respectively. J, Same as F but for IT neurons. The correlation above the color map represents the reliability of the IT data, which
is an estimate of the upper bound achievable for any model of IT (see Materials and Methods).

low-level visual representations: a pixel model and a V1
model (see Materials and Methods). We also investigated
various layers of a state-of-the-art convolutional neural
network optimized for object detection (Simonyan and
Zisserman, 2015). We selected the second layer of this
network as a proxy for low-level representations (DNN
layer 2). As a proxy for high-level representations, we
selected the layer whose neural dissimilarity across the
reference stimuli matched best with the IT data (conv-5
layer, correlation with IT dissimilarities: r = 0.78, p <
0.00005). We note that this high degree of agreement is
consistent with recent observations that object represen-
tations in deep neural networks match extremely well with
high-level visual cortex (Khaligh-Razavi and Kriegeskorte,
2014; Yamins et al., 2014) and with perception (Pramod
and Arun, 2016). Importantly none of these representa-
tions were fitted to match the IT data, since our purpose
was simply to compare the intrinsic nature of different
invariances. We then compared these representations
with the observed IT representations, as detailed below.

We took individual units in each model and calculated
the invariance exactly in the same way as for IT neurons:
for each transformation we calculated the correlation be-
tween the activation of the unit for the reference and
transformed images across objects. For the pixel, V1 and
DNN layer-2 representations, the average tuning correla-
tion was small as expected since images change drasti-
cally across size/position/rotation/view changes (Fig.
6A-C). As expected, the invariance was smaller for level-2
transformations compared with level-1 transformations.
However, the average invariance (across ~100,000 units)
was relatively larger for the DNN conv-5 layer, with size
and position invariance being stronger than rotation and
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view (Fig. 6D), which is similar to the pattern observed in
IT (Fig. 6E). We note that the average tuning correlation is
higher in the DNN conv-5 layer than in IT. However, this
could reflect the vast difference in sampling of the two
networks: in IT we have sampled only ~100 neurons
whereas for the DNN, we have sampled all 100,000 units.

Finally, we compared the overall representation in each
model by calculating the pairwise dissimilarity between
unit activations in each model across all pairs of images
(for each pair, this is 1, correlation between the activity
elicited by the two images across all units). In this repre-
sentation, if the reference images elicit similar activity as
the transformed images, we should observe the same
basic pattern repeat in blocks throughout all the transfor-
mations. For the pixel, V1 and DNN layer-2 representa-
tions, there is some degree of invariance (Fig. 6F-H), but
the invariance was much stronger for the DNN conv-5
layer (Fig. 6/) and across IT neurons (Fig. 6J). While the
low-level model representations were poorly matched to
the IT representation, the match was quite high for the
DNN conv-5 layer (r = 0.71, p < 0.00005). However, this
match was still lower compared with reliability of the IT
data (calculated as the corrected split-half reliability be-
tween dissimilarities obtained from two halves of the neu-
rons, r = 0.92, p < 0.00005). Thus, the invariance
observed in IT is not a trivial consequence of low-level
visual representations but rather reflects non-trivial com-
putations.

Taken together, our results show that the hierarchy of
invariances in IT neurons is not trivially inherited from
low-level visual representations, but rather reflects their
underlying computational complexity, as revealed by a
similar hierarchy in higher layers in deep neural networks.
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Discussion

Here, we have compared the dynamics of invariant
object representations in IT neurons for four identity-
preserving transformations: size, position, in-plane rota-
tion, and in-depth rotations (view). Our main finding is that
object representations in IT neurons evolve dynamically in
time during the visual response: they generalize fastest
across changes in size, followed by position and only later
across rotations (both in-plane and in-depth). We ob-
tained similar results using state-of-the-art deep convo-
lutional neural networks, indicating that this ordering of
invariances reflects their computational complexity. Be-
low we discuss our findings in the context of the literature.

Our main finding is that, when invariances are com-
pared after equating image changes, size and position
invariance are stronger than rotation and view invariance.
Although we have equated image changes across trans-
formations using the net pixel change, it is possible that
the representational change in the retinal or early visual
cortical input to IT is not entirely balanced. However, we
have shown that the ordering of invariances in low-level
visual representations (pixels, V1, or initial layers of deep
networks) is qualitatively different from that observed in
IT. In the absence of more accurate models for retinal or
V1 representations, our study represents an important
first step in a balanced comparison of invariances. Our
findings are consistent with the limited position and size
invariance observed in midlevel visual areas like V4 (Pa-
supathy and Connor, 1999; Connor et al., 2007) and the
increased invariance observed in IT (Rust and Dicarlo,
2010; Rust and DiCarlo, 2012). While IT neurons are well-
known for their invariance to position, size, viewpoint, etc.
(Tanaka, 1996; Connor et al., 2007; DiCarlo et al., 2012),
to our knowledge, ours is the first study to directly com-
pare the dynamics and magnitude of size, position, rota-
tion, and view invariance in a balanced manner.

Our finding that view invariance develops later in time is
consistent with the general consensus that it is a chal-
lenging problem since images undergo complex changes
when objects are rotated in depth (Hayward and Tarr,
1997; Tarr et al., 1998; Biederman and Bar, 2000; Ratan
Murty and Arun, 2015). Even in computational models,
size and position invariance are seen in early layers and
view invariance occurs only in later layers (Riesenhuber
and Poggio, 1999; Wiskott, 2009; Leibo et al., 2015).
However, even in these studies, image change was never
equated in magnitude, and therefore, the finding that
invariances are present in different layers could reflect the
fact that some image changes were inadvertently smaller
than others. Thus, our results could not have been antic-
ipated given the existing literature on invariance in the
ventral stream or from computational modeling.

Our finding that invariances differ in their time course
may have interesting implications for behavior. If behavior
is based directly on the early part of the visual response in
IT neurons, it would predict that size or position invariance
would be easier and faster than rotation and view. If
behavior is based on later part of the visual response, then
invariant behavior will be poor. We consider this unlikely,
since invariance is extremely robust in behavior, and fur-
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ther, the low invariance late in time presumably only re-
flects the low neural response levels (Figs. 3C,D and
4C,D). We speculate that invariant representations may
instead be maintained across time when they are task-
relevant, either within IT or in downstream prefrontal re-
gions. Finally, these differences between invariances may
not even manifest in behavior. This could happen if ob-
jects used in the task are sufficiently dissimilar to be
discriminated even using low-level visual representations
(Foster and Gilson, 2002; Stankiewicz, 2002). Thus, find-
ing parallel effects in behavior may require careful task
design and calibration of objects.

The specific temporal ordering from size, position to
rotation invariance in IT neurons could reflect some spe-
cific dynamic solution in the brain, or reflect the more
general computational difficulty of these invariances. Our
finding that rotation and view invariance are weaker even
in deep convolutional neural networks supports the latter
possibility, given that higher layers in deep neural net-
works match neural representations in high-level visual
cortex (Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014; Kheradpisheh et al., 2016). In sum, we con-
clude that object invariances in IT neurons develop in a
specific temporal order reflective of their underlying com-
putational complexity.
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