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Abstract

Mismatch negativity (MMN) is commonly recognized as a neural signal of prediction error evoked by
deviants from the expected patterns of sensory input. Studies show that MMN diminishes when
sequence patterns become more predictable over a longer timescale. This implies that MMN is
composed of multiple subcomponents, each responding to different levels of temporal regularities.
To probe the hypothesized subcomponents in MMN, we record human electroencephalography
during an auditory local–global oddball paradigm where the tone-to-tone transition probability (local
regularity) and the overall sequence probability (global regularity) are manipulated to control temporal
predictabilities at two hierarchical levels. We find that the size of MMN is correlated with both proba-
bilities and the spatiotemporal structure of MMN can be decomposed into two distinct subcomponents.
Both subcomponents appear as negative waveforms, with one peaking early in the central-frontal area
and the other late in a more frontal area. With a quantitative predictive coding model, we map the
early and late subcomponents to the prediction errors that are tied to local and global regularities,
respectively. Our study highlights the hierarchical complexity of MMN and offers an experimental
and analytical platform for developing a multitiered neural marker applicable in clinical settings.
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Significance Statement

Our study provides new insights into the intricate architecture of mismatch negativity (MMN), a key
neural indicator for deviant detection. Using a refined oddball paradigm with dual-level temporal
controls, we identified two unique MMN subcomponents, each linked to prediction errors at different
brain hierarchies. This work establishes a practical platform for a multitiered neural marker, offering
clinical applications for assessing brain function across various hierarchies.

Introduction
Mismatch negativity (MMN) is measured by contrasting the event-related potential

(ERP) evoked by an infrequent sensory event (referred to as a deviant stimulus) to the
ERP from a frequent event (a standard stimulus). This contrast shows a negative waveform
peaking at 100–250 ms after event onset and over the frontal-central brain area (Sams
et al., 1984; Näätänen et al., 2007). The MMN has been recognized as a key biomarker
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to evaluate the capacity for statistical learning and deviance detection in various disorders, such as autism spectrum dis-
order (ASD; Dunn et al., 2008), schizophrenia (Fisher et al., 2012; Erickson et al., 2016; Koshiyama et al., 2020), and devel-
opmental delay (Kujala and Näätänen, 2001).
Theoretically, MMN has been interpreted as a form of prediction error within the framework of hierarchical predictive

coding theory (Wacongne et al., 2012). The theory postulates that bidirectional cascades operate across the hierarchy
to minimize prediction errors: top-down predictions for incoming inputs are generated by learning statistical regularities,
and bottom-up prediction errors are generated to refine the predictions when discrepancies between expected and actual
sensory inputs occur (Friston, 2010; Bastos et al., 2012; Clark, 2013). The coding has been suggested as an underlying
mechanism of the generation of MMN, which has been tested in different oddball paradigms (Garrido et al., 2007,
2008). Furthermore, as the prediction error indirectly reflects the prediction established based on the statistical regularity
of stimuli, many studies have also reported that a less frequent stimulus, thus with less predictability, evokes a larger MMN
(Javitt et al., 1998; Sato et al., 2000; Sabri and Campbell, 2001).
MMN is alsomodulated by statistical regularities at a longer timescale. This is evident in a local–global oddball paradigm

(Bekinschtein et al., 2009), in which stimulus sequences are manipulated to control temporal regularities at two hierarchi-
cal levels: tone-to-tone transitions (local level) and multitone sequence structure (global level). The MMN amplitude
triggered by the local deviant is notably smaller as the deviant becomes predictable at the global level (Wacongne
et al., 2011), and this reduction is absent in ASD and schizophrenia (Sauer et al., 2017; Goris et al., 2018). These results
suggest that different degrees of local and global prediction errors are generated and superimposed inMMN. In the current
study, we aim to clearly dissociate the superimposed MMN into subcomponents showing distinct neural signatures.
Specifically, we hypothesize that there are two MMN subcomponents, each responding to the local and global levels
of temporal statistics and thus representing the local and global prediction-error signals.
We record human electroencephalography (EEG) during an auditory local–global paradigmwhere stimulus occurrences

of the deviant are manipulated at the local and global level to create varying degrees of prediction error in four sequence
blocks. To disentangle MMN subcomponents from ERP data, we used an unbiased data-driven decomposition method
that was previously applied to isolate prediction-error signals in high-gamma frequency bands (Chao et al., 2018).
Two subcomponents are extracted from the data, each exhibiting features of MMN. The first subcomponent is character-
ized by a negative waveform peaking at 136 ms in the central-frontal area of the brain, and the second subcomponent
is also a negative waveform peaking later at 200 ms in a more frontal area. Furthermore, their activation patterns across
different sequence blocks are aligned with the predictions from a hierarchical predictive coding model (Chao et al.,
2022), suggesting that the early and late MMN subcomponents represent the local and global prediction-error
signals, respectively. Our findings reveal the composite nature of MMN and suggest that breaking downMMN into distinct
subcomponents may provide a more complete biomarker for pathological conditions associated with unusual
prediction mechanisms.

Materials and Methods
Participants. Thirty participants were recruited in this study (15 males and 15 females; age, 24 ± 2.6 years old; mean±

standard deviation). The participants self-reported and were screened to have no participation in drug studies and no his-
tory of neurological and psychological conditions. This study was approved by the Research Ethics Committee of the
National Taiwan University Hospital (201906081 RINA), and all participants gave written informed consent after under-
standing experimental procedures and before the experiment.

Local–global oddball paradigm with controlled predictabilities. We implemented an auditory local–global oddball
paradigm with four distinct sequence blocks (Fig. 1). Each block was formed by varying stimulus occurrences for a unique
combination of local and global regularities. Two toneswere created by combining three sinusoidal waves of base frequen-
cies: the low-pitched tonewith 350, 700, and 1,400 Hz and the high-pitched tonewith 500, 1,000, and 1,500 Hz. Each tone

Figure 1. Task design. The configuration of sequence types, number of trials, transition probabilities, and sequence probabilities in four blocks. The tone
icons colored in black and red represent tone x and y in different pitches, while the tone icon with the dashed outline represents omission (“o”, no tone
delivered). The stimulus onset asynchrony (denoted as SOA) represents time interval between the onsets of a tone and the next. The inter-trial interval
(ITI) represents time interval between the offset of one sequence’s last tone and the onset of the next sequence’s first tone. The probabilities were rounded
to two decimal places.
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had a 100 msdurationwith a 7 ms rise and fall. Each tone sequence consisted of three tones consecutively deliveredwith a
200 ms stimulus onset asynchrony (SOA). The intertrial interval (ITI) between the end of one sequence’s last tone and the
start of the next sequence’s first tone was randomly set to a value between 1,000 and 1,400 ms, in 50 ms increments.
For each block, there were three types of tone sequence: xxx, representing three tones with the same tone pitch; xxy,

representing that the last tone differed from the preceding tones; and xxo, representing that the last tone was omitted. The
numbers of trials for the sequences xxx, xxy, and xxo were set to be 96:24:24 for Block 1, 120:12:12 for Block 2, 24:96:24
for Block 3, and 12:120:12 for Block 4. Each block was sectioned into four phases in which the proportion of sequence
types was maintained (e.g., in Block 1, every phase contained 24 trials of xxx, 6 trials of xxy, and 6 trials of xxo). Within
each phase, the order of the 36 sequences was random. The four blocks were delivered twice: once with the low-pitched
tone as tone x and the high-pitched tone as tone y and once with the high-pitched tone as tone x and the low-pitched tone
as tone y. The order of eight block presentations was random.
With different sequence ratios, a unique configuration of local and global regularities was created for predictions of

the last tone x or y. On the one hand, the local regularity was established by the tone-to-tone transition probability
(TP), i.e., the conditional probability of an incoming tone given the previous tone. TP in each block contained three values,
TP(x|x), TP(y|x), and TP(o|x), which represent the conditional probabilities of tones x, y, and o occurring, given the previous
tone x, within a single block. In sequence xxx, there are two transitions from x to x and one transition from x to o.
In sequence xxy, there is one transition from x to x and one transition from x to y. In sequence xxo, there is one transition
from x to x and one transition from x to o. Note that the x-to-o transition was considered at the end of the tone sequence
xxx, since the sequence ending cannot be known by stimulus transitions but rather by sequence structure (Chao et al.,
2022). Then, based on trial numbers of the sequence types, we calculated all instances of the three transition types within
one block and the corresponding transition probabilities.
On the other hand, the global regularity was established by the multitone sequence probability (SP). SP in each

block contained three values, SP(xxx), SP(xxy), and SP(xxo), which represent the probabilities of sequences xxx, xxy, and
xxo within a single block. The four blocks featured distinct combinations of TP and SP (Fig. 1), which allowed us to control
the predictability of sensory stimuli and examine varying degrees of prediction error at both local and global levels.
During the experiment, participants were instructed to pay attention to the sound while visually fixating at a central fixation

(white crossonagray background), andnobehavioral responsewas required. A task-irrelevant videowasdisplayedduring the
break between two block presentations to minimize the influence of the learned regularities in a run being carried over to the
next run. All stimuluspresentationswere programmedwithMATLAB-basedPsychtoolbox (Pelli, 1997; Kleiner et al., 2007) and
presented with a monitor (resolution, 1,920*1,220 pixels; sampling rate, 60 Hz) and a pair of desktop speakers (∼60 dB).

EEG recording and analysis. Raw EEG data were recorded with a 64-channel QuickCap (Compumedics NeuroScan).
During recording, the data were referenced to a reference electrode near Cz, and impedances were kept to <2 kΩ for
two mastoid electrodes and 5 kΩ for the remaining electrodes. We set a bandpass filter of 0.01 to 100 Hz and a 500 Hz
sampling rate.
We used MATLAB-based EEGLAB (Delorme and Makeig, 2004) to preprocess the data from each participant. First, we

merged the data from all runs and rereferenced it to the average of two mastoid electrodes to eliminate systematic noise
from the environment (functions: pop_mergeset.m; pop_reref.m). Second, epochs of sequences were extracted from
1.2 s before the first tone to 1.9 s after the last tone (pop_epoch.m). Third, bad epochs containing excessive fluctuations
or high-frequency noise were manually removed. On average, ∼2% of the total epochs in each participant were removed
at this step. Fourth, we used theADJUST toolbox to remove eye andmuscular artifacts (Mognon et al., 2011; pop_runica.m,
interface_ADJ.m, pop_subcomp.m). Finally, the processed epochs were corrected with the baseline estimated within the
time window of −300 to −100 ms relative to the onset of the first tone (pop_rmbase.m) and downsampled to 250 Hz.
For each channel, block, and participant, we then averaged the signals across trials to obtain the ERP for each sequence

type (i.e., xxx, xxy, and xxo); see examples in Figure 2A. To measure the MMN in the local–global oddball paradigm, we
compared ERPs from sequence xxy (local deviant) to ERPs from sequence xxx (local standard) (xxy – xxx) for each channel,
block, and participant. Note that the contrast was done in all conditions including frequent xxy as the global standard, con-
sistent with previous studies evaluating varied MMN evoked by the local violation and influenced by different degrees of
global expectations (Wacongne et al., 2011; Sauer et al., 2017; Goris et al., 2018). Examples of the contrast responses
from −200 to 800 ms relative to the onset of the last tone in the four blocks are shown in Figure 2B.
We also estimated the omission error by contrasting ERPs between sequence xxo and xxx (xxo – xxx), where positive

responses were found ∼100–200 ms (Extended Data Fig. 2-1). However, this contrast response contains the sensory
response to the last tone in sequence xxx and so does not accurately reflect the true prediction error. Consequently,
we did not include the omission trials for further analysis.

Analysis of the MMN amplitude and latency. We examined effects of the TP (local regularity) and SP (global regularity)
on MMN amplitudes and latencies across four blocks using repeated measures ANOVA and Spearman’s rank correlation
coefficient. To select peak amplitudes and latencies of the MMN for each block and participant, we focused on the
minimum of the contrast responses (xxy – xxx) at Cz in the range of 120–250 ms after the onset of the last tone
(Näätänen et al., 2007). Firstly, we implement a repeated measures ANOVA to measure differences in MMN among
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four blocks, each with unique TP and SP (functions: fitrm.m and ranova.m). Also, pairwise comparisons with Bonferroni’s
correction were implemented for post hoc tests (multcompare.m). Secondly, as Sato et al. (2000) showed thatMMNampli-
tudes become larger with fewer occurrences of novel stimuli, we performed Spearman’s rank correlation between the
MMN and the probability ranked based on TP(y|x) and SP(xxy).
When a stimulus is presented repeatedly, the evoked neural activity is reduced, an effect known as

stimulus-specific adaptation. In our study, three identical tones were consecutively presented (xxx) or the last was
replaced with a different tone (xxy). As shown in a previous study (Hofmann-Shen et al., 2020), when comparing the
two sequence types, the N1 as an index of the adaptation effect was observed with positive polarity between 80 and
120 ms. We further estimated effects of N1 in the blocks (Extended Data Fig. 2-2). The results of pairwise comparisons
showed the size of N1 was not correlated with TP and SP, and this indicates that MMN, but not N1, is varied according
to two-level probability manipulations.

Parallel factor analysis. In our study, the total responses can be pooled in a three-dimensional tensor (62 channels × 250
time points × 4 blocks), which provides a comprehensive description of the spatiotemporal dynamics under different TP
and SP combinations. To extract the subcomponents in the tensor that likely overlap in space and time, we used parallel
factor analysis (PARAFAC; Harshman and Lundy, 1994) to decompose the data. This approach yields subcomponents
within the three corresponding dimensions (Channel × Timecourse ×Block), enabling us to quantify their spatiotemporal
signatures and distinct activations across blocks.
We resampled thecontrast responsesof the30participants100 timeswith thebootstrapmethod (functions,datasample.m).

For each resampling, a new tensor was generated from the averaged contrast responses across the resampled participants.
For each tensor, weperformedPARAFACanalysis using theN-way toolbox (Andersson andBro, 2000; function,parafac.m) to
decompose the tensor intomultiple subcomponents ranging from1 to 8, leading to a total of 800 (100*8) decompositions. The
convergence criterion was set to be 1×10−6, and the three dimensionswere not constrained in terms of orthogonality or pos-
itivity. The optimal number of subcomponents was determined based on the Core Consistency Diagnostic (CORCONDIA;
Harshman and Lundy, 1994; Bro and Kiers, 2003). Decomposition with low consistency indicates a poor appropriateness,
where high interactions exist between subcomponents. A CORCONDIA of 80–90% is considered a good decomposition
and below 50% considered a problematic decomposition (Bro and Kiers, 2003; Pouryazdian et al., 2016).
As the optimal number was two (see details in Results), for all 100 resampled tensors, two subcomponents were

extracted and described by activation values (i.e., the score or loading matrix) in their original dimensions of Channel,
Timecourse, and Block. The Block dimension represents, for example, how much the contrast response of Block 1
(Block) is contributed by Subcomponent 1 composed of spatial and temporal activation values (Channel and
Timecourse). Thus, one subcomponent has four values in the Block dimension, meaning different degrees of contributions
from that subcomponent to the contrast responses of the four blocks.
We observed two extracted subcomponents, one with an early negative peak and the other with a late negative peak con-

sistently across 100 resamples. Then we assigned the former one as Subcomponent 1 and the latter one as Subcomponent
2. Examples of subcomponents from 10 resamples are shown in ExtendedData Figure 3-1. For Subcomponents 1 and 2, we
estimatedwhether theactivation valueswere significantlydifferent fromzeroacross100decompositions in thedimensionsof
Channel and Timecourse (function, ft_timelockstatistics.mat). Note that values in the dimension of Channel were estimated
with cluster corrections. Then, average activations are shown with nonsignificant values replaced by zero.

Functional roles of subcomponents identified by a predictive coding model. To verify the functional roles of the identi-
fied subcomponents, we used a predictive coding model which can estimate the size of prediction errors during the local–
global oddball paradigm (Chao et al., 2022). The model quantitatively describes prediction and prediction-error signals at
two hierarchical levels and has been found to explain predictive coding signaling during the local–global oddball paradigm
better than other alternative models.
Using the formula and code provided by Chao et al. (2022), we calculated the theoretical quantities for both the local (or

first-level) prediction-error signal and the global (or second-level) prediction-error signal within the deviant-minus-standard
difference responses. The local prediction-error signals across the four blocks were represented by four model values
(PE1), while the global prediction-error signals across the same blocks were characterized by four model values (PE2).
Our next stepwas to examinewhether Subcomponents 1 and 2 identified from the data were associatedwith the local and

global prediction-error signals described by the model. To achieve this, we reconstructed deviant responses from
Subcomponents 1 and 2 with the model values PE1 and PE2 and compared them to the actual responses. For each of the
100 decompositions, the response at time t for channel i and block j was reconstructed (denoted as PE1_PE2) as follows:

PE1 PE2(i, j, t) = Channel1(i) ∗PE1(j) ∗Timecourse1(t)+ Channel2(i) ∗PE2(j) ∗ Timecourse2(t), (1)

where Channel1 represents the 62 activation values in the Channel dimension for Subcomponent 1 and Timecourse1 repre-
sents the 250 activation values in the Timecourse dimension for Subcomponent 1. Similarly, Channel2 and Timecourse2 rep-
resent those values for Subcomponent 2.
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We also tested the reconstruction with different associations: Subcomponent 1 as PE2 and Subcomponent 2 as PE1

(denoted as PE2_PE1), Subcomponents 1 and 2 both as PE1 (denoted as PE1_PE1), and Subcomponents 1 and 2
both as PE2 (denoted as PE2_PE2).

PE2 PE1(i, j, t) = Channel1(i) ∗PE2(j) ∗Timecourse1(t)+ Channel2(i) ∗PE1(j) ∗ Timecourse2(t), (2)

PE1 PE1(i, j, t) = Channel1(i) ∗PE1(j) ∗Timecourse1(t)+ Channel2(i) ∗PE1(j) ∗ Timecourse2(t), (3)

PE2 PE2(i, j, t) = Channel1(i) ∗PE2(j) ∗ Timecourse1(t)+ Channel2(i) ∗PE2(j) ∗Timecourse2(t). (4)

We then calculated the mean squared difference (MSD) between reconstructed responses and the actual response, Act,
for each channel i and block j. Below, we use the reconstruction of PE1_PE2 as an example:

MSD(i, j) = 1
250

∑250

t=1

(PE1PE2(i, j, t)− Act(i, j, t))2. (5)

We also measured Pearson’s correlation coefficients of the reconstructed and actual time courses (t=1:250) for each
channel i and block j:

R(i, j) = corr(PE1PE2(i, j, 1:250), Act(i, j, 1:250)). (6)

We averaged MSD and R across 62 channels and four blocks for each of the 100 decompositions and each of four asso-
ciations. To evaluate which association produced better reconstruction, average MSD and R were tested across the four
associations using a repeated measures ANOVA and pairwise comparisons with Bonferroni’s correction.

Results
MMN varies across blocks
Figure 2A shows an example of ERPs, averaged across participants, from the channel Cz in Block 1. For each block, we

extracted MMN by contrasting ERPs between sequences xxy and xxx (xxy – xxx). Figure 2B shows the average contrast
responses from the four blocks, sorted from low TP(y|x) and SP(xxy) to high TP(y|x) and SP(xxy). To examine whether and

Figure 2. ERPs and deviant responses from contrasts.A, The groupmean ERPs of sequences xxx, xxy, and xxo in Block 1 at channel Cz. Solid vertical lines
represent onsets of the stimuli of a sequence. Time zero was set to be the onset of the last stimulus.B,Contrast responses obtained by contrasting ERPs of
sequences xxy and xxx in 4 blocks. The gray shade represents the time range of the MMN. C and D, Peak amplitudes and latencies of the MMN at Cz in 4
blocks. The block order was sorted from low to high probability in terms of TP(y|x) and SP(xxy). The 30 dots in each block correspond to participants. The
box plot represents the median (red horizontal line), quartiles (the bottom and top edges), 95% confidence interval (notches), and the maximum and min-
imum (black horizontal lines). Results from repeated measures ANOVA and Spearman’s rank correlation analyses are shown above the plots. The red line
represents a significant difference between two blocks (*<0.05; ***<0.001).
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how the local and global regularities (i.e., TP and SP) affect the peak amplitude and latency of MMN, we performed a
repeatedmeasures ANOVA across all blocks and participants. First, we found significant differences in the peak amplitude
among the blocks (F(3,87) = 30.7; p<0.001; n=30 participants; repeated measures ANOVA; Fig. 2C). In post hoc tests
(Extended Data Fig. 2-3), the amplitude in Block 1 with fewer occurrences of the deviant ywas significantly more negative
than that in Block 3 (p<0.001; n=30 participants; pairwise comparison; Bonferroni’s correction; Fig. 2C, red horizontal
line) and Block 4 (p<0.001), both of which consisted of more occurrences of the deviant. Similarly, the amplitude in
Block 2 was significantly more negative than that in Block 3 (p<0.001) and Block 4 (p<0.001). There were nonsignificant
differences in the rest comparisons between Blocks 1 and 2 and between 3 and 4. Although we did not find the signifi-
cance when comparing two blocks with close deviant probabilities (e.g., TP of the deviant is 0.03 in Block 2 and 0.06
in Block 1), a trend of the increased TP and SP with the smaller amplitude of the negative peak was observed and further
tested (Spearman’s rank correlation coefficient: 0.52, p<0.001; n=30 participants).
Second, we also found significant differences in the MMN peak latency among the blocks (F(3,87) = 9.4; p<0.001; n=30

participants; repeated measures ANOVA; Fig. 2D). In post hoc tests (Extended Data Fig. 2-3), specifically, the latency in
Block 2 was significantly greater than that in Block 1 (p=0.01; n=30 participants; pairwise comparison; Bonferroni’s
correction), Block 3 (p<0.001), and Block 4 (p=0.01). There were nonsignificant differences in the rest comparisons
between each two of Blocks 1, 3, and 4. A negative rank correlation between peak latency and probability was found
(Spearman’s rank correlation coefficient, −0.45; p<0.001; n=30 participants). Altogether, the contrast responses
appeared differently across the blocks; in particular, MMN peaked more negatively and later as TP(y|x) and SP(xxy)
became smaller.

Extracting MMN subcomponents
Upon confirming that the MMN is modulated by TP and SP, we further tested if the MMN contains two overlapping sub-

components that respectively encode TP and SP. We resampled the total data of contrast responses 100 times and used
PARAFAC to decompose each of the 100 resampled datasets. Each resampled dataset was decomposed into a desig-
nated number of subcomponents, ranging from 1 to 8. The CORCONDIA was quantified to evaluate the consistency of the
decomposition. We found an abrupt drop in CORCONDIA, from nearly 100 to 45%, when the decomposition changed
from two subcomponents to three subcomponents (p<0.001; n=100 resamples; pairwise comparison; Extended Data
Fig. 3-2). This indicates that the optimal number of subcomponents in the deviant responses was two.
The two subcomponents, Subcomponents 1 and 2, were identified across resampled datasets and visualized in the

dimensions of space (Channel), time (Timecourse), and function (Block; Fig. 3). Spatially, Subcomponent 1 was found
in the central-frontal area, while Subcomponent 2 was found in amore frontal area (Fig. 3A). Temporally, both components
showed negative waveforms after the last tone but with different latencies (Fig. 3B). Subcomponent 1 peaked negatively at
136 ms, followed by a positive response during 200–400 ms. Subcomponent 2 peaked negatively at 200 ms, followed by a

Figure 3. Neural signatures of prediction-error signals.We resampled 100 datasets, each containing contrast responses of 4 blocks, and then performed
PARAFAC decomposition for each dataset. For the two extracted subcomponents, activations are shown in (A) Channel, (B) Timecourse, and (C) Block
dimensions. TheBlock dimension represents activation of the subcomponents to the responses (the blue line). The error bar represents the standard devia-
tion. The model values of the local and global prediction errors are denoted as PE1 and PE2 (the green line).
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long-lasting negative response. Functionally, the two subcomponents had different activation values in the Block dimen-
sion (Fig. 3C, blue line). For Subcomponent 1, the different positive values in the Block dimension indicates that the spa-
tiotemporal response pattern described by the Channel and Timecourse dimensions appeared in the contrast responses
of the four blocks, each with different positive contributions. Interestingly, the contributions of Subcomponent 2 in Blocks
3 and 4, where sequence xxy was frequent, were negative. This indicates that Subcomponent 2 contributed to the total
MMN in an opposite manner when the local deviant became the global standard.

Functional roles of the MMN subcomponents
To identify functional roles of Subcomponents 1 and 2, we compared their contributions (Fig. 3C, blue line) across the

four blocks (Block1 and Block2) to the theoretical values of the local and global prediction errors (PE1 and PE2) obtained
from a hierarchical predictive codingmodel (Fig. 3C, green line). Based on their spatiotemporal characteristics, we hypoth-
esized that Subcomponent 1, occurring earlier in a less frontal area, represented the local prediction error. On the other
hand, Subcomponent 2, occurring later in a more frontal area, was hypothesized to represent the global prediction error.
To validate the hypothesis, we reconstructed signals with the model values and compared them to actual contrast
responses. Figure 4A shows examples of reconstructed time courses at channel Cz in Block 1. In this example, the recon-
struction PE1_PE2, in which Subcomponent 1 is associated with PE1 and Subcomponent 2 with PE2, was very similar to
the actual response. Among the four associations, the mean square error evaluated with the association of PE1_PE2 was
significantly smaller than the other three (all p<0.001; n=100 resamples; pairwise comparisons; Bonferroni’s correction;
Fig. 4B). Similarly, the correlation coefficient evaluated with the association of PE1_PE2 was significantly higher than the
other three (all p<0.001; Fig. 4C). These results suggest that Subcomponents 1 and 2 represented the local and global
prediction-error signals, respectively.

Discussion
In the current study, we combined an extended auditory local–global oddball paradigm with a data-driven decomposi-

tion analysis to extract subcomponents in MMN. We further demonstrated that the early MMN subcomponent in the
central-frontal area represents the local prediction-error signal while the late MMN subcomponent in the more frontal
area represents the global prediction-error signal. Our study applies the predictive coding framework to reveal the com-
plex nature of MMN and establishes a robust experimental and analytical platform that can examine the functionality of
multilevel deviant detection in both healthy and affected brains.

Hierarchical MMN in the predictive coding framework
We revealed that theMMNof the deviant response varied with the hierarchical probabilities of stimulus presentation and

notably consisted of two MMN subcomponents with distinct spatial and temporal characteristics obtained from an
unbiased decomposition.
The two subcomponents spatially comply with the results of the hierarchical network which is a three-level hierarchy of cor-

tical cascades in response to auditory changes. The network consists of bilateral primary auditory cortices receiving inputs,
superior temporal gyrus functioning as a memory trace of priors, and right inferior frontal gyrus modulating the attention allo-
cation (Giard et al., 1990; Opitz et al., 2002; Doeller et al., 2003; Halgren et al., 2011;MacLean andWard, 2014; Hofmann-Shen
et al., 2020). It has alsobeen applied tomodel data obtained in different types of oddball paradigms (Garrido et al., 2007, 2008).
In our findings, the early MMN was activated in the frontal-central area, which is consistent with previous literature and may
reflect dipole sources in the superior temporal area (Alho et al., 1998; Molholm et al., 2005; Schönwiesner et al., 2007).

Figure 4.Reconstruction with functional assignments and their differences from the actual ERP.A, Examples of reconstructed signals at Cz in Block 1. The
black line represents the actual contrast response. The blue line represents the reconstructed response with Subcomponent 1 as PE1 and Subcomponent
2 asPE2. The orange line represents the reconstructed response with Subcomponent 1 as PE2 and Subcomponent 2 as PE1. The yellow line represents the
reconstructed response with Subcomponent 1 and 2 both as PE1. The purple line represents the reconstructed response with Subcomponent 1 and 2 both
as PE2. Mean squared differences in panel B and Pearson correlation coefficients in panel C were calculated then averaged across channels and blocks.
The 100 dots for each assignment represent resamples. Results from repeated measures ANOVA and pairwise comparisons are shown above the plots.
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On the other hand, the lateMMNwas activated in themore frontal area and slightly dispersed toward the right side, whichmay
be mapped to an anterior portion of the brain such as the right prefrontal cortex. Although EEG signals are limited in spatial
resolution, the temporal patternsof theEEGsignalsmayprovidesomehints regardingpotential sources.Specifically,we found
that the early subcomponent (i.e., Subcomponent 1) ofMMNat the central-frontal areawas elicited earlier andwas followedby
the late subcomponent (Subcomponent 2) of MMN in the frontal area, which is consistent with differences in the peak latency
found in the temporal and frontal generationsofMMN(Rinneet al., 2000) andbottom-upgammaoscillations (Chaoetal., 2022).
Furthermore, in alignmentwith the hierarchical predictive coding theory, the observed temporal pattern supported feedforward
error propagating between low and high cortical hierarchy, and activations of MMN subcomponents closely resembled the
quantitative definition of local and global prediction-error signals (Chao et al., 2022).
However, the findings and interpretation of the early and late subcomponents of MMN appear to deviate from previous

studies of the local–global oddball paradigm. It has been claimed that theMMN represents the local prediction-error signal
while the P300 represents the global prediction-error signal (Wacongne et al., 2011). This stands in our contrast with our
finding of MMN encoding both local and global prediction errors. We argue that this discrepancy results from the difficulty
of dissociating hierarchical prediction-error signals. P300 in previous literature was typically captured by contrasting
responses to the global deviant and the global standard. In fact, the local prediction-error signal cannot be fully controlled
in this contrast. For example, two tones are both defined as the global deviant, while one is also defined as the local deviant
and the other is defined as the local standard. When responses of theses tones are combined, different transition prob-
abilities for the tones lead to different local predictability. Therefore, the local prediction is difficult to fully cancel out and
still plays a part in the contrast product. To separate subcomponents from ERP contrasts, our approach adopted a
decomposition approach. The two extracted subcomponents with quantitative values of hierarchical prediction errors
then led to reconstructions similar to the actual responses. The reduction of the MMN when the deviant became more
predictable on the global level (i.e., Block 3 and Block 4) can also be explained by Subcomponent 2 with negative contri-
butions in these two blocks. Moreover, in Subcomponent 2, the late MMN peaking at ∼200 ms shared similarities with the
N2b component, a negative ERP in the N2 family occurring ∼200–300 ms and after MMN (also known as N2a; Näätänen
and Picton, 1986; Pritchard et al., 1991; Folstein and Van Petten, 2008). It has been studied in domains of attention,
response inhibition, and cognitive control, where participants are required to pay active attention or make behavioral
responses (Kasai et al., 1999; Barry and De Blasio, 2015). This relatively late-stage process coincides with cognitive
demands for attentional control and awareness in learning the global regularity in the local–global task (Bekinschtein
et al., 2009).

Limitations and future research
Although our findings provide a more thorough understanding of hierarchical MMN, there are still some limitations to be

resolved and advances to be achieved in future research: hierarchical structure composed of more than two levels, pre-
diction updates over time, and neuronal mechanism of learning statistical regularities at two levels.
Firstly, the functional hierarchy underlying MMN is not limited to two levels, as the prediction error likely does not prop-

agate only across two levels of the hierarchical scheme. For example, the encoding of natural images was modeled from
the predictive coding perspective, and multiple layers were established to simulate visual cortical processing (Rao and
Ballard, 1999; Spratling, 2017). Temporal sequences can consist of not only single-stimulus transition rules but also arbi-
trary regularities (Dehaene et al., 2015). In order to extract multilevel prediction-error signals in a real sequential environ-
ment, probability calculations for different regularities and quantitative values of the prediction error at each level should be
determined.
Secondly, the prediction error is generated to update the precision of the prediction; that is, a prediction update follows a

prediction error evoked by sensory input. In this study, we observed that the global prediction-error signals had a long-
lasting negative waveform after MMN, which might be related to desynchronized beta oscillations as prediction updates
(Bastos et al., 2012; Chao et al., 2018). However, the current method is incapable of dissociating the prediction update and
the prediction error because of their interdependence; that is, how much the prediction error is generated leads to how
much the prediction will be updated. Also, the signal quality in human EEG makes tracking the dynamics of prediction
updates during learning challenging. Future research could incorporate analytical techniques with a focus on temporal
order to dissociate the prediction update from the prediction error and trial-by-trial analysis to capture the dynamics.
Thirdly, for the oddball paradigm with complex sequence structure, the underlying mechanism of how multiple regular-

ities interact is computed at the neuronal level in the proposed quantitative predictive codingmodel. The links between the
neuronal computations of the regularities and the MMN subcomponents are critically needed for further investigation. We
should consider a combination of a biologically realistic model and a microscopical approach such as calcium imaging
and high-density neural recording in the future.

Data Availability
We shared raw EEG data, processed EEG data, and a script for model values of the quantitative predictive codingmodel

on Open Science Framework. Huang, Y. T., Wu, C.-T., Koike, S., & Chao, Z. C. (2024). Dissecting Mismatch Negativity:
Early and Late Subcomponents for Detecting Deviants in Local and Global Sequence Regularities. https://doi.org/10.
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17605/OSF.IO/8YFT4. The raw data featured in this work was previously published in Chao et al. (2022). In the previous
work, we constructed a theoretical model specifically designed to quantify hierarchical prediction and prediction-error sig-
nals, without placing an emphasis on ERP and MMN.
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