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Abstract

Humans exhibit lateralization such that most individuals typically show a preference for using one arm over the other
for a range of movement tasks. The computational aspects of movement control leading to these differences in skill
are not yet understood. It has been hypothesized that the dominant and nondominant arms differ in terms of the use
of predictive or impedance control mechanisms. However, previous studies present confounding factors that pre-
vented clear conclusions: either the performances were compared across two different groups, or in a design in
which asymmetrical transfer between limbs could take place. To address these concerns, we studied a reach adap-
tation task during which healthy volunteers performed movements with their right and left arms in random order. We
performed two experiments. Experiment 1 (18 participants) focused on adaptation to the presence of a perturbing
force field (FF) and experiment 2 (12 participants) focused on rapid adaptations in feedback responses. The random-
ization of the left and right arm led to simultaneous adaptation, allowing us to study lateralization in single individuals
with symmetrical and minimal transfer between limbs. This design revealed that participants could adapt control of
both arms, with both arms showing similar performance levels. The nondominant arm initially presented a slightly
worst performance but reached similar levels of performance in late trials. We also observed that the nondominant
arm showed a different control strategy compatible with robust control when adapting to the force field perturbation.
EMG data showed that these differences in control were not caused by differences in co-contraction across the
arms. Thus, instead of assuming differences in predictive or reactive control schemes, our data show that in the con-
text of optimal control, both arms can adapt, and that the nondominant arm uses a more robust, model-free strategy
likely to compensate for less accurate internal representations of movement dynamics.
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Significance Statement

We studied a reach adaptation task during which volunteers performed the task with their right and left arm randomly.
The randomization of the arms allowed us to study lateralization in single individuals with symmetrical and minimal
transfer between limbs. We observed similar performance levels after adaptation of both arms in the force applied
to counter the perturbation. Moreover, the nondominant arm showed a more robust control strategy when adapt-
ing to the force field (FF) perturbation, which enabled similar deviations despite faster movements. These interlimb
differences were not caused by differences in co-contraction across the two arms. Our results suggest that both
arms can adapt to the presence of a force field but the nondominant arm uses amore robust, model-free strategy.
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Introduction
Handedness is a prominent feature of human motor be-

havior. Indeed, most humans have a natural tendency for
using one arm, i.e., the dominant arm, when performing a
wide range of movement tasks. Studies have revealed an
advantage of the dominant arm in the control of limb dy-
namics (Sainburg and Kalakanis, 2000; Bagesteiro and
Sainburg, 2002) and an advantage of the nondominant arm
during tasks that required load compensation (Bagesteiro
and Sainburg, 2003). From these results, Sainburg (2002)
suggested a specialized role for each arm, such that differ-
ences in performance across arms arise from differences
in the use of predictive and impedance control strategies.
More precisely, this hypothesis suggests that both arms
are controlled using a mix of predictive and impedance
control mechanisms, with asymmetries in performance
arising because the dominant arm relies more heavily on
predictive control while the nondominant arm relies more
heavily on impedance control (Yadav and Sainburg, 2014).
Although attractive, this hypothesis implies that partici-

pants can modulate the mechanical impedance of their
limb to modify their behavior, presumably through the
combined activation of agonist-antagonist pairs of muscles
acting on each joint (Hogan, 1985; Burdet et al., 2001).
However, the intrinsic impedance of muscles is quite low
at spontaneous levels of activation, and the presence of
co-contraction mostly impacts the gain of the stretch reflex
(Pruszynski et al., 2009; Crevecoeur and Scott, 2014).
Furthermore, what is often referred to as limb stiffness in-
cludes the contribution of reflexes and early voluntary re-
sponses (up to ;300 ms; Burdet et al., 2000), which are
known to largely depend on neural feedback processes
(Scott, 2016). Thus, it is unclear whether the modulation of
limb impedance is sufficient to explain differences across
dominant and nondominant arms in reaching adaptation,
and the possible involvement of different feedback control
strategies has not been investigated.
Regarding the role of feedback, recent studies reported

very small changes in background EMG activity across
limbs in perturbation tasks (Maurus et al., 2021; Walker
and Perreault, 2015). Moreover, it has been suggested
that humans tend to use a more robust control strategy

that aims to minimize the impact of a “worst-case” pertur-
bation on the system (Basar and Bernhard, 1995). Such a
control strategy relies on an increase in the control gains
to prepare for potential perturbations, as when facing un-
predictable force fields (FFs) during reaching (Crevecoeur
et al., 2019). In the context of reaching movements, this in-
crease in the control gains leads to an increased muscular
response leading to greater movement speed and reduced
deviation from a straight line when disturbed by mechani-
cal perturbations. Altogether, these observations warrant a
careful re-examination of the neurophysiological basis of
interlimb differences in the control of reaching movements.
However, recent results have shown that the two

arms can develop feedforward adaptation equally well
(Stockinger et al., 2015; Reuter et al., 2016), with no
significant differences observed in the improvement of
kinematic errors between the two arms. Here, we in-
vestigated the possibility that, while both arms can de-
velop similar levels of feedforward adaptation, there is
a difference in the underlying control strategies being
used to perform reaching movements with each arm. To
test this, we measured participants’ performance as they
learned tomove a robotic handle in a force field (experiment
1) following a standard adaptation paradigm. We also
measured participants’ adaptation of feedback responses
to force fields applied randomly (experiment 2). Importantly,
in both cases, trials in baseline (BL) or force field environ-
ments were performed with the left or right arms in random
order to minimize the potential transfer of adaptation be-
tween limbs that could impact differences in behavior. We
observed that performance improved in both arms with
comparable rates. Both arms showed a transient increase
in reaching movement speed across trials followed by a de-
crease in speed that remained above baseline trials, which
suggests they relied on a more robust control strategy to
counter the presence of the force field. The data indicated
that, during the late adaptation phase, the dominant arm of
participants showed a slightly better adaptation to the per-
turbation while the nondominant arm maintained a more ro-
bust strategy across trials. The results are interpreted as
the expression of differences in the quality of internal mod-
els across the dominant and nondominant arms.

Materials and Methods
Participants
Twelve healthy participants (four females and eight males,

age: 226 1 years, mean 6 SD across participants), self-
identified as right-handed, participated in experiment 1.
Eighteen participants (four females and 14 males, age:
256 3 years), self-identified as right-handed, participated in
experiment 2. All participants provided written informed
consent before participating in this study. The volunteers
had no known neurologic disorders and were naive to the
purpose of the experiment. The experimental procedures
were approved by the local ethics committee at Université
Catholique de Louvain.

Behavioral task
Both tasks shared the same experimental procedure

and only differed in the frequency and orientation of the
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mechanical perturbations applied during movements.
Participants held the handles of two robotic arms
(Kinarm), one in each hand (Fig. 1A). Each handle was
equipped with a force sensor (Mini-40 F/T sensors, ATI
Industrial Automation). Two-dimensional position, veloc-
ity, and force at the handle of each robotic arm were
sampled at 1 kHz. Direct vision of the limbs and robotic
handles was blocked throughout the experiments, but two
hand-aligned cursors were always visible. Participants
were instructed to position their left and right hands in one
of two home visual targets (a filled circle with a 0.6-cm ra-
dius) representing the starting position of reaching move-
ments. These home targets were located on the right or left
side of the workspace equally distant from the midline,
such that the position of the home targets was naturally as-
sociated with the right or left arm (Fig. 1B). Participants first
waited in the home target for a random period of 2 to 4 s.
An empty goal target was presented in front of the corre-
sponding home target (and arm), thereby cueing the arm
that was to perform the upcoming trial. After the random
wait time, the goal target was filled in instantaneously giv-
ing them the go signal. Participants were asked to reach
the target between 600 and 800ms after the go signal and
then stabilize in it for 1 s (Fig. 1D). If participants reached
the target within the allotted time, the goal target became
green, if they reached the goal target too late it remained
red and if they reached it too quickly it turned back to an
open circle. The feedback about the timing of reaching
movements was provided to encourage consistent move-
ment kinematics but was not used as an exclusion criterion
for trials not in the expected time window. Overall, 71.81%
of all trials reached the target in the expected time window.
However, all trials, whether in the right time window or not,
were included in the analysis, as we are interested in the

time course of adaptation of participants reaching move-
ments. Moreover, most failed trials reached the target
slightly later than the expected time window, often during
the initial force field trials, as participants were facing the
perturbation for the first time. Before the task, participants
performed a series of 10 trials in the null field to become fa-
miliar with the timing requirement.

Experiment 1
Experiment 1 aimed at investigating the adaptation of

the trajectory and control strategy of the right and left
arms in a standard adaptation paradigm (Yang et al.,
2006; Crevecoeur et al., 2019). Participants performed
force field reaching movements during which the robotic
arm applied a curl force field on the participant’s hand.
The force field had the form presented in Equation 1:

Fx

Fy

� �
¼ 0 a

�a 0

� �
vx
vy

� �
(1)

where Fx and Fy represent the x and y force applied on the
arm, vx and vy represent the x and y velocity of the hand.
Parameter a was set equal to �13 Nsm�1 for trials per-
formed with the right hand and 13 Nsm�1 for the trials per-
formed with the left arm to elicit reactions from the same
muscle groups in the two arms (Fig. 1C). Null field trials
were introduced randomly and used as catch trials to re-
cord maximal mirror deviations when the force field was
removed unexpectedly. We selected catch trials instead
of clamp trials to analyze the feedback corrections during
these trials. Participants performed 30 perturbed trials
and five null field trials with each arm for a total of 70 trials
per block. Participants performed six blocks of trials for a
total of 420 trials. Trials with the left and right arm were

Figure 1. Illustration of the workspace, events during the task, and force field. A, 3D view of the experimental setup and partici-
pant’s position. B, Participants were instructed to perform forward reaching movements toward a visual target that was presented
in front of either the left or the right arm, with each arm having its own home and goal target. C, The force field for experiment 1 had
a clockwise direction for the right arm (orange line) and was mirrored for the left arm, hence directing the arm toward the exterior di-
rection. D, Events happening during a trial for the left and the right arm. An open goal target was presented for a random period,
uniformly distributed between 2 and 4 s, before it was filled in. The cue to reach the target was provided by filling the goal target in
red. If the participant reached the target in a time comprised between 0.6 and 0.8 s, the goal target was filled in a green color to in-
dicate a good trial and red if the target was reached too slowly.
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randomly presented so that the impact of force field trials
and catch trials would be similar across the two arms.

Experiment 2
Experiment 2 was designed to analyze rapid changes

in feedback control strategies because of unexpected
perturbations applied to the dominant and nondominant
arms. Participants performed null field reaching move-
ments with force field trials being randomly interspersed
as catch trials. Participants performed the first block of 25
trials with no perturbation with each arm for a total of 50
trials (this block is named BL in the rest of the text). They
then performed six blocks of 72 trials distributed as
follows: 24 null field trials with each arm, six force field
trials perturbed in the interior direction (clockwise force
field for the left arm, and counterclockwise force field
for the right arm) and six catch trials perturbed in the ex-
ternal direction (counterclockwise force field for the left
arm and clockwise force field for the right arm). Catch
trials occurred with a frequency of 1 catch trial for every
four null field trials performed with each arm. The force
field used during catch trials was of the same form as in
experiment 1 with only the parameter a changing from
13 to �13 for clockwise and counterclockwise force
fields. Trials with the left and right arm were also pre-
sented in random order.

Data analysis
The coordinates of the position of the cursor and the

forces measured at the handle were low-pass filtered
using a fourth-order dual-pass Butterworth filter with a
cutoff frequency of 50Hz. Velocity was obtained from nu-
merical differentiation of position signals. All signals were
aligned on movement onset, which was defined as the
moment when the cursor position exited the home target.
In the two experiments, surface EMG electrodes

(Bagnoli Surface EMG Sensor, Delsys Inc.) were used to
record muscle activity during movements. Based on pre-
vious studies (Crevecoeur et al., 2019, 2020a), we fo-
cused on the pectoralis major (PM) and the posterior
deltoid. Indeed, these muscles have been shown to be
strongly recruited to compensate for lateral disturbances
and hence should provide valuable information about the
strategy employed by participants to counter the pertur-
bation (Crevecoeur et al., 2019, 2020a). EMG signals were
sampled at 1 kHz and were amplified by a factor of 1000.
In both experiments, the reference electrode was at-
tached to the right ankle of the participants. The raw EMG
data were bandpass filtered with a 4th order double-pass
Butterworth filter with cutoff frequencies set at 20 and
250Hz. EMG data were normalized for each participant to
the average activity collected when they maintained pos-
tural control at the home target against a constant force
of 9 N.
To assess the performance of participants during the

task, we extracted several key parameters: the maxi-
mal deviation of the reaching trajectory (MD), the
length of the reaching trajectory, i.e., the path length
(PL), and the maximum speed of the reaching move-
ment (MS).

Experiment 1
For the force field trials of experiment 1, we also ex-

tracted the maximum force (MF) applied by participants
to counter the force field. Moreover, for force field trials
we computed the temporal correlation between the lateral
commanded force extracted offline based on the forward
hand velocity, and the measured force at the handle. This
provided us with an index of participants’ motor adapta-
tion to the perturbation (Crevecoeur et al., 2020b). This
can be justified as straight movements should exhibit a
high correlation since the impact of the commanded
force field must be countered by a force equal and oppo-
site. Therefore, changes in the correlation coefficient
between the measured and commanded force reflect
changes in control, such that increases in the strength
of the correlation can be taken as a proxy of adaptation.
In experiment 1, we performed mixed-model analyses

on each of these parameters (MD, PL, MS, MF, and cor-
relation) with Arm (left and right) and Trial number as
fixed effects, and a random intercept for each partici-
pant to capture idiosyncrasy. Post hoc analyses were
performed using t tests with Bonferroni correction for
multiple comparisons. To further assess the adapta-
tion of participants across trials, we used a standard,
first-order exponential model for learning curves fitted
to PL and MD. The exponential fit was defined as
follows:

y ¼ b1 � exp �b2 � xð Þ1b3: (2)

Where y represents the dependent variable (either PL
or MD), x is the trial number and b1;b2, and b3 are the
parameters of the fit. Parameter b2 [1/trial] represents
the learning rate of participants as it defines the number
of trials participants needed to attain stable performance.
The parameters of the fit were compared across the left
and right arms by performing a bootstrap analysis. The
participants were resampled with replacement, and the
parameters of the exponential fit were calculated for each
bootstrapped population. This allowed us to derive a dis-
tribution of parameters across the 1000 bootstrapped
samples and compare these distributions across limbs.
Finally, to determine whether participants used co-con-
traction as a strategy to counter the force field, we com-
puted the average EMG level in a window of 100ms
before movement onset for the 10 first and the 10 last tri-
als. As EMG data has more variability than kinematic
data, we chose 10 trials to have a good measure of the av-
erage EMG behavior. In this experiment, three of the 12
participants were excluded from the EMG analysis be-
cause of problems with the EMG recordings. Paired t
tests were used as post hoc analysis and in the case of
nonsignificant results we computed the Bayes Factors
(BFs). BF stands for the ratio between the likelihood of H1
(there being a significant difference between the two
populations) over the likelihood of H0 (there being no
significant difference between the two populations). A
BF between 0.33 and 1 provide small evidence of no
difference, a BF between 0.1 and 0.33 provides sub-
stantial evidence, and a BF, 0.1 indicates strong evi-
dence (Keysers et al., 2020).
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Experiment 2
In experiment 2, trials before the introduction of the

force field were considered baseline trials. As for experi-
ment 1, we used a linear mixed model analyses on each
of the extracted parameters (MD, PL, and MS) with Arm
(left and right) and force field presence (FF) as fixed ef-
fects, and a random intercept per participant. We also ex-
tracted MS on trials immediately following a catch trial
and performed a linear mixed model analysis with Arm
and Trial number as fixed predictors. Finally, for the catch
trials, we performed a paired-wise t test with the arm as
the test variable. All post hoc analyses were performed
using Bonferroni adjusted t tests.
Finally, to determine whether participants used co-con-

traction, we computed the average EMG level in a window
of 100ms before movement onset for the 10 first and 10
last null field trials of experiment 2. We performed a re-
peated measure ANOVA with arm and position (early vs
late adaptation) as within factor parameters. Paired t tests
were used as post hoc analysis and in the case of non-
significant results we computed the BFs.

Results
Experiment 1
In experiment 1 participants were exposed to force field

perturbations, with the left arm exposed to a counter-
clockwise force field and the right arm exposed to a
clockwise force field. The performance of participants
improved during each block, resulting in trajectories
with significant lateral deviations in the first trials that
became more rectilinear as trials progressed (Fig. 2A).

We extracted PL, MD, and MS of the hand trajectories
to measure changes in reaching movements across
trials.
PL and MD decreased as the number of trials increased

(Fig. 2B), thereby highlighting that participants adapted
their reaching movements in the presence of the force
field. A linear mixed model analysis showed that PL (mar-
ginal R2 = 0.45 and conditional R2 = 0.557) presented a
significant effect of arm (estimate = �0.007, df = 1, F=
28.16, p, 0.001), a significant effect of trial number (esti-
mate = �0.00025, df = 179, F=1305.1, p, 0.001) and a
significant interaction effect (estimate =0.00003, df = 179,
F=5.17, p=0.023). Similarly, MD (marginal R2 = 0.27 and
conditional R2 = 0.43) presented a significant effect of arm
(estimate = �0.0025, df = 1, F=30.10, p, 0.001) and trial
number (estimate = �0.000075, df = 179, F=6.38, p=
0.01) but no significant interaction (estimate = 0.00001,
df = 179, F=1.79, p=0.18). The significant effect of trial
number on both PL and MD indicates that participants
performed straighter movements as trials progressed
(Fig. 2A). The significant effect of arm indicates that the
left arm had a longer PL (estimate = 7 mm) and was devi-
ated more (estimate= 1.5 mm) across all trials, while the
significant interaction indicates differences in learning
rates for PL between the two arms.
MS presented a different evolution across trials, in-

creasing during the first trials, reaching a maximum rap-
idly, and then decreasing for the remaining trials (Fig. 2B).
A linear mixed model (marginal R2 = 0.099 and conditional
R2 = 0.36) showed a significant effect of arm (estimate =
�0.032, df = 1, F=23.45, p, 0.001), trial number (esti-
mate = �0.0004, df = 179, F=152.16, p, 0.001) and no

Figure 2. First and last trajectories for the force field perturbed trials, the evolution of parameters across all trials, and histograms of
the learning rate of path length and maximal deviation. A, First and last force field trials for the left arm (green line) and the right arm
(orange line) of participants. B, Mean and Standard Error of the Mean (SEM) of Path length (PL), maximal deviation (MD), maximum
speed (MS), and maximum force (MF) across perturbed trials of experiment 1 for the right arm (orange line) and the left arm (green
line). C, Bootstrapping results of the learning rate (parameter b2 in Eq. 2) of the path length and maximal deviation for the left and
right arm of all force field trials and all participants.
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significant interaction (estimate =0.000008, df = 179, F=
0.02, p=0.89). This indicates the arms performed the
reaching movements at different speeds, with the left arm
having a higher MS across all trials (estimate = 0.032 m/s).
Moreover, both arms displayed a significant but similar
change across trials (Fig. 2B).
The maximum force followed a similar evolution to MS

(Fig. 2B), linear mixed model analysis (marginal R2 = 0.018
and conditional R2 = 0.032) of the maximum force applied
by each arm to counter the perturbation during force field
trials showed a significant effect of Arm (F=28.3721,
df = 1, p, 0.001), with the left arm applying more force
and no significant effect of trial number (df = 179, F=0.27,
p=0.6) and no significant interaction (df = 179, F=0.45,
p=0.5). Indeed, the left arm produced a higher average
peak force to counter the perturbation (10.4066 6 1.91 N)
than the right arm (9.83926 2.02 N).
Post hoc analysis of the difference between the left and

right arm of the first five and last five trials highlights that
there was a significant difference in PL in the first five trials
(t=2.32, df = 57, p=0.02, d=0.31) with the left arm having
a larger PL than the right arm, and no significant differ-
ence for the last five trials (t=1.69, df = 59, p=0.09,
d=0.22). For MD, we found no significant difference in
the first five trials (t=1.86, df = 57, p=0.067, d=0.24) or
the last five trials (t=1.67, df = 59, p=0.09, d=0.22). This
indicates that a difference exists in the first perturbed
reaching movements of the two arms, with the right arm
being less perturbed by the force field and presenting a
straighter trajectory (Fig. 2A). The difference disappeared
in the late trials where participants displayed similar devi-
ations across the arms (Fig. 2A). A paired t test comparing
MS of the first five trials showed a nonsignificant differ-
ence between the two arms (t=1.87, df = 57, p=0.065,
d=0.25), whereas a paired t test of the last five trials
showed a significant difference between the right and left
arm (t=3.07, df = 59, p=0.003, d=0.4, mean of the
differences= 0.03 m·s�1) confirming that the left arm had
a greater maximum speed during the last trials (Fig. 2B).
This is important because it already highlights different
control strategies: indeed, as the force was proportional
to velocity, the perturbation force was larger to the left
arm, although we have seen above that there were no dif-
ferences between the two arms in PL and MD in the last
five trials.
We performed an exponential fit on PL and MD to deter-

mine the rate of learning (b2 in Eq. 2) of each arm. We per-
formed this exponential fit on all participants together,
and we performed a bootstrap analysis with resampling of
participants with repetition to determine the distribution of
the parameters of the fit (Fig. 2C). A paired t test compar-
ing the two arms showed a significant difference in the
learning rate for both PL (t=11.12, df = 999, p, 0.001,
d=3.41) and MD (t=2.50, df = 999, p,0.001, d=0.45),
with the left arm learning at a faster rate (Fig. 2C). More
precisely, we observe differences in learning rate that
suggest faster adaptation in the left arm; however, the dif-
ference was small.
These results highlight that both arms had similar per-

formances during the last trials, with similar maximal

deviations and a slightly larger PL for the nondominant
arm. However, the nondominant arm did perform the task
at a higher speed and used a larger force to counter the
perturbation during the task.
To further characterize how participants adjusted their

reaching movement to the force field specifically, we ana-
lyzed the correlation between the force applied by the
participants on the robot handle (Fx in Fig. 3A) and the
force applied by the force field (proportional to Vy in Fig.
3A). We can observe that during the first trial, Fx was not
well correlated with Vy for both the left and right arms (Fig.
3A), the correlation improved across trials and both
signals became more closely correlated during the late
adaptation phase (Fig. 3A). The correlation between Fx

and Vy improved across trials (Fig. 3B) with the correla-
tion of the left arm going from 0.5689 6 0.204 in the
first trial to 0.84 6 0.0814 in the last trial, and from
0.4576 6 0.1968 to 0.885 6 0.033 for the right arm. A
linear mixed model analysis (marginal R2 = 0.41 and
conditional R2 = 0.58) showed a significant effect of
arm (estimate = 0.035, df = 1, F = 60.75, p, 0.001) and
trial number (estimate =0.00064, df = 179, F=1003, p,
0.001) and no interaction (estimate= 0.00007, df = 179,
F=1.80, p=0.0715). On the one hand, the significant ef-
fect of trial number highlighted the increase in correlation
across trials, which indicates that both arms adapted
to the presence of the force field. On the other hand, the
significant effect of the arm indicated different levels of
correlation across trials. We compared the average corre-
lation of the last 20 trials of the left arm and the right arm
for each participant to analyze whether participants
showed greater improvement with the dominant or the
nondominant arm. A paired t test showed a significant
effect of Arm (t = �10.55, df=251, p, 0.001, d = �0.66;
Fig. 3B,C) on the correlation for the last 20 trials. The domi-
nant arm presented a higher average correlation across the
last 20 trials for eleven of the 12 participants, which indi-
cated that participants adapted to the perturbation more
with their dominant arm (Fig. 3C). Furthermore, we com-
puted the Pearson’s correlation coefficient to determine
whether participants presenting a good adaptation with
one arm also presented a good adaptation with the other
arm. This correlation highlighted that participants with a
good adaptation on one arm were also good with the other
arm (r=0.74, p=0.005; Fig. 3C).
Catch trials where no perturbation was applied were

randomly interleaved during experiment 1 to observe the
after-effects of the adaptation of control strategies of the
two arms. The absence of a force field caused partici-
pants to deviate in the direction opposite to the force field
(Fig. 4A). All three variables (MD, PL, and MS) showed a
difference across arms (Fig. 4B–D). A paired-wise t test
showed a significant difference for MD (t=6.61, df = 354,
p, 0.001, d=0.35), PL (t=4.03, df = 354, p , 0.001,
d=0.21) and MS (t=3.71, df = 354, p,0.001, d=0.2).
Qualitatively similar results were observed when the sta-
tistical tests were performed on subject average. This
shows that the dominant arm was less impacted by the in-
troduction of catch trials, while the nondominant arm
used a higher forward speed than the right arm.
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Experiment 2
Experiment 2 was designed to probe feedback re-

sponses to unexpected force fields and investigate
possible differences in participants’ ability to adapt the
feedback response of an ongoing movement (Crevecoeur
et al., 2020a). They performed null field reaching move-
ments to a target presented 15cm away from the starting
positions. After 25 null field trials with each arm (baseline;
BL), force field trials, in either the clockwise or counter-
clockwise direction, were introduced on one out of five tri-
als. The force field trials and null field trials were interleaved
in random order. During baseline trials participants’ per-
formance was stable. Once force field trials were intro-
duced MD and PL showed small increases while MS

increased more significantly for both arms in null field trials
(Fig. 5A). A change in MS has been linked to a change in
the control strategy used to perform reaching movements
(Crevecoeur et al., 2019). Therefore, to examine whether
participants used a more robust control strategy following
the introduction of force field trials, we performed a linear
mixed model analysis on MS with Arm and force field (FF)
as within-trials parameters. The linear mixed model had a
marginal R2 = 0.07 and a conditional R2 = 0.3. We found a
significant effect of FF (df =23, F=404.276, p, 0.001), no
significant effect of arm (df =1, F=0.0737, p=0.786) and
no interaction (df = 1, F=0.3574, p=0.55). A post hoc anal-
ysis showed no significant difference in MS between the
two arms, before and after the introduction of force field

Figure 4. Trajectories of first and last catch trials of experiment 1 for all participants and mean maximal deviation, path length, and
maximum speed of participants across all catch trials of experiment 1. The left arm is presented using a green color across all pan-
els and the right arm is presented using orange color. In panels B–D, the global average for each arm is presented as a black dot.
A, Trajectories of the first and last catch trials for all participants. B, Maximal deviation across all catch trials. C, Path length across
all catch trials. D, Maximum speed across all catch trials.

Figure 3. Correlation between the force exerted by participants on the handle of the robotic arm and the force exerted by the robot
on the participants’ arms. A, The mean and SEM of the normalized x force applied by the participant on the handle (blue line) and
the normalized y velocity of the reaching movement (black line) for the first and last perturbed trials. The force and velocity were nor-
malized to their peak value and averaged across all participants. B, Mean and SEM of the correlation between force and velocity
across all perturbed trials for the left arm (green) and the right arm (orange). C, Correlation average for the final 20 trials for the left
and the right arm of each participant (black dots), horizontal and vertical error bars represent the standard deviations of the correla-
tion of the left arm and the right arm, respectively.
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trials (before force field: p=0.786; after force field: p=
0.433). This result shows that participants adapted their
control gains without a clear difference between the two
arms.
To assess the influence of force field trials on the con-

trol strategy in more detail, we measured the change in
MS on the trials immediately following a force field trial
(Fig. 5B). MS increased after a force field trial and slowly
diminished in the following trials without ever coming
back to the levels observed during the baseline trials. A
linear mixed model analysis (marginal R2 = 0.05 and a
conditional R2 = 0.22) showed a significant effect of Arm
(df = 1, F=6.23, p=0.0126) and Trial number (df = 6, F=
62.17, p, 0.001) and no interaction (df = 6, F=0.42, p=
0.52). This suggests that MS changed across trials and
that both arms showed different maximum speeds across
baseline and trials following force field trials. A post hoc
analysis showed a significant difference in MS between
baseline trials and trials following a force field trial for both
the right arm (FF1 1 – BL=0.07, CI = [0.05, 0.1] m/s, p ,
0.001) and the left arm (FF 11 – BL=0.09, CI = [0.06,
0.12], p, 0.001) confirming the increase in MS after a
force field trial. Further analysis showed a significant dif-
ference between the right and left arm for trial FF1 1
(p=0.008) and no significant difference for other trials
(p.0.139). Concerning the PL, a linear mixed model anal-
ysis (marginal R2 = 0.018 and a conditional R2 = 0.18)
showed a significant effect of Arm (df = 1, F=30.95, p,
0.001), no significant effect of Trial number (df = 6, F=
0.0004, p=0.98) and no significant interaction (df = 6,
F=0.16, p=0.6867). This highlights that the nondominant
had a trajectory that was slightly more curved than the
dominant arm, but the difference was ,1 mm in maximal
deviation (see Fig. 5B).
Looking at the adaptation to the randomly interleaved

force field trials, participants showed an adaptation
across trials as shown by an increase in the correlation
between the force applied by the robot and the force pro-
duced by the participant (Fig. 6A,B). For force field trials
with the same direction as in experiment 1 (Fig. 6A), par-
ticipants showed a greater correlation with the right arm

when compared with the left arm (Fig. 6C,E), whereas this
difference was not present during force fields in the other
direction (Fig. 6D,F). A linear mixed model analysis of the
inward force fields (marginal R2 = 0.024 and a conditional
R2 = 0.27) shows a significant effect of the trial (df = 23,
F=15.86, p, 0.001), no significant effect of the arm
(df = 1, F=1.54, p=0.215), and no significant interaction
(df = 23, F=0.18, p=0.66). This confirms the feedback ad-
aptation across trials and the lack of difference between
the arms (Fig. 6F). For the outward force fields, the linear
mixed model analysis (marginal R2 = 0.098 and a condi-
tional R2 = 0.38) showed a significant effect of the arm
(df = 1, F=23.49, p, 0.001) and trial (df = 23, F=67.12,
p, 0.001) and no interaction (df = 23, F=1.42, p=0.23)
which confirms the better adaptation of the dominant arm
when compared with the nondominant arm (Fig. 6E).
Altogether, these results suggest that the right arm shows
a greater adaptation of its behavior to the presence of a
force field.

Co-contraction
We extracted the mean EMG signal for PD and PM dur-

ing a period 100ms before movement onset to examine
whether participants used muscle co-contraction to
modulate the limb intrinsic properties and counter the
force field (Fig. 7). This time window was selected as im-
pedance control is assumed to be effective if active be-
fore movement. Indeed, if measured during movement,
changes in EMG are confounded with feedback control
(Franklin et al., 2008).
In experiment 1, we extracted these values for the first

10 and last 10 force field trials (Fig. 7A). Three of the 12
participants were excluded from the analysis because of
EMG electrodes disconnecting during the experiment. A
linear mixed model analysis on PD (marginal R2 = 0.052
and a conditional R2 = 0.45) showed no significant effect
of trial (F=0.22, df = 30, p=0.64), no significant effect of
arm (F=3.80, df = 30, p=0.06) and no interaction (F=
0.13, df = 30, p=0.72). A post hoc analysis showed no dif-
ference between left and right arm for the first 10 trials

Figure 5. Evolution of extracted parameters in the null field trials in experiment 2. A, Mean and SEM of the path length, maximal de-
viation, and maximal speed of the reaching trajectories for the left arm (green line) and the right arm (orange line) across all trials.
The gray zone indicates baseline trials without force field trials. B, Mean MS and MD for baseline trials and trials following force field
trials for each participant. The x-axis shows the index of the trials after a force field trial.
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(95% CI = [�0.301, 1.35], p =0.1846, BF=0.5) and no sig-
nificant difference between the two arms for the last 10 tri-
als (95% CI = [�1.15, 3.35], p=0.2977, BF=0.5). Similarly,
a linear mixed model analysis on PM (marginal R2 = 0.067
and a conditional R2 = 0.495) showed no significant effect
of trial (F=1.93, df = 30, p=0.17), no significant effect of
arm (F=2.33, df = 30, p=0.14) and no interaction
(F=1.45, df = 30, p=0.2373). A post hoc analysis showed
no difference between left and right arm for the first 10 tri-
als (95% CI = [�0.09, 1.01], p =0.09, BF=1.1) and no sig-
nificant difference between the two arms for the last 10
trials (95% CI = [�0.606, 0.36], p=0.5894, BF=0.35).
These results indicate that co-contraction was not used
as a strategy to improve performance when facing the
force field.
In experiment 2, we computed these same values for

the first ten baseline trials and the last ten null field trials
(Fig. 7B). A linear mixed model analysis for PD (marginal
R2 = 0.032 and a conditional R2 = 0.67) showed a

significant effect of arm (F=4.22, df = 48, p=0.045), no
significant effect of force field presence (F=2.23, df = 48,
p=0.1419) and no significant interaction (F=0.5887, df =
48, p=0.55). A post hoc analysis showed no difference
between left and right arm for the first 10 trials (95% CI =
[�0.04, 0.13], p =0.311, BF = 0.41) and no significant
difference between the two arms for the last 10 trials
(95% CI = [�0.01, 0.17], p = 0.066, BF = 0.63). For PM,
the linear mixed model (marginal R2 = 0.06 and a con-
ditional R2 = 0.57) showed a significant effect of force
field presence (F = 1.73, df = 48, p = 0.008), no signifi-
cant effect of arm (F = 1.73, df = 48, p = 0.195) and no
interaction effect (F = 0.09, df = 48, p = 0.764). A post
hoc analysis showed a significant increase between
the first ten baseline trials and last ten null-field trials
for the right arm (95% CI = [�0.39, �0.02], p = 0.034,
d = �0.43, BF = 0.31) and no significant difference
for the left arm (95% CI = [�0.35, 0.02], p = 0.086,
BF = 0.36).

Figure 6. Outputs of the force field trials of experiment 2. A, Representative traces for outward force field trials for the left arm
(green line) and the right arm (orange line). The hand paths shown in the figure are for demonstration purposes and do not represent
real data. B, Representative traces for inward force field trials for the left arm (green line) and the right arm (orange line). C, The
mean and SEM of the normalized x force applied by the participant on the handle (blue line) and the normalized y velocity (black
line) of the outward force field trials reaching movements for the first and last perturbed trials. The force and velocity were normal-
ized to their peak value and averaged across all participants. D, The mean and SEM of the normalized x force applied by the partici-
pant on the handle (blue line) and the normalized y velocity (black line) of the inward force field trials reaching movements for the
first and last perturbed trials. E, Mean and SEM of the correlation between force and velocity across all perturbed trials for the left
arm (green) and the right arm (orange) for outward force field trials. F, Mean and SEM of the correlation between force and velocity
across all perturbed trials for the left arm (green) and the right arm (orange) for inward force field trials.
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Altogether, these results suggest that the changes in
performance in both experiment 1 and experiment 2 were
not related to co-contraction modulating the limb intrinsic
properties.

Discussion
We explored control and adaptation strategies to inves-

tigate differences linked to hand dominance. We found
that participants adapted their behavior in the presence of
a force field (experiment 1) with very similar patterns of
adaptation across the two arms. We observed that the
nondominant arm presented a greater forward speed, a
greater reactive force that was a direct consequence of
the force field definition, similar deviation, and reduced
correlation when compared with the dominant arm. We
also showed that when confronted with randomly inter-
leaved force field trials (experiment 2) participants in-
creased the speed of their reaching movement even
during trials where no force field was present. Moreover,
in experiment 1 we observed that participants showed a
better adaptation with their dominant arm with a good
correlation between the adaptation of the two arms (Fig.
3C). We did not observe any main change in co-contrac-
tion that could explain the changes in behavior observed

across early and late phases of exposure to disturbances
in both experiments, although trial-by-trial modulation of
co-contraction could have been evoked transiently by the
force field of experiment 2.
Handedness is often understood as a specialization of the

role of each arm. It has been suggested that the dominant
arm relies more heavily on “predictive” control, using internal
models of limb dynamics more efficiently (Bagesteiro and
Sainburg, 2002) while the nondominant arm relies on imped-
ance control mechanisms (Bagesteiro and Sainburg, 2003;
Mutha et al., 2013; Yadav and Sainburg, 2014; Woytowicz
et al., 2018; Jayasinghe et al., 2022). This hypothesis sug-
gested that the dominant arm is more specialized in the con-
trol of movements whereas the nondominant arm is more
specialized in the control of arm postures. The specialization
of each arm has also been linked to the specialization of the
left and right hemisphere of the brain, with the hemisphere
contralateral to the dominant arm being specialized in pre-
dictive control of limb dynamics and the other hemisphere
being specialized in controlling the limb impedance. Indeed,
papers studying deafferented patients showed lateralized
differences in the effect of the lesion in different aspects of
control (Schaefer et al., 2007, 2009, 2012). They observed
that damage to the left hemisphere led to deficits in trajec-
tory control, whereas as damage to the right hemisphere led
to deficits in final position control. More recently, studies on
somatosensory deafferentation also revealed lateralized
roles of proprioceptive feedback (Jayasinghe et al., 2020,
2021), with the right arm failing to stabilize at the end-point
of the reaching movement and the left arm showing poor
corrections of the trajectory. However, other results have
shown that the two arms can develop feedforward adapta-
tion equally well in an experiment in which participants per-
formed fast straight reaching movements, with similar force
fields to our experiments (Reuter et al., 2016). We tested the
specialization hypothesis with comparisons of the two arms
of right-handed participants in two experimental paradigms
where the trials with each arm were randomly interleaved.
This approach allowed us to focus on individual differences
within participants and enabled a direct comparison of the
adaptation mechanisms used by the two arms. Our data do
not provide support for this previous model. Indeed, con-
cerning predictive aspects, we found that the two arms
adapted very well in parallel with comparable movement pa-
rameters and learning rates, similar to Reuter et al. (2016).
Moreover, both arms displayed similar reductions in maxi-
mal deviation and PL (Fig. 2). In experiment 1, differences
were highlighted in the speed of the movement, the force
and the correlation between the perturbing force applied by
the robotic arm and the reactive force produced by the par-
ticipant, which suggested a better adaptation to the force
field of the dominant arm (Fig. 3).
During the initial trials of the task, participants have no

knowledge of the force field that will be applied to their
arm. We consider the problem of reaching without an ac-
curate model of the perturbation in the context of robust
control (H1 control). Robust control and linear quadratic
Gaussian (LQG) control are mathematically very similar
but have one significant difference. On the one hand, LQG
assumes that disturbances in the system can be modeled

Figure 7. Mean and SEM of normalized EMG of the posterior
deltoid and the pectoralis major averaged across all participants
for the right arm (orange line) and the left arm (green line). The
mean EMG for both muscle groups was computed in a 100-ms
window before movement onset (the gray region in the plot). A,
Mean and SEM of the normalized EMG of the 10 first and 10
last force field trials in experiment 1. B, Mean and SEM of the
normalized EMG of the 10 first baseline trials and 10 last null field
trials after the introduction of force field trials in experiment 2.
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by white Gaussian noise with known covariance matrices
(Todorov and Jordan, 2002). On the other hand, robust
control does not make any assumption on the exogene-
ous perturbation signal, leading to a control solution that
aims to minimize the impact of a “worst-case” perturbation
on the system. In reaching movements this results in an in-
crease in control gains that produces larger speed and
more vigorous responses to external loads (Crevecoeur et
al., 2019). Of course, a controller can be placed in a spec-
trum between optimal control, which assumes a perfect
model of the perturbation, and robust control, which as-
sumes no model of the systematic force disturbances.
It has been shown that a modulation of reaching speed

when confronted to a force field is linked to the use of a
more robust control strategy (Crevecoeur et al., 2019). In
our case, we observed an increase in movement speed
across trials in both experiments 1 and 2. In experiment 1,
the robust strategy is highlighted by considering that the
movement speed and the maximum force in the nondomi-
nant arm were larger, yet the deviation was comparable.
Because the force field was proportional to velocity, this
means that they used larger feedback gains without rely-
ing on a more accurate model since the continuous corre-
lations between commanded and measured forces were
reduced in the nondominant arm. Thus, their strategy con-
sisted of a stronger disturbance rejection that did not rely
on an accurate model of the force field, which corresponds
to robust control. In experiment 2, we also observed that
MS of null field reaching movements for both arms increased
once force field trials were introduced (Fig. 5B) with no dif-
ference between the two arms. This suggests that both
arms relied on a comparable modulation of the robustness
of control in the random context of experiment 2.
Interestingly, in experiment 1 we also observed that the

nondominant arm was more impacted by the catch trials
as shown by a greater PL, PL, and MS (Fig. 4). This could
result from the greater speed and force of the reaching
movement of the nondominant arm during force field trials
as well as the less accurate representation of the force
field (smaller correlation in Fig. 3B). Indeed, when per-
forming reaching movements, participants are likely ex-
pecting a higher perturbation force for the nondominant arm
when compared with the dominant arm, leading to a greater
perturbation when the force field was unexpectedly removed.
Robust control differs from impedance control on two

aspects. First, robust control assumes errors (or uncertain-
ties) in the accuracy of the representation of the perturba-
tion leading to an increased speed and vigorous response
to perturbations (Crevecoeur et al., 2019). Impedance
control assumes that an increase in the contraction of ago-
nist and antagonist muscles will lead to a greater stabiliza-
tion of the joint (Hogan, 1984). Therefore, we expect the
robust controller to display an increase in control gains, re-
sulting in faster movements toward the target and more
vigorous responses to perturbations. Our data shows that
the neural controller was more robust in the sense that the
increase in feedback responses reduced the impact of the
perturbations with less adaptation. All of this without assum-
ing that such a response is obtained through the activation
of agonist and antagonist muscles. In experiment 1, the

occurrence of force field disturbances evoked both fast-
er movements and more vigorous responses to pertur-
bations. With the nondominant arm showing both higher
movement speed and higher force to counter the perturba-
tion when compared with the dominant arm, suggesting
the use of a more robust controller for the nondominant
arm. In experiment 2, we observed an increase in MS in
both arms after force field trials were introduced, suggest-
ing the use of a more robust controller. Hence, our results
suggest a robust control strategy, which can be dissoci-
ated from automatic stiffening of the limb through imped-
ance control (Hogan, 1984; Burdet et al., 2001). Indeed, we
did not observe a particular increase in muscle co-contrac-
tion and such an increase in co-contraction could have
only moderately altered the intrinsic properties of muscles
(Crevecoeur and Scott, 2014).
What our interpretation adds to the field can be under-

stood in terms of the quality of internal representations
used to perform reaching movements. First, we emphasize
feedback control models because a clear difference arose
in the correlation which includes online compensation
throughout the whole movement (Fig. 3). From a compu-
tational perspective, optimal control models have often
assumed that movement disturbances followed Gaussian
distributions (Todorov and Jordan, 2002), without explic-
itly formulating the problem of control with unmodelled
disturbances. Such unmodelled disturbances may involve
model errors, or errors because of novel environments, in
which case, feedback control can either compensate for
this disturbance without knowledge, which is the purpose
of a robust controller, or learn about the novel dynamics
and adjust control accordingly (i.e., adaptation). The abil-
ity to derive novel optimal control laws following adapta-
tion thus depends on the ability to acquire a novel and
accurate representation of the dynamics of a novel force
field. We showed that both arms were able to do so, with
a small advantage for the dominant arm. Moreover, in this
framework, the fact that the nondominant arm made greater
use of a robust policy may reflect that the novel internal
model on this side was slightly less accurate.
Interestingly, participants who showed a greater corre-

lation with the dominant arm also showed a greater corre-
lation with the nondominant arm (Fig. 3B). This is in line
with results from (Maurus et al., 2021) who argued that
the internal model of limb dynamics was similar across
arms. Moreover, Maurus and colleagues showed that
sensory feedback has a similar role for the dominant and
the nondominant arm when countering random disturban-
ces with the arms during postural control. In our experi-
ments, we aimed at minimizing the potential transfer of
knowledge between one arm and the other by randomiz-
ing the order of the arm performing the reaching move-
ment during our task. Therefore, we think that it is unlikely
that transfer fully accounts for the relationship between
correlation levels across participants. However, it could
still account for some part of the observed effect as it has
been shown that interlimb transfer is asymmetrical, with
most of the learning transfer going from the dominant to
the nondominant arm (Wang and Sainburg, 2004; Galea
et al., 2007), limited in magnitude (Taylor et al., 2011;
Mostafa et al., 2014), and its magnitude is not affected by
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the training schedule (Joiner et al., 2013). Our results indi-
cate that both arms of all participants share a common
mechanism of adaptation.
In experiment 2, we also observed difference between

the two force field directions, with participants showing a
greater adaptation to the perturbation for both arms for
the inward oriented force field than for the outward ori-
ented force fields (Fig. 6). These differences could arise
from directional preferences of movements and on the
muscles that are active in countering the force field per-
turbations. Indeed, biomechanical considerations have
been shown to impact the choice of the arm used to per-
form reach movements (Bryden and Roy, 2006), and of
preferential direction of force generation during bimanual
tasks (Córdova Bulens et al., 2018). Such preferential direc-
tions could lead to the differences in the response to the
perturbation observed in experiment 2, with participants
having a greater ease to react to perturbations driving the
arm inwards.
It has to be noted that participants were self-assessed

right-handed and therefore could present different degrees
in laterality. Indeed, previous studies have shown that the
degree of laterality can impact the transfer of learning
across the two arms (Lefumat et al., 2015). However, the
use of a random trial schedule in our study should minimize
the transfer of learning. Moreover, only right-handed partic-
ipants performed the experiment, raising the question of
whether the results would extend to left-handed individu-
als, who tend to be more ambidextrous than right-handed
individuals. It is worth noting however that differences in
learning transfer and control have been observed between
right and left handed participants in similar experiments
(Wang and Sainburg, 2006).
To conclude, our results highlight differences in adapta-

tion and behavior between the two arms. We observed a
tendency for both arms to use a more robust control strat-
egy when facing perturbing force fields. As generally ex-
pected, the dominant arm showed better adaptation than
the nondominant arm, with the nondominant arm relying
on a more robust control strategy. Our results also suggest
that both arms share a similar mechanism of adaptation.
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