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Abstract

Hippocampal CA1 cells take part in reliable, time-locked activity sequences in tasks that involve an association
between temporally separated stimuli, in a manner that tiles the interval between the stimuli. Such cells have
been termed time cells. Here, we adopt a first-principles approach to comparing diverse analysis and detection
algorithms for identifying time cells. We generated synthetic activity datasets using calcium signals recorded in
vivo from the mouse hippocampus using two-photon (2-P) imaging, as template response waveforms. We as-
signed known, ground truth values to perturbations applied to perfect activity signals, including noise, calcium
event width, timing imprecision, hit trial ratio and background (untuned) activity. We tested a range of published
and new algorithms and their variants on this dataset. We find that most algorithms correctly classify over 80% of
cells, but have different balances between true and false positives, and different sensitivity to the five categories of
perturbation. Reassuringly, most methods are reasonably robust to perturbations, including background activity,
and show good concordance in classification of time cells. The same algorithms were also used to analyze and
identify time cells in experimental physiology datasets recorded in vivo and most show good concordance.

Significance Statement

Numerous approaches have been developed to analyze time cells and neuronal activity sequences, but it is
not clear whether their classifications match, nor how sensitive they are to various sources of data variability.
We provide two main contributions to address this: (1) a resource to generate ground truth labeled synthetic
two-photon (2-P) calcium activity data with defined distributions for confounds such as noise and background
activity, and (2) a survey of several methods for analyzing time cell data using our synthetic data as ground
truth. As a further resource, we provide a library of efficient C11 implementations of several algorithms with a
Python interface. The synthetic dataset and its generation code are useful for profiling future methods, testing
analysis toolchains, and as input to computational and experimental models of sequence detection.

Introduction
The mammalian hippocampus is important for the for-

mation of several kinds of memory, one of which is the as-
sociation between stimuli occurring separately in time.
Time cells were originally described using tuning curves
from single-unit recordings of cellular activity when rats
ran on a running wheel in between behavioral decisions
(Pastalkova et al., 2008). These cells exhibited time tuning
of the order of seconds. Several further studies have
shown that small populations of hippocampal CA1 cells

fire in time-locked sequences, “bridging” the time gap be-
tween stimulus and response in temporal delay tasks last-
ing several seconds (Pastalkova et al., 2008; MacDonald
et al., 2011, 2013; Kraus et al., 2013). Cellular calcium
imaging studies have also been used to report time cells,
albeit at slower sampling rate (Modi et al., 2014; Mau et al.,
2018). For example, similar interval tiling properties of hip-
pocampal CA1 neurons were observed on much shorter,
500ms timescales in a Trace Eyeblink Conditioning (TEC)
task (Modi et al., 2014). Spontaneous sequential activity
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has also been reported in free-running animals (Villette et
al., 2015). Such cells with a well-defined temporal firing
field are commonly termed time cells (MacDonald et al.,
2011; Eichenbaum, 2017). However, there is a wide diver-
sity of methods used to detect and characterize time cells,
and it is not clear how consistent these methods are in
classifying cells as time cells. It is also unclear how sensi-
tive each method may be to a range of physiological sour-
ces of variability and noise. A consistent set of benchmarks
of classification performance is necessary to draw accu-
rate and comparable conclusions from real physiology
data across different methods and different laboratories.
Our approach in the current study is not prescriptive, but
pragmatic: we ask how existing methods work when we al-
ready know exactly which cells are time cells, and we de-
termine howwell each method deals with imperfect data.
The major approaches used to identifying time cells are

tuning curves (peristimulus time histograms), temporal in-
formation (TI), principal component analysis with time off-
set, support vector machines, and bootstrap analysis of
activity peaks. Several studies have used a temporal
delay task lasting several seconds, in which a rat runs on
a treadmill during the delay period. A temporal information
metric (Mau et al., 2018) has been used to find individual
time cells in such tasks. A distinct task involves monitor-
ing recurrent sequences of activity during free-running
treadmill recordings. Such datasets have been analyzed
using offset principal component analysis (Kaifosh et al.,
2013; Villette et al., 2015; Malvache et al., 2016), to first
denoise two-photon (2-P) data, establish correlation coef-
ficients, and detect hippocampal CA1 sequences. Time
cells have also been reported for much shorter duration
tasks (;500ms) such as hippocampus-dependent trace
conditioning (Tseng et al., 2004; Modi et al., 2014). Time
cells in these 2-P datasets were identified using yet an-
other method, in which bootstrapping was used to deter-
mine whether peak activity at a given time was different
from chance. This method was termed ratio of ridge/
background (Modi et al., 2014). Yet other methods have
utilized support vector machines to categorize time cells
(Ahmed et al., 2020). Additionally, while the applicability
of a variety of algorithms for place cell detection has been
previously compared (Souza et al., 2018), we have

focused on methods which are fully automatable and
which scale well to large datasets, specifically comparing
algorithms to detect time cells.
Time cell detection is closely related to sequence detec-

tion, which has been fraught with statistical challenges. For
example, detection of synfire chains has been the subject
of some debate (Ikegaya et al., 2004; Lee and Wilson,
2004; Mokeichev et al., 2007; Schrader et al., 2008). Time
cell detection is usually easier, in that in most experiments
there is a well-defined initiating stimulus and a known
delay or trace phase (however, see Villette et al., 2015). For
any cell identified as a time cell, it is desirable to define a
score to measure quality or reliability along with decodable
time. Hence it is also valuable to be able to compare the
score of a time cell across recordings and even between
groups, using well defined, analog measures. Each algo-
rithm currently used in the literature implements a different
scoring method and it is as yet unclear whether compara-
ble results would be observed with other metrics.
In the current study, we compare these diverse meth-

ods by estimating their performance on synthetic test data-
sets where we controlled all features of the data, including
the identity and timing of each time cell. The development
of a synthetic dataset serves two purposes. First, it facili-
tates principled comparison of different methods, since the
ground truth is known. Second, it facilitates an analysis
over many dimensions of input variance, corresponding
to very different experimental and neural circuit con-
texts. Richness in variety of input data allows for better
sampling of the performance of the analyses under
many potential conditions. We have explored variance
along the key dimensions of noise, timing imprecision,
signal widths, frequency of occurrence, as well as sev-
eral others. To strengthen the applicability of this syn-
thetic data resource to real data, our generated output
uses sampled experimental data.
Our experimental data, synthetic dataset, and code

base are intended to be a resource for algorithm testing
and optimization.

Materials and Methods
Animals, chronic implants, and behavioral training
All animal procedures were performed in accordance

with the National Centre for 114 Biological Sciences
Institutional Animal Ethics Committee (project ID NCBS115
IAE-2016/20(M)), in accordance with the guidelines of the
Government of India (Animal Facility CPCSEA registration
number 109/1999/CPCSEA) and equivalent guidelines of the
Society for Neuroscience.
To chronically monitor the activity of the same population

of hippocampal CA1 cells, we implanted two- to four-
month-old male and female GCaMP6f mice [Tg(Thy1-
GCaMP6f)GP5.17Dkim JAX stock #025393] with an
optical window and head-bar using a protocol adapted
from previously published methods (Dombeck et al., 2010).
Briefly, anesthesia was induced with 2–3% isoflurane in a
chamber, and subsequently maintained (breathing rate of
;1Hz) with 1–2% isoflurane, directly to the mouse’s nose
using an inverted pipette tip. Surgery was performed on a
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temperature-controlled table, maintained at 36.5°C, while
the anaesthetized animal was cheek-clamped. After a hair-
cut, a ;5 cm piece of scalp was cut open to reveal the
skull. A ;3 mm circular craniotomy was then performed at
a position 2 mm caudal and;1.5 mm lateral to bregma, on
the left hemisphere. After gently tearing off the dura, the
underlying cortex was carefully aspirated till the corpus cal-
losum (CC) layer, clearing out any blood using repeated
washes of cortex buffer (Modi et al., 2014). A small thick-
ness of corpus callosum fibers were then carefully aspi-
rated till horizontal CC fibers were sparse but visible. The
cortex buffer was then carefully suctioned out to dry the
exposure till tacky. The exposure was then quickly sealed
using a thin layer of Kwik–Sil and a coverslip attached to
the bottom of a 3 mm steel cannula. This preparation left
the CA1 cell body layer ;200mm below the most exposed
tissue. Finally, an imaging head-bar was surgically im-
planted and fixed to the scalp, using dental cement and
skull screws, before the animal was brought out of
anesthesia.
The animals were allowed to recover for 1–5d after im-

plantation, with a further 3–4d of habituation to the rig.
Following this simultaneous behavioral training and 2-P in
vivo imaging was conducted.

Trace Eyeblink Conditioning (TEC)
We standardized a multi-session Trace Eyeblink Con-

ditioning (TEC) paradigm to train head-fixed mice,
based on previous literature (Siegel et al., 2015). TEC
involves an association between a previously neutral
conditioned stimulus (CS) with an eyeblink inducing
unconditioned stimulus (US), across an intervening,
stimulus-free, trace interval. Training involved 60 trials
per session, one session a day, for approximately
twoweeks. The CS was a 50 ms blue LED flash while
the US was a 50 ms air-puff to the left eye. The stimu-
lus-free trace interval was 250–750ms long, depend-
ing on the session. Additionally, a pseudorandom 10%
of the trials were CS-only probe trials (no US) to test
for learning. All behavior routines were controlled by
programmed Arduinos. Eyeblinks were measured for
every trial, by video camera (Point Gray Chameleon3
1.3 MP Monochrome USB3.0) based detection.
The conditioned response (CR) is observed as a pre-

emptive blink before the US is delivered, in animals that
learn the task. The analysis of the behavioral data was
performed using custom written MATLAB scripts. In brief,
each frame for every trial was:

1. Cropped to get the eye;
2. Binarized to get the pixels defining just the eye, and

finally;
3. Given an FEC score from 0 to 1 (see below).

Every trial was then scored as a hit or miss, using the re-
sult of a two-sample Kolmogorov-Smirnov test between
the FEC during the trace and pre-CS period (1% signifi-
cance). The performance of an animal for a session was
then established as the percentage of hit trials/total trials.
Definitions:

FEC: The fraction of eye-closed is estimated by counting
the pixels defining the eye in every image of a time series,
normalized by the maximum number of pixels defining the
eye, in that session. Thus, every frame was given an analog
score from 0 to 1, where,

• 0: fully opened eye
• 1: fully closed eye

CR: The conditioned response is the eye-closing transi-
tion during the trace period.
UR: The unconditioned response is the eye-closing

transition when the US is delivered.
Performance: Percentage of hit trials/total trials. This al-

lowed us to observe how the animals perform during and
across sessions.

Two-photon imaging
We used a custom-built two photon laser-scanning mi-

croscope (Modi et al., 2014) to record calcium activity from
100–150 hippocampal CA1 cell bodies in vivo, at cellular
resolution. We performed galvo-scans through the imaging
window, over a field of view of;100� 100 mm2, at 14.5Hz,
during TEC (Fig. 1A). An Arduino microcontroller was used
to control the behavior routines, and it additionally sent a
TTL trigger to initiate the imaging trials. The behavior and
imaging were conducted simultaneously to record calcium
activity when the animal was learning the task.
Time-series fluorescence data for various cells was ex-

tracted using Suite2P (Pachitariu et al., 2017). All further
analysis and code development was done on MATLAB
R2017b and batch analysis runs were performed on
MATLAB R2021a. The average of the fluorescence values
for cell specific pixels is then converted into the fold
change relative to the baseline (dF/F0; F0 as 10th percen-
tile), for every marked cell, in every trial (Fig. 1B). These
dF/F traces were used for the rest of the analysis.

Curating a library of calcium events
For all synthetic data experiments, we used one good

quality 2-P recording session’s worth of data from one ani-
mal. We mapped our imaging dataset into a matrix of dF/F
values for all cells, trials, and frames. We then identified cal-
cium events as signal deviations that were above a thresh-
old (mean62*SD) for more than four consecutive frames
(frame rate: 14.5Hz or ;70ms per frame). Once identified,
we curated a library for each event by a cell, and saved the
respective start indices and widths. Using this library, we
generated synthetic data by inserting experimental calcium
events into the time series for each simulated cell. This ap-
proach just uses a time series of signal bins and amplitudes,
hence is signal-agnostic and could be applied to other
imaging and recording modalities. In the interests of data in-
tegrity, our synthetic datasets were watermarked to be dis-
tinguishable from real physiology datasets.

Generating synthetic data
Synthetic data were generated using a custom-written

MATLAB function script “generateSyntheticData()” in the
provided code repository. We preallocated and set up a 3-
D matrix of zeros (as cells, trials, frames), and added
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calcium events sampled from the Calcium Event Library
at frames (time) determined by the synthesis algorithm.
The input parameters to this algorithm included timing,
noise, imprecision, event width selection, hit trial ratio,
background activity, and several others. We aimed to
cover the most likely conditions to affect timing and
other experiment design properties. In more detail, we
generated synthetic datasets using the following con-
trol parameters:

• Time cell percent

Value: Number between 0 and 100. This sets the num-
ber of cells that are assigned tuned calcium activity as a

percentage of total cells, and controls the number of posi-
tive and negative class cells in the dataset.

• Cell order

Value: ‘basic’ or ‘random.’ In ‘basic’mode, time cells are in-
dexed lower than other cells. In ‘random’ mode, the indices
of time cells and other cells are randomly selected. This
should have no impact on algorithm detection but is useful
for visualization.

• Max hit trial percent

Value: Number between 0 and 100. This sets the maxi-
mum possible fraction of total trials, during which a Time
Cell will exhibit tuned calcium activity.

Figure 1. Key features of synthetic datasets. Left, Black panels, Low range of features. Right, Red panels, High range of features.
A, Noise = 10%. B, Noise = 42%. C, Event width: 10th percentile 1/� 1 SD. D, Event width 90th percentile 1/1 SD. E, Imprecision
at 0 frames FWHM. F, Imprecision at 50 frames FWHM. G, Hit trial ratio from 0% to 2%. H, Hit trial ratio from 0% to 100%. I, J,
Background activity with the number of background spikes per background sampled from a Poisson distribution for with mean (l ),
for I: l = 0.5 (low), and J: l = 2.0 (high). K, L, Trial-averaged Calcium traces from example synthetic datasets of 135 neurons, dis-
played as heatmap sorted by time of peak Ca signal. K, Baseline physiology synthetic data trial-average with 10% noise (low) and
high background activity (l = 2 to 3 events/trial). L, Same as K with 42% noise (high) and comparable background activity (l = 2 to
3 events/trial). In both cases, 50% of the cells (top 67) are time cells and the remainder are not. Extended Data Figure 1-1 describes
the most important parameters modulated for datasets in each of the three parameter regimes, “Unphysiological,” “Canonical,” and
“Physiological,” along with the false positives and false negatives, for each of the 10 implemented algorithms.
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• Hit trial percent assignment

Value: ‘fixed’ or ‘random.’ In ‘fixed’ mode, the number of
hit trials is set as defined by max hit trial percent. In ‘random’

mode, the number of hit trials is calculated by randomly
picking a value from a range (½*max hit trials, max hit trials).

• Trial order

Value: ‘basic’ or ‘random.’ In ‘basic’ mode, the hit trials
are indexed lower than miss trials. In ‘random’mode, the in-
dices of hit and miss trials are randomly selected. Specific
patterns of hit and miss trials for a session have not been re-
ported in physiology, so this feature is not implemented.

• Event width

Value: {0–100 percentile value, Integer N}. For each cell,
this defines the selection of events based on width in
frames. The percentile value is estimated from the histo-
gram of all event widths. The variance of this selection is
set by “N,” which adds N*SD to the selection. All synthetic
cells exhibit a range of different calcium events. This is
considered an important parameter.

• Event amplification factor

Value: Number from 0 to 11. This allows additional
control to multiplicatively amplify any chosen calcium
event, before incorporation. Our library was curated from
physiologically recorded signals. The default value is 1.

• Event timing

Value: ‘sequential’ or ‘random.’ In ‘sequential’ mode,
the time of peak calcium activity is reflected by the index-
ing of the time cells. In ‘random’ mode, the time of peak
calcium activity is randomly dispersed over the trial frame
points.

• Start frame

Value: Number from 0 to total number of frames. This
sets the timing of the first cell in a time cell sequence.

• End frame

Value: Number from 0 to total number of frames. This
sets the timing of the last cell in a time cell sequence.

• Imprecision full width at half max (FWHM)

Value: Number from 0 to total number of frames. This
sets the lower and upper bounds for the difference in tim-
ing of calcium activity across trial pairs for a time cell. We
use this parameter to model trial to trial variability and is
considered an important parameter to test.

• Imprecision type

Value: ‘none,’ ‘uniform,’ or ‘normal.’ In ‘uniform’ and
‘normal’ modes, the trial pair Imprecision is picked from a
normal and uniform distribution, respectively. In ‘none’
mode, the trial pair Imprecision defaults to 0.

• Noise

Value: ‘Gaussian’ or ‘none.’ In ‘Gaussian’ mode, the
noise is sampled as a time-series vector with points from

a Gaussian distribution. In ‘none’mode, the noise percent
defaults to 0.

• Noise percent

Value: Number from 0 to 100. This allows scaling for
any sample noise point, based on the max signal value for
any cell.

• Add background spikes for time cells

Value: Boolean 0 or 1. This switch controls the incorpo-
ration of background (untuned) activity for putative time
cells.

• Add background spikes for other cells

Value: Boolean 0 or 1. This switch controls the incorpo-
ration of background (untuned) activity for other (nontime)
cells.

• Background distribution mean

Value: Number from 0 to 11. This sets the mean (l ) of
the Poisson distribution to sample from when selecting
how many background events to add per trial, for any
given cell.

Implementation of a reference quality measure, Q
In order to compare the readouts from the various time-

cell detection methods, we implemented a reference
measure of quality (Q) of synthetic time cells that used the
known inputs to the generation algorithm.
Based on preliminary analysis, we selected following

five parameters as the most likely to affect the behavior
and detection of time cells:

1. Noise
2. Event width
3. Imprecision
4. Hit trial ratio
5. Background activity

Accordingly, we were able to calculate a reference qual-
ity measure, using the following equation:

RefQ ¼ HTR� exp� fa�MNP=100� EAF1 b � std:

dev:EW=meanEW1 g � std:dev: Imp=StimWing; (1)

where HTR: hit trial ratio
MNP: max noise percent (%)
EAF: event amplification factor
EW: event widths (frames)
Imp: imprecision (frames)
Stim Win: stimulus window (frames)
a: 1
b : 1
g : 10
The values of a, b , and g , were set to have comparable

effects of each of the terms inside the exponent. This ref-
erence Q was useful for debugging code and was the
basis for a further metric for time cell classification dis-
cussed below. A representative synthetic activity trace for
‘low’ and ‘high’ values of each of these five parameters is
shown in Figure 1.

Open Source Tools and Methods 5 of 17

March 2023, 10(3) ENEURO.0007-22.2023 eNeuro.org



All modulations for the datasets in this study along with
the estimates for false positives and false negatives, across
all algorithms are shown in Extended Data Figure 1-1.

Separate analysis modules were developed for three
categories of analysis
We implemented three analysis modules: ti, r2b, and

peq, shorthand for temporal information, ridge-to-back-
ground, and parametric equations. The ti module imple-
ments three algorithms from Mau et al. (2018). The r2b
module implements two algorithms from Modi et al.
(2014). The peq module computes estimates for noise, hit
trial ratio, event width and imprecision, and estimates a Q
score as above. All three methods were implemented in
C11 with a PyBind11 interface to Python. This combina-
tion is fast and efficient in memory use, and also has the
ease-of-use of Python. Thanks to the native MATLAB in-
terface to Python, all three methods can also be called
fromMATLAB.

Synthetic datasets generated and analyzed in batch
mode
We generated datasets pertaining to parameter sensitivity

analysis by modulating one of the four main parameters and
setting the others to noninterference levels. In this manner,
we devised 99 cases to study in which one of the main pa-
rameters was varied. Note that in these cases the resultant
activity was in an unphysiological regime because other
sources of variation were kept to low levels so as not to in-
terfere with the parameter of interest. With three randomized
shuffles, we generated 297 unique datasets.
We wanted to use more realistic datasets, where we

would modulate one of the four parameters while keeping
the others to ranges typical of physiological data. We de-
vised 12 canonical cases. With 10 randomized shuffles
each, we generated 120 additional unique datasets in the
canonical regime. Finally, we devised 12 physiological re-
gime cases, identical to those in the canonical regime,
with the addition of background (untuned) activity. This
yielded another 150 datasets, with randomization.
Altogether, we had 567 unique datasets for our tests,

each with 135 cells (total: 76,545 cells), 60 trials, and 246
frames/trial. Except when the percent time cells were
modulated, all datasets featured 50% time cells.
We next implemented an analysis pipeline to run all the

datasets through the time cell detection algorithms, yield-
ing scores and predictions for each case. Finally, all the
scores and predictions were collated for comparison and
benchmarks as shown in the schematic (Fig. 2).

Metrics for time cell classification performance
Recall is inversely proportional to the number of false

negatives (Type II error) and is the fraction of true positive
class predictions over all positive class ground labels.

Recall ¼ TPR=ðTPR1FNRÞ (2)

Precision is inversely proportional to the number of
false positives (Type I error) and is the fraction of true pos-
itive class predictions over all positive class predictions.

Precision ¼ TPR=ðTPR1FPRÞ: (3)

F1 Score is the harmonic mean of recall and precision.

F1Score ¼ 2 � Precision � Recall=ðPrecision1RecallÞ;
(4)

where
TPR: true positive rate
FNR: false negative rate
FPR: false positive rate
Here are the definitions for predictive/classification per-

formance evaluation (Table 1).
Here are the important functions provided in the code

base (Table 2).
Here are the MATLAB scripts running the comparative

analysis and figure generation (Table 3).

Code and resource availability
The code/software described in the paper is freely available

online at https://github.com/BhallaLab/TimeCellAnalysis. The
code is available as Extended Data 1.

Results
We developed a pipeline (Fig. 2) with 10 different algo-

rithm implementations for time cell detection, which in-
volve scoring and then classifying cells.
Here, we describe the implementation of each of the

methods.

Figure 2. A schematic representation of the analysis pipeline.
Physiology data as well as synthetic data were analyzed by 10
different implemented algorithms and the output was collated
for comparative benchmarks.
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Time cell scoring methods and classification
Temporal information: tiBoot, tiMean, tiBoth, tiMean-O,

tiBase-O (Mau et al., 2018)
Here, we used the algorithm from Mau et al. (2018) as

follows. There was an initial criterion of cells to have activ-
ity in at least 25% of trials. Their activity was summed into
event time histograms with a bin size of three frames. The
temporal information (TI) was estimated using Equation 5,

TI ¼ 1� l j� log2l j� Pj; (5)

where, l is the average transient rate for each cell;

l j is the average transient rate for each cell in bin “j”;
Pj is the probability that the mouse was in time bin “j.”
Bootstrapping was used to determine whether each cell

had a TI greater than chance. We circularly randomized the
frame points to develop a random activity model (1000 iter-
ations) and classified cells as time cells if l . l rand in
.99% of the models for at least two consecutive bins. We
implemented the activity filter from Mau et al. (2018); by
considering the trial-averaged peak of the calcium traces
for each of the cells, and testing for significance using
bootstrapping (tiMean). A logical AND operation between
the prediction lists for tiBoot and tiMean, provided us with
the full Mau et al., 2018 Temporal Information based detec-
tion algorithm (tiBoth).
Additionally, we used Otsu’s threshold (Otsu, 1979) on the

temporal information scores as well as the trial-averaged
peaks to get tiBase-O and tiMean-O using the MATLAB func-
tion “graythresh()” (https://in.mathworks.com/help/images/ref/
graythresh.html). The purpose of adding the Otsu’s threshold-
based classification step was to study how well the scores
could be classified with a fast thresholding method, rather
than the computationally expensive bootstrap.

Table 1: Definitions for predictive/classification perform-
ance evaluation

Ground truth Prediction/classification Remark
0/false/other cell 0/false True negative (TN)
0/false/other cell 1/true False positive (FP)
1/true/time cell 0/false False negative (FN)
1/true/time cell 1/true True positive (TP)

For each detection algorithm, the classification results were compared with
known ground truth values to get the total number of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) cases.

Table 2: List of important functions provided in the code base

Name Description Command line Location Language
synthesis
Demo.m

Command line demo, output to file:
“synthData-demo.mat”. Generates a syn-
thetic 2-P time cell dataset file

$ cd TimeCellAnalysis/rho-
matlab/demos && matlab
-nodisplay -nosplash -r
“synthesisDemo; quit”

rho-matlab/
demos

MATLAB

ti_demo.py Command-line demo, output to console. $ python TcPy/ti_demo.py
sampleData/sample_
synth_data.mat

TcPy Python interface and
C11 numerics

r2b_demo.py Command-line demo, output to console.
Runs Ridge-to-Background analysis from
Modi et al. (2014). Reports R2B Mean and
R2B Bootstrap classifications

$ python TcPy/r2b_demo.py
sampleData/sample_
synth_data.mat

TcPy Python interface and
C11 numerics

peq_demo.py Command-line demo, output to console.
Runs parametric equation analysis from
current study. Reports PEQ threshold
classification, and estimates for noise,
event width, imprecision, and hit trial ratio
for dataset

$ python TcPy/peq_demo.py
sampleData/sample_
synth_data.mat

TcPy Python interface and
C11 numerics

ground_truth_-
check.py

Command-line demo, output to console.
Uses synthetic data files to assess accu-
racy of classification by the various Mau
and Modi algorithms

$ python TcPy/ground-truth_
check.py sampleData/sam-
ple_synth_data.mat

TcPy Python interface and
C11 numerics

Benchmark.py Command-line demo, output to console.
Simple time and memory benchmarks for
the Mau, Modi, or PEQ algorithms

$ python TcPy/run_batch_
analysis.py sampleData/
sample_synth_data.mat

TcPy Python interface and
C11 numerics

run_batch_a-
nalysis.py

Command-line production script, output to
CSV files. Runs a batch analysis using all
methods on a data file. Generates .csv fil-
esfor TI, R2B, PEQ, and ground truth
classifications

$ python TcPy/ti_demo.py
sampleData/sample_
synth_data.mat

TcPy Python interface and
C11 numerics

pyBindMap.py Provides an interface for MATLAB pro-
grammers, to the python/C__ fuynctions
using two wrapper functions: runTIanalysis
and runR2Banalysis

Utility function, not run from
command line

TcPy Python

dodFbF.m Utility function to convert experimental raw
2p calcium activity data from Suite2P to
df/F form.

Utility function, not run from
command line

rho-matlab/
CustomFu-
nctions

MATLAB

All these functions should be run from the cloned repository, TimeCellAnalysis.
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Ratio of ridge/background, r2bMean, r2bBoot,
r2bBase-O (Modi et al., 2014)
Here, we re-implemented the algorithm from Modi et al.,

2014. The time of peak response for each cell was identified
in averaged, nonoverlapping trials’ worth of DF/F traces, in
the CS-onset to US-onset period, or as specified. The rest of
the trials were averaged and the summed area under the
time of peak was estimated. The ridge was then defined to
be a 200ms window centered at the peak. Next, we calcu-
lated the summed area in the ridge window as well as the
background (non-ridge frames) to get the ridge to back-
ground ratio. As a control condition, these traces were given
random time-offsets and then averaged. An independent
time of peak was identified for each random-offset, aver-
aged trace and ridge to background ratio calculated for it.
This bootstrapping was repeated 1000 times for each cell’s
data and averaged. The reliability score was then calcu-
lated individually, for each cell, as the ratio of the ridge to
background ratio for aligned traces to the mean of that of
the random-offset traces (r2bMean).
We also studied the significance of each cell’s raw

r2b values by comparing them to each of the r2b values
of the randomized datasets, thresholding significance
at the 99th percentile (r2bBoot). Finally, the raw r2b val-
ues were also thresholding using Otsu’s Thresholding
(r2bBase-O; Otsu 1979).

Parametric equations, peqBase and peqBase-O
(in-house)
We developed this method to score cells in a manner

similar to the reference quality, which uses the known
ground truth of the input parameters given to the genera-
tor functions for the synthetic dataset. Rather than using
the known inputs, this method computes the correspond-
ing parameters read out or estimated from the dataset,
whether synthetic or real. It is applicable to labeled or un-
labeled datasets. It is defined as:

Q ¼ HTR� exp� fa� N=S1 b � std:dev:EW=

meanEW1 g � std:dev: Imp=StimWing; (6)

where HTR: hit trial ratio
N/S: estimated noise/signal
EW: read out event widths (frames)
Imp: estimated imprecision (frames)
Stim Wind: stimulus window (frames)
a: 10
b : 1
g : 10

While 10�a was required, b , and g , were inspired by
the same used for reference Q. Classification was then
performed using Bootstrapping (as described above) as
well as Otsu’s threshold.
All of these implemented algorithms can handle unla-

beled (real) or ground truth labeled (synthetic) data.
A schematic to describe the steps involved in each al-

gorithm is shown (Fig. 3). We were then able to run all
our synthetically generated datasets through each of the
10 implemented algorithms and perform comparative
benchmarks.

Good predictive power in time cell quality scores
despite different distributions
We ran each of the analysismethods on our synthetic data-

sets to assess how they scored the (known) time cells. There
were four methods that provided a scoring function for time-
cell classification: tiMean, tiBase, r2bBase, and peqBase (Fig.
4A–D). By inspection, these methods appeared to have dis-
tinct distributions. Below we describe how we compare the
distributions using correlation analysis. In subsequent sec-
tions we describe other methods in our study that used these
scores to generate a categorization through thresholding or
bootstrap.
In these synthetic experiments, time cells were gener-

ated with a single calcium event per hit trial. Event inser-
tions into the synthetic datasets were subject to noise,
variable selection of event widths, trial-pair or timing impre-
cision, and hit trial ratio. We generated 99 unique unphysio-
logical combinations (3� randomized shuffles) 12 unique
canonical regime combinations (10� randomized shuffles),
as well as 15 unique physiological regime combinations
featuring background activity (10� randomized shuffles). In
all, we performed our comparative analysis studies using
567 datasets, each with 135 cells, 60 trials/session, and
246 frames/trial at 14.5Hz). We found that only tiMean and
tiBase had a correlation coefficient of ;0.6, whereas other
pairs were correlated below 0.4 (Fig. 4E).
Generalized linear regression (GLM) models were gener-

ated to look for the ideal thresholding value for the best clas-
sification predictions by each method. We used the MATLAB
implementation of GLMs (fitglm(); https://in.mathworks.com/
help/stats/fitglm.html). This is a linearmodel assuming a bino-
mial distribution of categories (0 or 1, i.e., other cell or time
cell; Collett, 2002). We obtained good predictive power for
the four methods that provided a scoring function for time-
cell classification. We generated Receiver Operating
Characteristic (ROC) curves by going over the full range
of thresholds for the range of scores for each method

Table 3: List of paper figure generating scripts

Name Description Command line
paperFigures
Synth.m

Plots all figures estimating algorithm performance for synthetic data
analysis (paper Figs. 1, 4–6, and 8)

$ matlab -r “paperFiguresSynth”

paperFigures
Real.m

Plots all figures estimating algorithm performance for real physiology
data analysis (paper Fig. 7)

$ matlab -r “paperFiguresReal”

paperFigures
Splits.m

For diagnostics; plots figures estimating algorithm performance over
all the regimes (unphysiological, canonical, and physiologic)

$ cd ../src && matlab -r “paperFiguresSplits”

All these functions should be run from the cloned respository, TimeCellAnalysis/r-matlab/paperFigures.
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(ROC curves; Fig. 4F). We found that each distribution of
scores had good predictive power, since ideal thresholds
could be found to maximize TPR/FPR in all cases. We used
the tiBoth categorization to distinguish time cells (Fig. 4G)
from other cells (Fig. 4H), and plotted trial-averaged calcium
traces to visually assess quality of classification as seen
from raw data. Overall, each of our methods had distinct
distributions of their base scores, but all had good predic-
tive power for classification. The outcome of the classifi-
cation steps is described in the next sections.

All algorithms exhibit near perfect precision with good
recall
Next, we used the scores to classify the cells in our syn-

thetic datasets, compared the predictions to ground
truth, and established summaries for true and false cases.
Confusion matrices were estimated to compare the pre-
dictions (classifications) for each algorithm, with reference
to ground truth, and are shown (Fig. 5A,B). All methods
exhibit very good precision (true positive classifications
over the sum of all positive classifications), suggesting
low false positive rates (Type I error; Fig. 5C). Most algo-
rithms also generate good values for recall (true positive

classifications over ground-truth positives). We observed
F1 scores (harmonic mean of recall and precision) .0.75,
all the way to 1 (perfect score), for most of the algorithms,
as shown (Fig. 5C), suggesting overall usability.
We noticed moderate to strong correlation (.0.8) be-

tween the Boolean prediction lists for tiMean, tiBoot,
tiBoth, r2bMean, and r2bBoot (Fig. 5D), but only weak to
moderate correlation (,0.6) between the other pairs of
predictions. The tiMean-O method does slightly better
(correlation;0.7 with the first five methods).

Algorithms differ in memory use and speed
Hardware and runtime requirements are a secondary,

but practical concern when designing analysis of large
datasets, and are specially relevant for experiment de-
signs that require online analysis. We therefore looked at
how memory use and runtime scaled on a per dataset
basis when considering 67 or 135 cells per dataset (2�).
We ran the memory usage and runtime experiments on

a gaming laptop (Lenovo Ideapad 3 Gaming) with a 6 core
AMD Ryzen 5 4600H, 16 GB DDR4 RAM (3200MHz) run-
ning MATLAB R2021a on Ubuntu 20.04. Note, however,
that we have implemented all the time cell algorithms in

Figure 3. Schematic representation of the implemented algorithms, involving four different scoring methods followed by a classifica-
tion step (bootstrapping or Otsu’s automatic threshold) to have 10 complete time cell detection algorithms.
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serial and these do not use the additional cores. We found
that most algorithms ran to completion requiring;15 MB/
dataset at a rate of ;1–4 s/dataset (135 cells/dataset).
With 67 cells/dataset, the memory requirement and run-
times are approximately halved, suggesting that compu-
tational costs in memory and time were roughly linear with
dataset size. We note that the analysis algorithms work in-
dependently for each cell. Thus, in principle, the analysis
could be run in an embarrassingly parallel manner and
should scale well on multicore architectures.
The synthesis of the main benchmarking datasets

(N=567 datasets or 76,545 total cells) required a more
powerful analysis machine, running a 6 core AMD Ryzen 5
3600, 32GB of DDR4 RAM, running MATLAB R2021a on
Ubuntu 20.04. Dataset batches up to ;30 datasets
(N=40,500 cells), however, could be easily handled by a
less powerful laptop. The memory usage and runtime for

135 cells per dataset were accordingly, ;30 MB/dataset
requiring;1 s to complete. Thus, the methods scale read-
ily to handle large datasets on modern hardware.

Physiologic range tests show sensitivity to noise but
not to other features of the dataset
We next set out to see how these methods would work

in estimated physiological ranges of signal confounds.
Given our categorical labels on the synthetic data, we
were able to split the datasets to look for the effects of the
five main parameters: noise, event widths, imprecision, hit
trial ratio, and background activity. We first computed
the baseline physiology readouts keeping noise to 10%,
event widths to the 60th percentile (61 SD), imprecision
to 0 frames, hit trial ratios to a range of 33–66%, and
background activity to 0.9–1.2 events/trial for time cells

Figure 4. Base scores for different methods differ in their distributions but all have good predictive power. Scores for top (blue):
time cells; bottom (red): other cells, across A, tiMean; B, tiBase; C, r2bBase; D, peqBase. E, Pairwise correlation coefficients be-
tween the distributions of analog scores (pooling time cells and other cells) by each of the four scoring methods. F, Receiver-opera-
tor characteristic (ROC) curves after generalized linear regression using the respective distributions of scores and comparisons with
known ground truth. G, H, Trial-averaged calcium activity traces for cells classified as G, time cells; H, other cells.
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(;50% of all synthetically generated cells, N=50 baseline
datasets, 135 cells/dataset, 60 trials/dataset). Next, we
established dependency slopes for each of the algo-
rithms, based on their predictions (N = 10 randomized
shuffles for each case; Fig. 6B–F; Extended Data Figs.
6-1, 6-2).
Most methods exhibited a negative dependence of

noise (range: 10% to 70%) on prediction F1 score (Fig.
6B). Although many methods are designed with some
form of denoising strategy (trial-averaging, etc.), as ex-
pected all algorithms ran into classification difficulties at
higher Noise levels. This reinforces the value of relatively
high signal-to-noise recordings.
The relative insensitivity to event widths (Fig. 6C) is po-

tentially useful for calcium imaging datasets where events
may be slow, and in cases where slower tuning curves are

expected. However, this criterion may need to be strin-
gent for analyses that need to precisely identify fine differ-
ences in cell responses.
We observed that most algorithms were insensitive to

how frequently time cells were active across trials in a
session (HTR). This is possibly the reason for the potential
confusion among physiologists with regard to how many
time cells were expected in a recorded dataset.
We found that the first six algorithms (tiMean, tiBoot,

tiBoth, r2bMean, r2bBoot, and peq) gave equivalent pre-
dictions in ;66% of cases (Extended Data Fig. 6-1A).
Next, we considered the various prediction lists across
these top six algorithms and looked for consensus in
time cell predictions from the most lenient threshold
(“.=1” algorithm), incrementally through the most strin-
gent threshold (“=10” algorithms). We thus established a

Figure 5. Good predictive performance by all algorithms. A, B, Classification performance of each of the 10 implemented detection
algorithms. A, True positives (TP; purple), false positives (FP; red). B, True negatives (TN; black), false negatives (FN; purple). C,
Predictive performance metrics [Recall = TP/(TP 1 FN), Precision = TP/(TP 1 FP), and F1 Score = Harmonic mean of Recall and
Precision] to consolidate the confusion matrices. D, Pairwise correlation coefficients between the Boolean prediction lists by each
of the 10 detection algorithms. Note that the first six methods correlate strongly. E, Average memory usage per dataset by the im-
plemented algorithms on datasets with either 67 cells (purple) or 135 cells (red). F, Average runtimes per dataset by the imple-
mented algorithms on datasets with either 67 cells (purple) or 135 cells (red).
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Concordance based metric for time cell classification.
We tested the predictive power of this Concordance based
metric, which considers time cells based on consensus
among the predictions fromall the 10 implemented algorithms.

We identified differences in the classification performance,
across the full range of concordance thresholds (Fig.
6H). With lower threshold values (“.=4” and below), we
notice a slight drop in the Precision, indicating an

Figure 6. Physiological sensitivity analysis and concordance. A, Classification performance scores for all algorithms with the baseline physi-
ology synthetic datasets (N=6750 cells). The first five methods perform well. Peq does poorly by all measures when confronted with physi-
ology-range activity variability. Otsu’s threshold method for score classification also does not work well for any method under physiological
conditions. B, Dependence of F1 score on noise as a schematic. This has an overall negative slope (dashed line) which was used for panel
C, TI-both. A similar calculation was performed for each method. Panels C–G, Parameters were systematically modulated one at a time
with respect to baseline and the impact on classification score for each algorithm was estimated by computing the slope, using repeats
over 10 datasets each with an independent random seed. Significant dependence on the perturbing parameter was determined by testing
whether the slope differed from 0 at p, 0.01, indicated by asterisks using the MATLAB function coefTest(). Plotted here are bar graphs with
mean and error as RMSE normalized by the square root of N (N=10 datasets). C, Dependence on noise %. D, Dependence on event width
percentiles. E, Dependence on imprecision frames. F, Dependence on hit trial ratio (HTR; %). G, Background activity (Poisson distribution
mean, l ). H, Classification performance using concordance for a range of classification thresholds. Extended Data Figure 6-1 describes the
three-point line plot dependency curves for the F1 score for each of the implemented algorithms against each of the five main parameters
modulated, as the mean of N=10 datasets for each case, with error bars as SD. Extended Data Figure 6-2 showcases the linear regression
fits for the same, with 95% prediction intervals (PIs), used to estimate the slopes of the various dependency curves.
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increase in false positive rate (Type I error). On the other
hand, with increasing threshold values it is the Recall
that drops, suggesting a higher false negative rate (Type
II error). We find that a concordance threshold of “.=4”
achieves the best recall, precision, and F1 scores, for
time cell prediction (Fig. 6F). The utility of this approach
is subject to the availability of resources to apply multiple
algorithms to each dataset.

Time cells identified in real physiology recordings
We used the 10 different implemented algorithms on in

vivo 2-P calcium recordings (N=13 datasets, namely,

1759 isolated cells from three animals across chronically
recorded datasets), to compare time cell classification be-
tween the algorithms. As we observed for the synthetic
data, experimental 2-P Ca traces also yielded different base
scores from the four different methods (Fig. 7A–D) Again,
consistent with the synthetic data, the pairwise correlation
was weak to moderate (Fig. 7E). When we consider the
boolean prediction lists (Fig. 7F), we observed moderate
pairwise correlation between tiMean, tiBoot, tiBoth, r2bMean,
and r2bBoot (.0.5), and low or weak correlation between the
other pairs (,0.5). This was consistent with observations for
the synthetic data but the correlations were overall slightly

Figure 7. Analysis of experimental 2-P recordings of Ca21 signals. A–D, Histograms of scores for physiologically recorded in vivo
calcium activity from hippocampal CA1 cells (total N=1759), by (A) tiMean, (B) tiBase, (C) r2bBase, and (D) peqBase. E, Pairwise
correlation coefficients between the distributions of analog scores by the four scoring methods. F, Pairwise correlation coefficients
between the Boolean prediction lists by the 10 detection algorithms. G, Numbers of positive class (time cell) predictions by each of
the detection algorithms. H, I, Trial-averaged calcium activity traces for (H) time cells and (I) other cells. LED conditioned stimulus
(CS) is presented at frame number 116, as seen by the bright band of the stimulus artifact. Most cells classified as time cells are
active just after the stimulus. There is a characteristic broadening of the activity peak for classified time cells at longer intervals
after the stimulus. Some of the cells at the top of panel H may be false positives because their tuning curve is very wide or because
of picking up the stimulus transient. Similarly, some of the cells in the middle of panel I may be false negatives because of stringent
cutoffs, although they appear to be responsive to the stimulus.
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weaker. The total number of time cells predicted were also
different across the implemented algorithms (Fig. 7G).
Algorithms such as r2bBase-O and peq, which had more
false positives (Fig. 5B) also had more cells classified as
time cells. The converse was not true. r2bMean, which had
moderate false negatives as well as false positives on the
synthetic dataset, classified very few of the experimental
set as time cells. The trial-averaged activity of the detected
time cells (Fig. 7H; including false positives) and other cells
(Fig. 7I), based on the predictions by tiBoth, are shown.
The experimentally recorded time cells exhibited a charac-
teristic widening of tuning curves (Pastalkova et al., 2008;
MacDonald et al., 2011, 2013; Kraus et al., 2013; Mau et
al., 2018) with tuning to later time points (Fig. 7H).
Overall, four of the algorithms from the literature seemed

consistent in their classifications as well as having reasona-
ble numbers of classified time cells. These were the three al-
gorithms from Mau et al. (2018; tiMean, tiBoot, and tiBoth),
and the r2bBoot method derived from Modi et al. (2014).
This is broadly in agreement with their performance on the
synthetic datasets.

Discussion
We have developed a full pipeline for comparing time cell

detection algorithms. This starts with synthetic datasets for
benchmarking, in which we program in the ground truth of
cell identity and timed activity, and a range of perturbations
characteristic of experiments. These include noise, event
widths, trial-pair timing imprecision, hit trial ratio, and
background activity. This resource is, in itself, a key out-
come of the current study, and though it is designed for 2-P
calcium imaging data it can be extended to rate-averaged
single-unit recordings. We built a pipeline for running
and comparing the outcome from five methods derived
from two previous studies, and one from the current
work. These algorithms were applied to synthetic and
experimental datasets and compared against each other
and, where possible, against ground truth. We observed
that most algorithms perform well and substantially agree
in their time cell classification, but there were different de-
grees of sensitivity to different forms of signal variability,
notably noise and imprecision.

The value of synthetic data in experimental science
Synthetic neural activity datasets are valuable in at least

two main ways: evaluating algorithms for detection of im-
portant activity features, and for delivering stimuli to in
vitro and simulated neurons, so as to provide a more
physiological context in which to study input-output prop-
erties (Abbasi et al., 2020). While we have deployed our
synthetic dataset for the specific purpose of comparing
time cell detection algorithms, we suggest that it could
also be useful for evaluating sequence analysis algorithms
(Ikegaya et al., 2004; Foster and Wilson, 2006; Villette et
al., 2015). Beyond the domain of neuronal data analysis,
such synthetic datasets act as a test-bed for critique and
development of analysis algorithms meant for deployment
on real-world or typical use case data. They have been used
previously to benchmark unsupervised outlier detection

(Steinbuss and Bohm, 2020), explainable machine learning
(Liu et al., 2021), intrusion detection systems (Iannucci et al.,
2017), 3D reconstruction algorithms (Koch et al., 2021),
among several others. We report the first use of synthetic
data pertaining to cellular physiology in the context of identi-
fying time cells from network recordings. Moreover, our ex-
periments study important operational differences across
several previously published and new detection algorithms.
Our dataset may also be valuable for the second use

case, stimulus delivery. There is a growing body of work
on network detection of sequences (Ikegaya et al., 2004;
Foster and Wilson, 2006; Csicsvari et al., 2007; Jadhav
et al., 2012; Villette et al., 2015; Malvache et al., 2016) or
even single-neuron sequence selectivity (Branco et al.,
2010; Bhalla, 2017). More realistic input activity patterns
with a range of physiological perturbations may be use-
ful probes for such experimental and theoretical stud-
ies. Further, experimenter-defined neural activity inputs
through optogenetic stimulation has already begun to
use more complex temporal patterns than static or peri-
odic illumination (Schrader et al., 2008; Dhawale et al.,
2010; Bhatia et al., 2021). Our approaches to synthetic
sequential neuronal activity generation may be useful to
add more physiological dimensions to the sequential
activity employed in such studies.

Further dimensions of time cell modulation
Our experiments allowed us to probe for parametric de-

pendence systematically across published and new algo-
rithms. We observed little or no dependence of the predictive
performance (F1 score) of the various algorithms to event
widths, hit trial ratios, and background activity. We did ob-
serve the F1 scores for most algorithms to be negatively de-
pendent on noise and imprecision. On the one hand, this is
a useful outcome in that different methods yield similar time-
cell classification. It is a limitation, however, if the network
uses such response features for coding, since it means that
thesemethods are insensitive to relevant response changes.
Further potential coding dimensions were not explored.
Thus, several potential behavioral correlates of tuned cells
(Ranck, 1973), could not be studied in our experiments.
Such correlates include but are not limited to measure-
ments of spatial navigation (O’Keefe and Dostrovsky,
1971; O’Keefe and Nadel, 1978; Wilson and McNaughton,
1993) and decision-making (Foster and Wilson, 2006;
Csicsvari et al., 2007; Diba and Buzsáki, 2007; Davidson et
al., 2009; Karlsson and Frank, 2009; Gupta et al., 2010;
MacDonald et al., 2013; Villette et al., 2015), as well as nav-
igation across tone frequencies (Aronov and Tank, 2014).
While each of these further inputs would be interesting to
incorporate into synthetic datasets, this requires that the
time cell generation algorithm itself incorporate some form
of simulation of the neural context. This is beyond the
scope of the current study.
A specific limitation of our dataset is that it assumes

that time is encoded by individual neurons. This leaves
out population encoding schemes in which no one cell re-
sponds with the level of precision or consistency that
would clear the criteria we use. For example, many of the
same studies that use the methods tested here also use
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neural network decoders to report time (Mau et al., 2018).
Such decoders might detect time encoding without time
cells. A similar situation of individual versus network cod-
ing appears for the closely related problem of sequence
representation. Place cell replay sequences have been
shown to be modulated by the prevalence of location spe-
cific aversive (Wu et al., 2017) as well as appetitive stimuli
(Bhattarai et al., 2020). Such physiological findings have
been the subject of theoretical models of behavior plan-
ning (Foster, 2017; Mattar and Daw, 2018), and have been
reported to improve performance on multiple Atari games
by artificial neural networks (Mnih et al., 2015) featuring
salience detection and experience mapping. We suggest
that synthetic data for such higher-order encoding schemes
might be a useful tool, and could draw on the approaches in
the current study.

Comparative analysis benchmarks and concordance
A particularly challenging time cell classification prob-

lem is when the same cells may play different timing roles,
such as forward and reverse replay. This is made more
difficult because of the relative rarity of forward replay se-
quences over the more typical reverse replay (Diba and
Buzsáki, 2007; Foster, 2017). Preplay is also a topic of
some debate (Dragoi and Tonegawa, 2013; Foster, 2017).
At least one possible problem in such debates is the degree
of consistency between time cell or sequence classifiers.
Our pipeline allows for (1) error correction in case of noncon-
cordant classifications, (2) suggest candidate algorithms

with a dependence on dataset features like event widths,
imprecision, and hit trial ratio, as well as (3) the possibility to
expand the detection regime in more realistic physiological
datasets using concordance.

Which algorithms to use?
We did not set out to rank algorithms, but our analysis

does yield suggestions for possible use domains based on
sensitivity to experimental perturbations (Fig. 8). In cases
where runtime and compute resource use is a concern, we
recommend using the temporal information method with
Bootstrap along with the activity filter (tiBoth). Combinations
of tiBoth with r2bBoot may be useful where there are rare
and potentially multimodally tuned time cells (Pastalkova et
al., 2008; Villette et al., 2015), either to combine their classifi-
cation for stringent time cell identification, or to pool their
classified cells. While it is tempting to use Otsu’s threshold
as a very fast alternative to bootstrapping, we found that
none of the Otsu variants of these methods did a good job
of classification. Ultimately, five of our algorithms tiMean,
tiBoot, tiBoth, r2bMean, and r2bBoot: all based on either
Mau et al. (2018) or Modi et al. (2014), have very good
Precision, and classify with very few false positives (low
Type I error). Many methods are susceptible to classification
errors if the dataset has high noise.
Here we also implemented the parametric equation

(peq) algorithm. It is not very good for time cell classification
per se, as it is prone to false positives and is susceptible to
noise and low hit trial ratios. However, it generates useful

Figure 8. Spider plot summary. Relative sensitivity of the six best detection algorithms (tiMean, tiBoot, tiBoth, r2bMean, r2bBoth,
and peq) to the five main parameters for data variability, noise (%), event widths (%ile), imprecision (frames), hit trial ratio (%), and
background activity (l ). A perfect algorithm would have very small values (i.e., low sensitivity) for each of the parameters and, thus,
occupy only the smallest pentagon in the middle. Note that even the maximal absolute value of sensitivity for most parameters
(outer perimeter) is quite small, indicated in boxes at the points of the spider plot.
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additional estimates of the four key parameters of real data,
namely, noise, hit trial ratio, event width and imprecision.
This is useful for a first-pass characterization of the proper-
ties of the dataset.

Sequence detection in large-scale recordings and
scaling of analysis runs
The discovery of replay over the past two decades, has

benefitted from the technological advances made in in-
creasing the cellular yield of network recordings and has
been reviewed previously (Foster, 2017). Further advan-
ces such as with the large scale recordings of;103 single
units by electrical recording using Neuropixels (Jun et al.,
2017), fast volumetric fluorescence scanning with up to
;104 cells using resonant electro-optic imaging (Poort et
al., 2015; Pachitariu et al., 2017; Bowman and Kasevich,
2021), ;103 mesoscopes (Sofroniew et al., 2016), as well
as advances in automated cell region of interest (ROI) de-
tection, denoising, and neuropill subtraction (Pachitariu et
al., 2017; Pnevmatikakis et al., 2016) only increase the
scale and size of datasets, likely leading to longer analysis
runtimes. In addition to our recommendations above for
the temporal information/boot method for scalable time-
cell analysis, our C11/Python implementations may also
be useful in further optimizing these methods. Our imple-
mentations allow for relatively fast analysis of the same
datasets with multiple algorithms.
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