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Abstract

Adolescence is a crucial developmental period in terms of behavior and mental health. Therefore, understand-
ing how the brain develops during this stage is a fundamental challenge for neuroscience. Recent studies
have modeled the brain as a network or connectome, mainly applying measures from graph theory, showing a
change in its functional organization, such as an increase in its segregation and integration. Topological Data
Analysis (TDA) complements such modeling by extracting high-dimensional features across the whole range of
connectivity values instead of exploring a fixed set of connections. This study inquires into the developmental
trajectories of such properties using a longitudinal sample of typically developing human participants (N =98;
53/45 female/male; 6.7-18.1 years), applying TDA to their functional connectomes. In addition, we explore the
effect of puberty on individual developmental trajectories. Results showed that the adolescent brain has a
more distributed topology structure compared with random networks but is more densely connected at the
local level. Furthermore, developmental effects showed nonlinear trajectories for the topology of the whole
brain and fronto-parietal networks, with an inflection point and increasing trajectories after puberty onset.
These results add to the insights into the development of the functional organization of the adolescent brain.

Key words: adolescence; functional connectivity; persistence homology; puberty; resting state functional
magnetic resonance imaging; topological data analysis

(s )

Topological Data Analysis (TDA) may be used to explore the topology of the brain along the whole range of
connectivity values instead of selecting only a fixed set of connectivity thresholds. Here, we explored some
properties of the topology of the brain’s functional connectome and how they develop in adolescence. We
show that developmental trajectories are nonlinear and better adjusted by puberty status than chronological
age, with an inflection point around the onset of puberty. In particular, the results show that the topology of
the fronto-parietal network is the one that drives the functional connectome changes in the adolescent

\period. /

Introduction influenced by pubertal hormones (Vijayakumar et al.,

Adolescence is a critical development period that 2018; Laube et al., 2020). Moreover, these changes
substantially impacts the body and behavior. Notably, —occur along with a consolidation of cognitive and
the brain undergoes structural and functional changes
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executive performance (Baum et al., 2017; Chai et al.,
2017).

These insights have been addressed by modeling the
brain as a complex network of interacting nodes at task or
rest conditions (Biswal et al., 1995; Smith et al., 2009). In
this framework, the functional connectome is described
by its system properties in biologically plausible terms,
mainly using measures from graph theory (Rubinov and
Sporns, 2010). Although graph metrics provide an effec-
tive framework to describe brain organization properties,
they also have some limitations. The main limitation is that
graph theory relies on pairwise connections as the basic
unit of the network; in this regard high-order interactions
within the network cannot be properly handled (Lord et
al., 2016). Another potential limitation is the common step
of thresholding, which is to discard a subset of the network
connections based on several criteria (e.g., statistically,
low values, sign, etc.). There is no consensus about this
step, and functional connectomes tend to be unstable at
different thresholds (Garrison et al., 2015), although group
inferences may dramatically change based on thresholding
(Gracia-Tabuenca et al., 2020). Nevertheless, other meth-
ods have recently been applied to address high-dimen-
sional data, such as Topological Data Analysis (TDA;
Sizemore et al., 2018; Expert et al., 2019). TDA models the
connectome as a topological space and characterizes its
interaction patterns as geometric features, allowing it to
simplify complex structures at different scales (Giusti et al.,
2015; Santos et al., 2019; Centeno et al., 2022). In particu-
lar, TDA applied to functional connectomes is not affected
by the potential biases of connectivity thresholding nor
brain segmentation (H. Lee et al., 2012; Gracia-Tabuenca
et al., 2020); additionally, TDA is a suitable tool to address
longitudinal data since it can extract invariant topological
features into longitudinal designs (Fllop et al., 2020). This
methodology has been used for over a decade in neuroi-
maging (Chung et al. 2009; H. Lee et al., 2011, 2012, 2019;
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Choi et al., 2014; M.H. Lee et al., 2015; Chung et al., 2019)
but is not the standard procedure in neuroimaging.
Furthermore, it explores different properties to those ex-
plored with graph theory or other network approaches that
typically explore the fully connected network [when only one
single component is present, i.e., when Betti-0 (Bg) = 1].

In terms of the functional organization of the brain, pre-
vious cross-sectional studies have shown that the adoles-
cent period is characterized by an increase in modularity
and specialization (Fair et al., 2009; Satterthwaite et al.,
2013a; Gu et al., 2015), with prominent effects in frontal
and parietal systems, along with executive performance
(Marek et al., 2015; Gracia-Tabuenca et al., 2021). However,
as far as we are concerned, TDA in human connectomes
has mainly been applied to neuropsychiatric disorders (H.
Lee et al., 2012, 2017; Gracia-Tabuenca et al., 2020; Li et
al., 2021) but not to characterize the typical development.
There is still a huge degree of incertitude in this field be-
cause of the great variability between samples, sexes, and
cultures (Sawyer et al., 2018), with special emphasis on the
fact that some individuals have faster or slower pubertal de-
velopment even when they have the same chronological
age (Blakemore et al., 2010; Vijayakumar et al., 2018). In this
regard, longitudinal trajectories and pubertal markers are
highly valuable in describing adolescent development.

Therefore, this study focuses on how the topology struc-
ture of the neurotypical functional connectome changes
during the adolescent period. In order to achieve that, TDA
features were extracted from the functional brain connectiv-
ity of a longitudinal sample of typically developing subjects,
and (non)linear trends were tested from chronological age
and pubertal status.

Materials and Methods

Sample

A general invitation was sent to local schools describing
the study protocols and the inclusion/exclusion criteria.
Inclusion criteria consisted of a full-term gestation
(>37 weeks). Exclusion criteria included academic year
repetition and any neurologic or psychiatric disorder iden-
tified with the MINI semi-structured interview. Signed in-
formed consent for parents and verbal assent for minors
was required. The study protocols followed the ethical
principles of the Declaration of Helsinki and were ap-
proved by the Institutional Ethics Board.

The sample comprised 98 typically developing partici-
pants (53 females, 45 males; age range: 6.7-18.1years
old). Of those, 41 returned for a second session, and 16
for a third. Initially, the study was designed as a cross-
sectional study. However, to include intraindividual devel-
opment in the growth charts, some participants agreed to
participate in one or two follow-up sessions. As a result,
follow-ups occurred after five years and the second after
two years, respectively (Fig. 1).

Pubertal status assessment

Participants fulfilled the Pubertal Development Scale
(PDS; Petersen et al., 1988). PDS averages the response
of five self-reported questions about growth spurt in
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Figure 1. A, Longitudinal plot: each dot represents a subject at the age of assessment. Lines represent longitudinal assessments of
a subject. B, Pubertal Development Scale scores (PDS) along age. Thin lines represent individual trajectories; thick lines represent
locally estimated scatterplot smoothing (LOESS) curves per sex group (with 95% confidence-interval shadow) after controlling for
intraindividual trends. F, female; M, male; QC, session with excessive motion artifact. Figures were modified from Gracia-Tabuenca
et al. (2021) under CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

height, pubic hair, and skin change for both sexes; plus
breast growth and menarche for females and facial hair
growth and voice change for males. Responses are ab-
sence (1), first signs (2), evident (3), and finished (4) puber-
tal spurt. Those participants under 10 years old were set
to PDS level 1, following similar values in previous studies
(Hibberd et al., 2015; van Duijvenvoorde et al., 2019). In
addition, 8 missing values (four females) were estimated
via generalized additive mixed model (GAMM) with age-
sex interaction locally estimated scatterplot smoothing
(LOESS) curves (according to Gracia-Tabuenca et al.,
2021).

Imaging

Participants underwent an magnetic resonance imaging
(MRI) protocol for each session, including a whole-brain func-
tional MRI (fMRI) sequence plus high-resolution T1-weighted
images for anatomic reference. After five “dummy” volumes
for scan stabilization, a total of 150 fMRI volumes were ob-
tained using a gradient recalled T2* echoplanar imaging se-
quence (TR/TE=2000/40ms, voxel size 4 x4 x 4 mmd).
Participants were instructed to lay down, close their eyes,
and not fall asleep. In order to ease participants to remain
awake, the fMRI scan was applied at the beginning of the
MRI session and always in the morning. T1 images were ob-
tained using a 3D spoiled gradient recalled (SPGR) acquisi-
tion (TR/TE=8.1/3.2ms, flip angle =12.0, voxel size 1 x 1 x 1
mm?). All brain imaging was acquired with a 3T MR GE750
Discovery scanner (General Electric) using an 8-channel-
array head coil. However, 20 sessions were acquired with a
32-channel coil; thus, a covariate was included in the subse-
quent analyses.

Preprocessing

Structural T1 volumes were denoised with nonlocal
means (Manjon et al., 2010) and N4 bias field correction
(Tustison et al., 2010). fMRI datasets were preprocessed
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using FSL v.5.0.6 (Jenkinson et al., 2012; RRID:SCR_
002823). Preprocessing steps included slice timing, head
motion correction, brain extraction, intensity normalization,
confound regression, spatial normalization, and 0.01- to
0.08-Hz bandpass filtering.

Considering that the pediatric population tends to move
more inside the scanner (Satterthwaite et al., 2012), we
implemented a strident strategy of confounding variables
regression (Satterthwaite et al., 2013b). A total of 36 pa-
rameters were regressed out from the fMRI time series, in-
cluding the six head-motion estimated parameters plus
the average time series of the global signal, white matter,
and cerebrospinal fluid. The derivatives of these nine varia-
bles were also added, and the quadratic terms of those
eighteen. Additionally, the volumes with a framewise dis-
placement (FD-RMS; Jenkinson et al., 2002) >0.25 mm
(“spikes”) were included as confounds as well. This ap-
proach overpowers other widely used motion-mitigation
methods (Ciric et al., 2017; Parkes et al., 2018; Taymourtash
et al., 2019; Graff et al., 2022). Eighteen sessions with <4
min without spike-volumes were discarded (Satterthwaite et
al., 2013b; Parkes et al., 2018); therefore, the final sample
consisted of 89 participants (39 male, age range: 6.7-18.1
years old), of whom 37 and 11 had two and three longitudi-
nal sessions, respectively.

In addition, fMRI datasets were co-registered to their T1
volume with six degrees of freedom and then warped twice
using nonlinear SyN transformation (Avants et al., 2008;
RRID:SCR_004757) to a pediatric template (NIHPD4.5-
18.5; Fonov et al., 2011) and then to the MNI-152 standard
template.

Functional connectomes

Brain networks were defined based on 264 regions of in-
terest (ROIs) as nodes (Power et al., 2011). Pairwise edges
were calculated through Pearson’s correlation between the
average fMRI preprocessed signal of every pair of ROlIs.

eNeuro.org


https://scicrunch.org/resolver/SCR_002823
https://scicrunch.org/resolver/SCR_002823
https://scicrunch.org/resolver/SCR_004757
https://creativecommons.org/licenses/by/4.0/

eMeuro

£=0.05; B,=20; B,=0

€=0.145; B =1; B,=3

£=0.1; B,=7; B,=0

Research Article: New Research 4 of 10

€=0.12; B,=3; B,=3

£=0.16; B,=1; B,=0

Figure 2. Betti-0 (Bp) and Betti-1 (B;) for different filtration values. lllustrative example with 20 nodes, five filtration values &, repre-
sented as the circle diameter and their corresponding By and B, values. At ¢ = 0, the number of components (Bo) equals the number
of nodes, and there are no holes. As the filtration value increases, the number of components (Bg) decreases until they form a single
component containing all the nodes. Meanwhile, the number of holes (B;) starts at 0, increases, and finally goes back to 0 again. A
hole of dimension 1 is a cycle with four or more edges (highlighted with green edges); the simplices of dimension >1 are colored in

light blue for each filtration value .

These ROls consist of 5-mm radius spheres with high
consistency in task and rest tested in large fMRI data-
bases (Power et al., 2011). Moreover, this set of ROIs can
be grouped in thirteen functional networks. This seg-
mentation has been applied in numerous pediatric stud-
ies (Satterthwaite et al., 2013a; Gu et al., 2015; Marek et
al., 2015; Chai et al., 2017; Ciric et al., 2017; Gracia-
Tabuenca et al., 2020, 2021).

Topological data analysis

The functional connectome can be modeled as a topo-
logical space using the Rips complex, defined as Rips
(F, ). F stands for the set of nodes (same as the connec-
tome nodes), and ¢ stands for the filtration value that indi-
cates if a pair of nodes of F are connected (those with a
distance lower than ¢, see below the definition of distance).
Thus, the set of connected nodes of the Rips complex
varies as a function of ¢. Additionally, topological features
can be extracted from the Rips complexes, the so-
called Betti numbers. Specifically, Betti numbers of
order zero or Betti-0 (Bg) accounts for the number of
components (i.e., the number of groups of connected
nodes and isolated nodes), Betti-1 (B4) accounts for
the number of 1-dimensional holes which correspond
to cycles in the network (Fig. 2), and so on (for an ex-
tensive review on TDA, we suggest Sizemore et al.,
2019; Edelsbrunner and Harer, 2010).

In this study, we focused exclusively on By and Bj.
When & = 0, By equals the number of nodes. As & in-
creases, By decreases and eventually will reach a single

February 2023, 10(2) ENEURO.0296-21.2022

component where every node of F is connected (Fig. 2). In
contrast, at low values of ¢, there are no holes in the con-
nected pattern of the topological space because there are
not enough connections to build them. Similarly, at high
values of ¢, the holes are “filled” because all pairwise con-
nections within the component are accomplished. These
holes represent serially distributed connections of nodes
without shortcuts, while a filled hole means that those
nodes are densely connected between them (Sizemore et
al., 2018). Therefore, the greater amount of holes (i.e., B4)
is reached at intermediate values of ¢. Both processes
can be characterized as Betti curves as a function of ¢
(Fig. 3).

The distance between nodes was set as one minus their
corresponding Pearson’s correlation (i.e., their functional
connectivity edge), following H. Lee et al. (2012):
d(¢, x)=1 —r(&, x), r being the Pearson’s correlation be-
tween nodes ¢ and x;. By and B curves were computed
using the TDA R-package (Fasy et al., 2014), and were
summarized employing the area under the curve (AUC).
This metric, also known as a Persistence Indicator
Function and Total Persistence, is a norm associated with
the persistence diagrams (Rieck et al., 2020). In addition,
stability properties have been proved (Cohen-Steiner et
al., 2010), and; it also has been used for the classification
of subjects in fMRI datasets (Caputi et al., 2021). The AUC
accounts for the overall process of the Betti numbers
along all possible values of ¢. Low scores of Bg-AUC can
be interpreted as a fast transition to the single compo-
nent. In contrast, higher scores imply a more distributed
configuration of the nodes that impedes a rapid transition

eNeuro.org
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Figure 3. Sample intercepts for the By (A) and B4 (B) curves are
in blue. Average of 1000 bootstrapped connectomes with ran-
dom edge-rewiring curves in gray. Every average with 95%
confidence interval. The blue bars are centered at the sample
intercept filtration for starting/ending values with 95% confi-
dence interval in dashed red. Extended Data Figure 3-1 also
shows that the persistence of topological holes (B4) shown in B
is directly related to the number of holes.

to a single component. Meanwhile, low scores of B;-AUC
mean that nodes rapidly bind to one another, fulfilling the
topological holes, and higher scores imply an increase in
the persistence of such holes, but also in the number of
holes within the network (i.e., a less densely connected
network; see Extended Data Fig. 3-1).

Furthermore, to discard that the observed results can
be obtained by chance, a null distribution of Betti curves
was generated by bootstrapping 1000 connectomes ex-
tracted from the original sample whose edges were ran-
domly rewired (Giusti et al., 2015; Gracia-Tabuenca et al.,
2020).

Developmental trajectories

Developmental effects were tested using linear mixed-
effects (LME) and nonlinear generalized additive mixed
models (GAMM). We opted for GAMM because it allows

Research Article: New Research 50f 10
for testing several nonlinear trends simultaneously and
can address nonparametric regression estimators (Lin et
al., 2004). Additionally, given that PDS is an ordinal and
not continuous variable, GAMM is a suitable modeling ap-
proach. Eight models were applied: two LME for age and
age-sex interaction, six GAMM fitting smooth splines
for age and age-by-sex, PDS and PDS-by-sex, and
Age-PDS interaction and Age-PDS interaction-by-sex.
The longitudinal dimensions of the sample were mod-
eled by intraindividual intercepts, which accounted for
the random-effects of the models, and were estimated
via maximum likelihood. Additionally, every model in-
cluded the average head motion (FD-RMS) and coil as
confounds. Models were implemented using R libraries:
LME via Ime4 (Bates et al., 2007; RRID:SCR_015654),
GAMM via gamm4 (Wood et al., 2017). The selection of
the best model was set by the lowest Akaike Information
Criterion (AIC; Akaike, 1974). The AIC evals a model by the
trade-off between its complexity and its goodness of fit.
That is, the subtraction between the number of parameters
(k) and the log-likelihood function (/nL) by a factor of two
(i.e., AIC=2k — 2InL). Thus, based on information theory,
the best model is the one with the minimum AIC value.
Model assumptions were evaluated with Shapiro-Wilk nor-
mality tests on the residuals and random-effects (Verbeke
and Lesaffre, 1996). Developmental terms within the model
with lower AIC were tested via F tests (Wood, 2013).

In addition, the model with lower AIC at the whole-brain
level was applied for the thirteen functional networks of
the Power et al. (2011) segmentation, where their corre-
sponding significance was corrected for multiple testing
using a false discovery rate (FDR) g < 0.05 (Benjamini and
Hochberg, 1995).

Code accessibility

All preprocessed data and the code described in this
study are freely available online at https://github.com/
BrainMapINB/Pubertal_TDA. Also, the code is available
as Extended Data 1. Present results were computed with
an Intel Core i7-4790 CPU @ 3.60 GHz x 8 with Ubuntu
18.04.3 LTS 64-bit.

Table 1: Akaike Information Criterion (AIC), Shapiro-Wilk test (SW) for the residuals (e) and random-effects (RE) for Betti-0
(Bo) and Betti-1 (B4) areas under the curve (AUC) at every developmental model

Bo-AUC B4-AUC
AIC e-SW(p) RE-SW(p) AIC e-SW(p) RE-SW(p)
LME-Age 863 0.993 (0.71) 0.984 (0.36) 627.6 0.98 (0.04) 0.974 (0.07)
LME-Age.Sex 864.9 0.994 (0.82) 0.984 (0.35) 631.3 0.98 (0.04) 0.974 (0.07)
GAMM-Age 861.4 0.994 (0.79) 0.987 (0.53) 627.7 0.986 (0.18) 0.981 (0.22)
GAMM-Age.Sex 862.9 0.994 (0.82) 0.986 (0.49) 630.9 0.987 (0.21) 0.981 (0.22)
GAMM-PDS 858.3 0.992 (0.65) 0.983 (0.31) 625.6 0.989 (0.36) 0.988 (0.63)
GAMM-PDS.Sex 859.5 0.991 (0.57) 0.979 (0.15) 633.1 0.985 (0.14) 0.984 (0.37)
GAMM-AgePDS 859.4 0.994 (0.82) 0.983 (0.3) 625.9 0.991 (0.54) 0.987 (0.53)
GAMM-AgePDS.Sex 862.5 0.993 (0.74) 0.983 (0.3) 631.7 0.991 (0.57) 0.979 (0.17)

Developmental models: linear mixed-effects models for age (LME-Age) and age-sex interaction (LME-Age.Sex), generalized additive mixed models with smooth
splines for age (GAMM-Age) and age-by-sex (GAMM-Age.Sex), PDS (GAMM-PDS) and PDS-by-sex (GAMM-PDS.Sex), and age-PDS interaction (GAMM-
AgePDS) and age-PDS interaction-by-sex (GAMM-AgePDS.Sex). Akaike Information Criterion (AIC) and Shapiro-Wilk tests (SW) for the residuals (e) and ran-

dome-effects (RE) of the Betti-0 (B0) and Betti-1 (B1) areas under the curve (AUC) for every developmental model.

Concerning the developmental effects at the functional network level, the PDS term showed strong effects in the fronto-parietal (FPN) and moderate effects in
the auditory (AUD), sensorimotor-hand (SMH), and subcortical (SUB) networks for the Bo-AUC (Fig. 5). Only the FPN had a significant effect after FDR correction
(F=6.84; EDF =2.09; p = 0.001), which shows a nonlinear trend similar to the whole brain network (Fig. 6). No effects (even uncorrected) were found for the B;-AUC.
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Table 2: Model performance at the RSN, effective degrees
of freedom (EDF), F and p values for the development
component

Bo-AUC B;-AUC
EDF  F p EDF F p
AUD 1 0.47  0.493 193 182  0.156
CBL 1 0.04  0.838 1 116 0.283
CON 191 238  0.067 1 0.44  0.506
DVMN 1 0.37 0543 1 0.02  0.896
DAN 178 157  0.203 1 0.01  0.904
FPN 209 684 0001 1 321  0.076
MEM 1 0.07  0.794 1 2.03  0.157
SAL 1 4.09  0.045 1 0.82  0.368
SMH 1 2.74 041 1 0.04  0.839
SMM 1 1.83  0.178 1 026  0.611
suB 1 1.98  0.162 1 024  0.628
VAN 1 0.16  0.691 1 112 0.291
VIS 1 3.81  0.053 1 4.01  0.047

Auditory (AUD), cerebellar (CBL), cingulo-opercular (CON), default mode
(DMN), dorsal attention (DAN), fronto-parietal (FPN), memory-retrieval (MEM),
salience (Sal), sensomotor-hand (SMH), sensomotor-mouth (SMM), subcorti-
cal (Sub), ventral attention (VAN), and visual (VIS) networks.

* Significant after FDR-corrected at q < 0.05.
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Results

The sample intercept Bg curve, the representative curve
for the whole sample, showed an inverse sigmoid pattern
with a slower transition to the single component com-
pared with the permuted data (Fig. 3A), which means that
the brain topology is more complex compared with a ran-
dom network. On the other hand, the B4 curve shows a
bell shape with a maximum of 104.69 “holes” at 0.432 fil-
tration value, while the permuted data shows a maximum
of 183.92 at £ = 0.438 (Fig. 3B). This implies that the brain
network has a more densely connected pattern, com-
pared with random networks, and therefore less number
of topological holes.

In addition, the average filtration value where B
curves get to the value of 1 is 0.5474, with a 95% con-
fidence interval of [0.527, 0.5677] (Fig. 3A). The aver-
age filtration value where B4 curves begin to increase
above 0 is 0.1627, with a 95% confidence interval of
[0.1554, 0.1699]. Similarly, the average filtration value
where B1 curves return to 0is 0.718, with a 95% confi-
dence interval of [0.7118, 0.7242] (Fig. 3B). This infor-
mation means that both the By and the B4 curves start
and end around the same filtration values. That is, two
Betti curves with similar areas will not have extremal
differences in their curve profiles.

B,-AUC

F(2.61)=6.13; p=0.0064

B,-AUC (a.u.)

PDS

F(2.67)=3.26; p=0.022

B,-AUC b "

F(2.42)=5.22; p=0.012

B,-AUC (a.u.)

PDS

F(2.34)=2.97; p=0.034

9 12 15 18
Age

Figure 4. Scatter-plots of the GAMM PDS (left) and age (right) models for the By (top) and B4 (bottom) area under de curve (AUC) in relation
to the pubertal scale (PDS) or age (in years). Thin lines represent individual trajectories; thick black lines represent the sample curve (with
95% confidence-interval shadow). Smooth spline F statistics are depicted. GAMM-age adjustments have higher AIC than GAM-PDS, but
are depicted as a reference. a.u., arbitrary units. The relationship between the PDS or Age and the TDA features residuals after regressing
out average motion, head coil, and intraindividual slopes covariates is included in Figure Extended Data Figure 4-1. F, females; M, males.
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Regarding model selection for the developmental ef-
fects, the GAMM for the PDS showed the lowest AIC for
Bo-AUC (858.3) and B4-AUC (625.6; Table 1). Additionally,
the normality assumption was rejected (based on the
nominal a=0.05) only in the residuals of the linear mixed-
models of the B1-AUC, but the assumption remains for all
of the nonlinear models as well as all Bo-AUC models
tested. The By-AUC and B4-AUC trends along the PDS
show an initial increase from level 1 to 2, followed by a
soft decline after that (Fig. 4). Both effects were significant
(Bo-AUC: F=6.13, EDF=2.61, p=0.0064; B4-AUC: F=5.22,
EDF=2.42,p=0.012).

Discussion

In this study, we have applied Topological Data Analysis
(TDA) on the functional connectomes of a longitudinal sam-
ple of typically developing children and adolescents. TDA
features show a more distributed connectivity structure
compared with random networks. However, when assess-
ing the connectivity structure within the connected nodes,
the brain connectomes exhibit a more densely connected
pattern than the random networks. Furthermore, this to-
pology develops nonlinearly through adolescence, better
adjusted to pubertal status than chronological age. This
nonlinear effect exhibits a stronger connectivity of the
whole-network and within the fronto-parietal network
just after the onset of the pubertal signs.

Regarding the average Betti curves, the sample inter-
cept for the By curve showed an inverse sigmoid pattern
that replicates previous findings in functional connectivity
fMRI (Liang and Wang, 2017; Gracia-Tabuenca et al.,
2020; Li et al., 2021) and PET (H. Lee et al., 2012) studies.
Furthermore, the average By curve of the randomized
data reached the single component faster than the observed
data, evincing a less distributed network. This random pat-
tern was also replicated in another pediatric sample showing
the same faster transition to a single component (Gracia-
Tabuenca et al., 2020). Concerning the B4, both the sample
intercept and randomized curves exhibit a bell-shaped
curve with an approximately similar filtration value at their
maxima but at a lower area for the observed data. This infor-
mation evinces a connectivity topology structure of a lower
number of holes or more densely connected at the local
level in the real data compared with the random networks.
Thus, By tells how fast the whole-network goes from iso-
lated to all-connected nodes, while B, reflects how densely
connected those elements are already connected. It is no-
ticeable that, on average, By tends to reach the single com-
ponent at filtration values of ¢ = 0.5, but at that point, B4
curves display their peak number of “holes.” This informa-
tion implies that these TDA features not only reflect different
levels of connectivity structure but also occur at different
connectivity strengths.

Regarding the developmental effects of the TDA fea-
tures, several models were tested to address the area
under the By and B4 curves. Nonlinear additive models
show greater goodness of fit compared with linear ones,
even controlling for the extra number of parameters.
Specifically, when considering the pubertal status (as-
sessed by the PDS) without its sex interaction is the
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Figure 5. Brain maps of the smooth spline’s F value of the
Pubertal Development Scale (PDS) GAMM term for Bo-AUC at
the functional networks level. Mapping was based on ROI cor-
responding to the consensus area according to Power et al.
(2011), using BrainNet Viewer (Xia et al., 2013; RRID:SCR_
009446).

model that better fits the AUC for both By and B4. Hence,
the development of the functional connectome topology
better adjusts pubertal status than chronological age.
This is a relevant finding considering that the pubertal
status takes into account noncontinuous changes as
well as more subtle sex effects than a nonlinear age-sex
interaction. No previous studies have addressed the ad-
olescent connectome via TDA, but recent studies have

Fronto—parietal Network
(F=6.84, EDF=2.09, p=0.0014)

Sex
o F
o M

PDS

Figure 6. Scatter-plot of the GAMM model for the Bo-AUC of
the fronto-parietal network (FPN) in relation to the pubertal
scale (PDS). Thin lines represent individual trajectories; thick
black lines represent the sample’s smooth spline curve (with
95% confidence-interval shadow). Smooth spline F statistics are
depicted. a.u., arbitrary units. The relationship between the PDS
and the Bg-AUC residuals after regressing out average motion,
head coil, and intraindividual slopes covariates is included in
Extended Data Figure 6-1. EDF, effective degrees of freedom.
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shown a better adjustment with the pubertal status for the
developmental trends of the functional connectome (based
on graph theory; Gracia-Tabuenca et al., 2021) or the frontos-
triatal functional connectivity (van Duijvenvoorde et al., 2019).
Previous studies in animal models have shown brain plasticity
associated with puberty-related hormonal changes (Sisk and
Foster, 2004). Neuroimaging studies controlling for the age
effects have also revealed structural changes associated with
the puberty stage in humans, mainly showing decreased gray
matter density but increased white matter density in later
stages (Peper et al., 2009; Perrin et al., 2009; Bramen et al.,
2011; Herting et al., 2012). This work contributes to the
emerging evidence that puberty onset dramatically influ-
ences the development of functional brain connectivity
(van Duijvenvoorde et al., 2019; Gracia-Tabuenca et al.,
2021).

Concerning whole-brain inferences, the AUC for both
Bo and B4 showed an initial increase from PDS level 1 to
2, but decreased afterward. In contrast, when focusing on
the chronological age, the turning point is ~12years old,
but showing smoother trends compared with PDS. This
means a faster transition to the single component for the
Bo while a lower rate of geometric holes for the B4 at the
end of adolescence when considering PDS or age. But
only Bo-AUC effects were significant, which evinces that
those changes were more prominent at lower filtration values,
i.e., edges with higher functional connectivity (see Materials
and Methods, Topological data analysis). Previous work on
brain functional organization during this period has shown in-
creases along age in the within-network connectivity (Fair et
al., 2009; Satterthwaite et al., 2013a; Gu et al., 2015), while
others failed to replicate that pattern showing an increase in
the between-network functional connectivity instead (Hwang
et al., 2013; Marek et al., 2015). In addition, when considering
the PDS, it has been shown that functional centrality, segre-
gation, efficiency, and integration increase at the end of ado-
lescence (Gracia-Tabuenca et al., 2021). Such divergent
results in neurotypical samples can be explained by the use
of different samples and methods, such as selection of re-
gions/networks of interest, thresholding, and/or connectome
features. However, the present study uses longitudinal non-
linear modeling with features from the TDA framework, which
is resilient thresholding and can extract high-order patterns at
the local and global levels at the same time. All these studies
demonstrate the change in the configuration of the brain’s
functional organization during adolescence.

Likewise, the Bo-AUC along the PDS effect was stron-
ger in the Fronto-Parietal Network (FPN), showing a simi-
lar nonlinear trend as that for the whole brain network
(Table 2; Figs. 5 and 6). This demonstrates a faster bind-
ing of the FPN nodes at the end of adolescence in terms
of functional connectivity. The FPN is a key module of the
connectome that is involved in the response to high-de-
manding tasks (Zanto and Gazzaley, 2013) and is a funda-
mental system for the consolidation of executive behavior
in the adolescent period (Baum et al., 2017; Chai et al.,
2017). Other works on functional connectomes have re-
ported an increase in the FPN connectivity along with
other attention-related systems in late adolescence
(Hwang et al., 2013; Marek et al., 2015). In fact, when
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applying the graph theory measures to this sample (in a
previous study from our group, Gracia-Tabuenca et al.,
2021), we found diverse connectome changes in several
functional networks, including attention-related but also
primary and subcortical, but when using TDA features the
central role of the FPN is clearly stated among the other
networks.

Some limitations of this work should be taken into ac-
count. We used relatively short scans, which may affect
the quality of the data; nonetheless, it was considered
sufficient at the time of the first acquisition (Van Dijk et al.,
2010). Furthermore, we applied a strident quality control
of the data discarding those datasets with <80% good
quality data in terms of motion artifact. Nonetheless,
Topological Data Analysis (TDA) complements other net-
work modeling strategies by extracting high-dimensional
features across the whole range of connectivity values, in-
stead of exploring a fixed set of connections.

In conclusion, the present study focused on the char-
acterization of functional connectomes as topological
spaces in a longitudinal sample of typically developing
children and adolescents. Observed Topological Data
Analysis (TDA) features showed a more distributed
structure but with denser local connections compared
with random networks. However, during adolescence,
this effect changes with a nonlinear trend for the whole-
brain and the fronto-parietal network, particularly after
the onset of the pubertal signs. These results provide
evidence of the nonlinear, puberty-dependent develop-
mental trajectories of the topology of the brain network.
With the advantage that these properties arise when ex-
ploring the whole range of connectivity strengths in-
stead of focusing on a small set of them. Although, as
far as we are concerned, this is the first implementation
of TDA into neurotypical development, we have shown
that this approach can handle complex data in a multi-
session design and effectively detect meaningful changes
in the adolescent functional connectome. Being adoles-
cence a critical period for the appearance of the first signs
of mental health disorders, we expect these trajectories
may be of interest for studying both normal and altered
development.
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