################# # Title: "Socially mediated shift in neural circuits activation regulated by synergistic neuromodulatory signaling" # The following is the list of parameters depending on the animal groups and injections # Control: # Dominant: d1ei=0.65 and synpara4=0.2 # Subordinat: d1ei=0.25 and synpara4=0.4 # D1 Antagonist: # Dominant: d1em=0, d1ei=0 # Subordinate: d1em=0, d1ei=0 # GABA Antagonist: # Dominant: gaba=0, synpara4=0, i2beta=0.024 # Subordinate: gaba=0, synpara4=0, i2beta=0.0072 # Glycine Antagonist: # Dominant: glyc=0 # Subordinate: glyc=0 ###################### # Mauthner-cell parameters par vf1=-1.2,vf2=18,vf3=12,vf4=17,gca=4,vca=120,gl=2 par gk=8,vl=-60,vk=-84,phi=0.23 par cm=1,kca=1,gkca=0.25,eps=0.005,mu=0.19,ca0=10 par mbiapp=19.5,it0=20000 par fre=1,dur=2,thetas=0,ss=4 par mgsyn=0.1,ms2=0.029,mvsyn=-50 par igsynmax=15,mca0=10,tauagm=10000 par mgca=4,mgkca=0.3,mkca=0.9 par d1em=0.015,synpara1=0.24,gaba=0.4,glyc=0.2 ################ # initial conditions init ev=-30,ew=0.0075,eca=4.6,es=0.03 init iv=-37.6,iw=0.0029,ica=2.06,is=0.0027 init mv=-42.1,mw=0.0017,mca=1.44,igsyn=2.61 init i2v=-37.7,i2w=0.0029,i2ca=2.03,i2s=0.014 ################# # M-cell functions minf(v)=0.5*(1+tanh((v-vf1)/vf2)) winf(v)=0.5*(1+tanh((v-vf3)/vf4)) tauw(v)=1/cosh((v-vf3)/(2*vf4)) # Synaptic inputs for M-cell # e2msyn: synaptic input from excitatory cells # synpara1: g_{E->M} # d1em: D_{1M} # es: s_E # evsyn: v_{E->M} e2msyn = synpara1*(1+d1em)*igsyn*es*(mv-evsyn) # i2msyn: synaptic input from inhibitory cells (GABA, Glycine) # igsyn:g_{I} # gaba: g_{GA->M} # is: s_{GA} # glyc: g_{GL->M} # i2s: s_{GL} # ivsyn: v_{GA->M} = v_{GL->M} i2msyn = igsyn*(gaba*is +glyc*i2s)*(mv-ivsyn) # Mauthner-cell equations # mbiapp: I_{M0}, a baseline external input to the M-cell # mw: n (a gating variable for the potassium current)in the paper # ca0: k_1 in the paper # mgsyn*ms2*(mv-mvsyn): inhibitory input from other M-cell # mgsyn: g_{M->M} # ms2: s_{M} # mvsyn: v_{M->M} # winf: n_{infty} in the paper # tauw(mv): tau_n(v) in the paper # igsyn:g_{I} # igsynmax: g_{Imax} # mca0: k_2 # tauagm: \rho mv' = (mbiapp-e2msyn-i2msyn-mgca*minf(mv)*(mv-vca)-gk*mw*(mv-VK)-gl*(mv-Vl)-mgkca*(mca/(mca+ca0))*(mv-VK)-igsyn*mgsyn*ms2*(mv-mvsyn))/cm mw' = phi*(winf(mv)-mw)/tauw(mv) mca' = eps*(-mu*gca*minf(mv)*(mv-vca) - mkca*mca) igsyn'=(igsynmax/(mca+mca0)-igsyn)/tauagm ################## # Excitatory cell parameters par ebiapp=43.9,eiapp=35,evsyn=40,ealpha=15,ebeta=0.1 par ecm=20,egsyni=0.5,eeps=0.005 # E-cell functions esinf(v)=1./(1.+exp(-(v+thetas)/ss)) # Excitatory cell equations # ebiapp: I_{E0}, a baseline external input to the excitatory cell # eiapp: W_{E}, a stimulus strength # Unit square pulse = I(t) # dur: pulse duration # fre: pulse frequency ev' = (ebiapp+eiapp*(heav(t-it0)*heav(sin(pi*2*fre/1000*t)-sin(5*pi/2-pi*dur*fre/1000)))-gca*minf(ev)*(ev-vca)-gk*ew*(ev-VK)-gl*(ev-Vl)-gkca*(eca/(eca+ca0))*(ev-VK))/ecm ew' = phi*(winf(ev)-ew)/tauw(ev) eca' = eps*(-mu*gca*minf(ev)*(ev-vca) - kca*eca) es' = ealpha*(1-es)*esinf(ev)-ebeta*es ################### # GABA Inhibitory cell parameters par ibiapp=36,ivsyn=-50,ialpha=4,ibeta=0.08,icm=20,synpara2=0.3 isinf(v)=1./(1.+exp(-(v+thetas)/ss)) # Synaptic inputs from E cell: e2isyn # synpara2: g_{E->GA} # es: s_{E} # evsyn: v_{E->GA} e2isyn = synpara2*es*(iv-evsyn) # Inhibitory cell equations # ibiapp: I_{GA0}, a baseline external input to GABA inhibitory cell iv' = (ibiapp-e2isyn-gca*minf(iv)*(iv-vca)-gk*iw*(iv-VK)-gl*(iv-Vl)-gkca*(ica/(ica+ca0))*(iv-VK))/icm iw' = phi*(winf(iv)-iw)/tauw(iv) ica' = eps*(-mu*gca*minf(iv)*(iv-vca) - kca*ica) is' = ialpha*(1-is)*isinf(iv)-ibeta*is ################### # Glycine Inhibitory cell parameters par i2biapp=36,i2alpha=8.,i2beta=0.024 par d1ei=0.65,synpara3=0.3,synpara4=0.2 # Synaptic input from E cell # synpara3: g_{E-> GL} # d1ei: D_{1GL} # es: s_{E} # evsyn: v_{E->GL} # Glycinergic has D1R so that we need d1 term here. e2isyn2 = synpara3*(1+d1ei)*es*(i2v-evsyn) # Synaptic input from GABA # synpara4: g_{GA->GL} # is: s_{GA} # ivsyn: v_{GA->GL} # Synaptic input from GABA to Glycine i2isyn2 = synpara4*is*(i2v-ivsyn) # i2biapp: I_{GL0}, a baseline external input to Glycine inhibitory cell i2v' = (i2biapp-e2isyn2-i2isyn2-gca*minf(i2v)*(i2v-vca)-gk*i2w*(i2v-VK)-gl*(i2v-Vl)-gkca*(i2ca/(i2ca+ca0))*(i2v-VK))/icm i2w' = phi*(winf(i2v)-i2w)/tauw(i2v) i2ca' = eps*(-mu*gca*minf(i2v)*(i2v-vca) - kca*i2ca) i2s' = i2alpha*(1-i2s)*isinf(i2v)-i2beta*i2s @ dt=.01,total=70000,njmp=5,trans=0,meth=qualrk,xp=t,yp=mv,xlo=0,xhi=70000,ylo=-50,yhi=40.,bound=500001,maxstor=500001 done