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Abstract

Accurate and efficient quantification of animal behavior facilitates the understanding of the brain. An emerging
approach within machine learning (ML) field is to combine multiple ML-based algorithms to quantify animal be-
havior. These so-called hybrid models have emerged because of limitations associated with supervised [e.g.,
random forest (RF)] and unsupervised [e.g., hidden Markov model (HMM)] ML models. For example, RF mod-
els lack temporal information across video frames, and HMM latent states are often difficult to interpret. We
sought to develop a hybrid model, and did so in the context of a study of mouse risk assessment behavior.
We used DeepLabCut to estimate the positions of mouse body parts. Positional features were calculated
using DeepLabCut outputs and were used to train RF and HMM models with equal number of states, sepa-
rately. The per-frame predictions from RF and HMM models were then passed to a second HMM model layer
(“reHMM”). The outputs of the reHMM layer showed improved interpretability over the initial HMM output.
Finally, we combined predictions from RF and HMM models with selected positional features to train a third
HMM model (“reHMM1”). This reHMM1 layered hybrid model unveiled distinctive temporal and human-inter-
pretable behavioral patterns. We applied this workflow to investigate risk assessment to trimethylthiazoline
and snake feces odor, finding unique behavioral patterns to each that were separable from attractive and neu-
tral stimuli. We conclude that this layered, hybrid ML workflow represents a balanced approach for improving
the depth and reliability of ML classifiers in chemosensory and other behavioral contexts.
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Significance Statement

In this study, we integrate two widely-adopted machine learning (ML) models, random forest (RF) and hid-
den Markov model (HMM), to develop a layered, hybrid ML-based workflow. Our workflow not only over-
comes the intrinsic limitations of each model alone, but also improves the depth and reliability of ML
models. Implementing this analytic workflow unveils distinctive and dynamic mouse behavioral patterns to
chemosensory cues in the context of mouse risk assessment behavioral experiments. This study provides
an efficient and interpretable analytic strategy for the quantification of animal behavior in diverse experimen-
tal settings.

Introduction
Behavior is the muscular output of an organism reflect-

ing the function of the CNS (Schlinger, 2015). Accurately
and efficiently quantifying animal behavior improves our

knowledge of the structural and functional connectivity of
the CNS underlying complex behaviors (Krakauer et al.,
2017). In general, videography-based recording and man-
ual annotation have long been a standard method for
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animal behavior quantification (Anderson and Perona, 2014).
Recently, advancements in machine learning (ML) software
has enabled tracking of animal/body parts of interest
movement automatically in video recordings (Berman,
2018; Mathis et al., 2018; Pereira et al., 2019). Of these,
DeepLabCut, built based on transfer learning with deep
neural networks, has been widely adopted because of its
efficient and intuitive framework, and supports marker-
less movement tracking and pose estimation (Mathis et
al., 2018; Nath et al., 2019).
Regardless of the specific approach used for tracking

animal positions and poses, a major challenge remains for
those seeking to quantify complex animal behaviors.
Typically, the multidimensional matrix of feature positions
produced by DeepLabCut or other tracking methods is
used as the input for additional algorithmic tools that per-
form dimensionality reduction, feature recognition, and ul-
timately a prediction of an animal’s behavioral state at
each point in space and time (Dell et al., 2014; Guo et al.,
2015; Machado et al., 2015). One of these tools, the ran-
dom forest (RF), a versatile supervised ML algorithm, has
been used in the context of human (Charles et al., 2014;
Baumela, 2016) and mouse (Hong et al., 2015; Winters et
al., 2022) behavioral analysis. RFs are generally able to fit
complex datasets, and support multiple types of statisti-
cal analysis (Cutler et al., 2007). RF methods extract static
features described by a set of variables (e.g., the matrix of
feature positions) present in the inputs, and process each
feature independently without influences from temporally
neighboring features (Lester et al., 2005; Nath et al., 2019).
This intrinsic feature of RF classifiers can produce misclas-
sifications that may not be easy to recognize (Sok et al.,
2018). For example, a mouse quickly rearing during ex-
ploration may be indistinguishable from a long instance
of standing or defending against an aggressor. This limita-
tion of RF classifiers limits their utility for complex, temporally-
evolving components of behavior.
Behavior intrinsically involves a sequential pattern of

movements, and behavioral events occur in probabilistic
relationships with the environment (Fountain et al., 2020).
Hidden Markov models (HMMs), stochastic time-series
models, infer that an observed event sequence is driven
by a series of transitions between hidden states (Leos-
Barajas et al., 2017). Once trained and validated, two
types of information can be obtained from HMMs: the se-
quence of predicted hidden states and model transition
probabilities between those states. HMMs have been

extensively applied in multiple fields, such as speech recogni-
tion, bioinformatics, as well as the analysis of animal behavior
(Findley et al., 2021; Jiang, 2021; Mor et al., 2021).
HMMs support behavioral classification tasks in many

scenarios, but also have drawbacks (Glennie et al., 2022;
Ruiz-Suarez et al., 2022). HMMs are unsupervised and
parametric, but do not necessarily produce results aligned
to the hypotheses being tested (Bicego et al., 2006). Thus,
one must explore and optimize many parameters to pro-
duce results that relate to the hypotheses being tested by
the human experimenters (Ahmadian Ramaki et al., 2018).
For instance, the determination of the optimal number of
hidden states is difficult to determine, often requiring sub-
jective evaluation of results to avoid overgeneralization or
fragmentation, both of which are barriers to interpretation
and hypothesis testing (Deo, 2015; Wuest et al., 2016;
Pohle et al., 2017; H. Liu and Shima, 2021). Despite their
multiple advantages for quantifying temporally complex
behaviors, the drawbacks of HMMs can limit their utility in
behavioral neuroscience.
Given that both supervised and unsupervised ML al-

gorithms have their own merits and demerits, several
methods have employed both supervised and unsu-
pervised ML methods, creating so-called hybrid ML
models. Hybrid ML models attempt to use supervised
and unsupervised methods (e.g., RFs and HMMs) to
compensate for demerits of each process when used
alone. In the present study, we used positional fea-
tures obtained from DeepLabCut as inputs for a lay-
ered, RF-HMM hybrid ML analytic workflow (Fig. 1A).
We employed this workflow to reveal that mice display
fear-like response to 2,4,5-Trimethylthiazole (TMT) with
a reduced tendency of approaching odor and a rapid-
and-short investigative pattern. Also, we uncovered that
predatory chemosensory cues resulted in an increased
behavioral trend of risk assessment in mice. We found
that the resulting layered, hybrid workflow produces rich,
interpretable models that support hypothesis testing in
chemosensory and other complex behavioral contexts.

Materials and Methods
Mice
All animal procedures were performed in accordance

with the University of Texas Southwestern Medical Center
or University of Rochester animal care committee's regu-
lations. Wild-type C57Bl/6 mice were obtained from The
Jackson Laboratory (stock #000651) or the Mouse Breeding
Core at University of Texas Southwestern Medical Center.
All mice aged 8–15weeks were kept with 12/12 h light/dark
cycle (lights on from noon until midnight). Mice were
given ad libitum access to food and water. Throughout
the manuscript, the number of animals is described in text
and figure legends.

Behavioral test setup
Mouse risk assessment behavior was investigated in

a customized two-chamber arena (Fig. 1B). The testing
arena consisted of a small rectangular chamber with
three opaque black walls [6” (L)� 8” (W)� 8” (H)] and a large
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rectangular chamber with three transparent walls [11” (L) �
8” (W) � 8” (H)]. The two chambers were divided by a trans-
parent wall with an open door. Mice could freely cross two
chambers through the door. Mice are tracked by an overhead
FLIR Blackfly camera (BFS-U3-16S2C-CS, USB 3.1) at 60
frames per second (FPS).

DeepLabCut tracking
DeepLabCut (2.2.0.3) was used to track all points of in-

terest (Mathis et al., 2018; Nath et al., 2019), including
four labels in the mouse body (snout, right ear, left ear,

and the base of tail) and eight labels equally spaced in the
Petri dish (Fig. 1B). To create a robust network, we added
a different number of new videos (frames) to retrain the
existing network in each behavioral test because of slight
discrepancies in experimental conditions, including light-
ing, testing arena, animal, and background. Cumulatively,
a total of 9621 labeled frames were used to train ResNet-
50-based neural networks with default parameters for
200,000–800,000 iterations. For all labeled frames, 80%
was used for network training, whereas the remaining
20% was used for network evaluation. If the test error with
p-cutoff was around five pixels (image size was 1160 � 716

Figure 1. A, Architecture of analytic workflow and behavioral experiment overview. Mouse movement and body parts are tracked by using
DeepLabCut software. Behavioral features (e.g., distance, angle_1, angle_2, and velocities of snout and body center) are calculated using
DeepLabCut outputs and are used to train a random forest (RF) and a hidden Markov model (HMM) with equal numbers of states, sepa-
rately. The per-frame predictions from RF and HMM are passed to a second HMM layer (reHMM). The predictions from RF and HMM plus
predominate positional features are used to train a third HMM (“reHMM1”). B, Diagram of the behavioral test arena and DeepLabCut label-
ing. Mice are tracked by an overhead camera during video recording. For DeepLabCut labeling, four mouse body parts (snout, left ear, right
ear, and the base of tail) are labeled. Eight labels equally spaced on a circle are used to label the Petri dish. C, Graphical representation of
derivative features. D, Ethogram including six behavioral states for mouse risk assessment behavior, including approaching (APP), explora-
tion (EXP), investigating-odor (IVO), hiding (HID), heading-out (HDO), and leaving (LEA).
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pixels; 1 mm� 2 pixels), this network was then used to ana-
lyze videos recorded in similar experimental conditions. To
account for residual low-confidence tracking data and
swapped or missing labels, we applied a rolling median filter
to tracking data. Before finalization, labeled videos created by
DeepLabCut weremanually spot-checked for accuracy.

Behavioral features and ethogram
The output of DeepLabCut was in the form of x/y pixel

coordinates of each label. We calculated several deriva-
tive features from DeepLabCut outputs that matched the
experimental design (Fig. 1C). Specifically, we calculated
the distance between the mouse snout and the center of
the Petri dish (“distance”). “Direction vector” was the vector
from the midpoint of two ears toward the mouse snout.
“Target vector” was the vector from the mouse snout to the
center of the Petri dish. “Angle_1” was the angle between
the direction vector and the target vector. “Angle_2”was the
angle between the direction vector and a horizontal line (x-
axis). “Velocity of snout” was the instantaneous velocity (in
pixels) of the snout from one frame to the next. “Body cen-
ter” was the midpoint between the base of tail and the
midpoint of two ears. “Velocity of body center” was the
instantaneous velocity (in pixels) of the body center
from one frame to the next.
To study mouse risk assessment behavior, we defined

a simple ethogram consisting six behavioral states, which
was modified from the previous study (Dielenberg and
McGregor, 2001; Fig. 1D). Hiding (HID) was the state that
the mouse stayed in the smaller, dark rectangular cham-
ber. Heading-out (HDO) was the state that the mouse
body crossed the door and toward the larger clear rectangu-
lar chamber. Approaching (APP) was the state that the
mouse moved toward the Petri dish directly from the small
rectangular chamber. Leaving (LEA) was the state that the
mouse moved toward the small, dark rectangular chamber
directly after sniffing the Petri dish. Investigating-odor (IVO)
was the state that the mouse snout was located within the di-
ameter of the Petri dish. Exploration (EXP) was all mouse be-
havior except for IVO in the large rectangular chamber.

Odor stimuli preparation
2,4,5-Trimethylthiazole (TMT) was purchased from Sigma-

Aldrich. TMT was diluted 1:9 (10%) with mineral oil (Saito et
al., 2017). Female mouse urine was collected as previously
described and stored at �80°C in a freezer (Holekamp et al.,
2008; “Female_urine”). Snake fecal samples were collected
from the Department of Herpetology at the Dallas Zoo. Fecal
samples of inland taipan (Oxyuranus microlepidotus) and
black mamba (Dendroaspis polylepis) were used in the be-
havior test. Snake feces was directly placed in the Petri dish
(“Feces”). For the preparation of snake fecal extracts, inland
taipan feces particles (5 g) were placed in 50 ml of distilled
water (dH2O). The fecesmixture was homogenized by vortex-
ing for 2min and placed on ice on an orbital shaker overnight.
On the second day, the feces mixture was homogenized by
vortexing for 2min and then sequentially subjected to
two steps of centrifugations (10 min at 2400 � g at 4°C
and 30 min at 2800 � g 4°C). The supernatant from two

centrifugations was pooled in collection tubes (“s_unfil-
tered”) and filtered with a 0.22 mM filter (“s_filtered”). Fecal
solids (“solid”) were also kept and stored at �80°C. Pure
water (dH2O) was used as the control odor (“control”).

Risk assessment behavior test
All behavioral tests were performed during the dark

cycle under dim red light. For odor presentation, 3D-
printed fake fecal particles (1 cm in length with an ellipse
shape) were immersed in odor solutions overnight before
the experiment day. Fake fecal particles (n=5–7) were
placed in the Petri dish and kept wet during the experi-
ment. To avoid cross-contamination, one Petri dish was
used only for one odor. In all behavioral tests, mice were
exposed to each odor for 5min.
For the first study (Fig. 2A), 24 C57Bl/6 male mice were

randomly divided into three groups (n=8 for each group)
and exposed to control, TMT, and female_urine, respec-
tively. Without habituation, mice were placed in the test
arena for 5min. Behavioral tests were performed on three
consecutive days and only one group (one odor) was
tested each day.
For the second study (Fig. 2B), 16 C57Bl/6 male mice

were used. Control, TMT, female_urine, and the feces
were used as odor treatments. One day before the experi-
mental test, mice were placed in the test arena for 20min
to habituate to the novel environment. On the testing day,
mice were sequentially exposed to odors in sequence as
“control-control-X-control-X-control-TMT,” in which X repre-
sented either female_urine or the feces in a random pattern.
Because of its well-known fear-inducing effect, TMT was al-
ways the last odor delivered to mice. Interspersed control
treatments were intended to reduce the potential for stimulus
order effects. The second of the initial control treatments was
used as the “control” sample for statistical purposes.
For the third study (Fig. 2C), six C57Bl/6 male mice

were used. Control, inland taipan feces (Feces_1), black
mamba feces (Feces_2), solid, s_unfiltered, and s_filtered
stimuli were used as odor treatments. One day before the
experimental test, mice were placed in the test arena for
20min to habituate to the novel environment. Then, mice
were subjected to 2-d testing. On the first testing day,
mice were sequentially exposed to odors in sequence as
“control-control-X-control-X-control-X-control-Feces_1,”
in which X was one of solid, s_unfiltered, and s_filtered in
a random pattern. The testing on the second day exactly
repeated the stimulus order of the first day, except for an
additional “control-Feces_2” that was added at the very
end. As above, interspersed control treatments were in-
terspersed between odor treatments, and the second of
the initial control treatments was used as the “control” for
statistical analysis.

Random forest
RF classification was performed by using Python (3.8.12) in

the Conda environment (4.10.3). The RF classifier (sklearn.en-
semble.RandomForestClassifier) was loaded from the Scikit-
learn library (Pedregosa et al., 2011). The hyperparameter
n_estimators was defined as 50 and all others were default

Research Article: Methods/New Tools 4 of 15

January 2023, 10(1) ENEURO.0335-22.2022 eNeuro.org



values. As the ground truth (GT) in this study, six behavioral
states (HID, APP, HDO, LEA, EXP, and IVO) were manually
annotated frame-by-frame in 12 videos. Five behavioral fea-
tures (distance, angle_1, angle_2, velocity of snout, and ve-
locity of body center) extracted from 12 manual annotated
videos (a total of 149,258 frames) were used to train the RF
model. For all frames, 80% was used for the RF classifier
training, whereas the remaining 20% was used for model
evaluation. The RF performance was evaluated by 10-fold
cross-validation (sklearn.model_selection.KFold). Feature
importance analysis was conducted by using the module
(sklearn.feature_selection. SelectFromModel) from the
Scikit-learn library. To further improve the perform-
ance of the RF, behavioral feature data were smoothed
using a rolling median filter (window sizes = 5, 10, 15,
30, and 60) from the Pandas library (pandas.Series.
rolling). After data smoothing, 30 behavioral features
(five original features plus 25 smoothed features) were
used to train a new RF model. The same approaches
mentioned above were used to evaluate the perform-
ance of the new RF model.

HiddenMarkov models
We tested several HiddenMarkovModel (HMM) based ap-

proaches, including auto-regressive HMMs, Hidden Semi-
MarkovModels, and Hierarchical HMMs using the extensions

available at https://github.com/lindermanlab/ssm). We found
that the model (hmm.GaussianHMM) from the hmmlearn
Python library (https://github.com/hmmlearn/hmmlearn)
produced the most useful outputs in our experimental
conditions. The hyperparameters of the HMM model
was as follows: covariance_type=“diag,” n_iter = 100,
verbose=True, random_state = 0. “n_components” re-
presenting the number of hidden states was adjusted
as needed. The same five behavioral features used to
train the RF were also fed to train the HMM model. The
outcomes of the HMM were evaluated by comparing it
with the GT and manually checking the plots of the be-
havioral features of each HMM hidden state. For HMM
model optimization, Expectation-Maximization (EM) al-
gorithm and Bayesian Information Criterion (BIC) were
used as criteria to determine the “n_components” pa-
rameter. For the second HMM (“reHMM”) and third
HMM (“reHMM1”), the training data sequences (RF
classification, HMM classification, and distance) were
compressed by replacing with the most frequent element
(RF classification and HMM classification)/median (dis-
tance) in every 15 frames. “n_components” of reHMM
and reHMM1 models were six, and other hyperpara-
meters were identical to HMM. The classifications of RF
and HMMwere fed to train the reHMM. The classifications
of RF and HMM and distance were used to train the
reHMM1. The same evaluation methods for HMM were

Figure 2. Schematic diagrams of experimental design of risk assessment behavior test. A, Experimental design of Study 1.
B, Experimental design of Study 2. C, Experimental design of Study 3.
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used to evaluate the performance of the reHMM and
reHMM1.

Linear discriminant analysis (LDA)
In our reHMM1 workflow, many measurement metrics

were generated to quantify mouse behavior, such as state
occupancy, state transition probability, movement distance,
etc. Thus, we used a supervised classifier linear discriminant
analysis (LDA) to make an overall comparison of behavioral
responses across all animals. The LDA classifier (sklearn.dis-
criminant_analysis.LinearDiscriminantAnalysis) was loaded
from the Scikit-learn library (Pedregosa et al., 2011). As it
takes into account all metrics of each mouse, the LDA classi-
fier is an effective tool for identifying multidimensional axes
(Eigenvectors) that best separate experimental groups.

Code and data availability
The software packages or algorithms used in this study

are descripted in each corresponding section and freely
available online. The Python codes and example data are
available in a GitHub repository (see Extended Data 1).

Statistical analysis
Data analysis was performed using JMP Pro 16 (SAS

Institute). Data are expressed as means 6 standard devi-
ation. Behavioral responses between different odor con-
ditions were compared using a one-way ANOVA or
Student’s t test; p, 0.05 was regarded as a statistically
significant difference.

Results
Optimizing and evaluating the RF classifier
We manually annotated 12 top-down videos of mouse

behavior (149,292 frames) in our behavioral arena to serve
as a “ground truth” (GT) dataset. Tracking data from
DeepLabCut were distilled to five derivative features, in-
cluding the distance from the snout to the Petri dish, head
angle relative to the sample Petri dish center, head angle
relative to the horizontal image axis, and the snout and
body center velocities (see Materials and Methods; Fig.
1C). In this scenario, the implementation of five behavioral
features instead of raw positional information (x/y coordi-
nates) resulted in a decrease in the computational cost of
the ML model while also mitigating the impact of a moving
Petri dish on the relative distance between the mouse
body and Petri dish. Behavioral features of the GT were
plotted for frames annotated as belonging to six behav-
ioral states of a custom ethogram for the experimental
setup (APP, HDO, EXP, HID, IVO, and LEA; see Materials
and Methods; Fig. 3A).
In this study, we first tested the performances of several

supervised ML models in classifying mouse risk assess-
ment behavior using another training dataset (data not
shown). The results showed that the RF model (0.9802)
outperformed other models, such as K-nearest neighbors
(0.9595), Support vector machine (0.9587), and Logistic
Regression (0.9067). RF models have been widely applied in
the classification of animal behavior in various testing con-
texts. (Valletta et al., 2017; Wang, 2019). We first evaluated

the performance of the RF against GT data. We used the
five derived features described above to train an RF classi-
fier, achieving an overall accuracy of 0.9513. Feature impor-
tance analysis revealed that the distance between the snout
and the sample Petri dish was the most informative feature
for the RF model (Fig. 3B). Despite the high overall accuracy
of the RF, the accuracy for each behavioral state was vari-
able, ranging from 0.89 to 1.00 (Fig. 3C). Approximately
10% of “leaving” (LEA) and 7% of “approach” (APP) were
misclassified as “exploration” (EXP). These misclassifica-
tions may have been a result of fewer training images for
these states compared with others, as both LEA and APP
were transient states occupying many fewer overall video
frames compared with “hiding” (HID) and EXP. Another po-
tential cause might be the inherent limitations of RF models,
specifically their blindness to temporal features of the data-
set. RF models distinguish class boundaries independently
of neighboring data (i.e., timepoints before and after the an-
alyzed frame), leading to a lack of temporal relations be-
tween outcomes (Rubinstein and Hastie, 1997; Lester et al.,
2005). In an attempt to provide the model with some tempo-
ral information, we temporally smoothed the data with rolling
median filters of variable window sizes (James et al., 2016;
Cook et al., 2019; Fig. 3D). After inclusion of temporally fil-
tered features, distances between the snout and Petri dish
remained the most informative of the RF classification (Fig.
3D). This also improved the overall accuracy to 0.9931.
Remarkably, the classification accuracy for APP and LEA
reached 0.99 and 0.98, respectively (Fig. 3E). Furthermore,
we tested this upgraded RF model to classify a small num-
ber of video frames that were novel to the RF model. The
overall accuracy was 0.9970 (Fig. 3F). These results show
that RF models achieve high classification accuracy in these
conditions, and that RF models benefit from the inclusion of
temporally smoothed data.

Optimizing and evaluating the HMM
Although the RF model achieved high classification ac-

curacy, its inherent limitations related to temporal compo-
nents of behavior were of some concern (Sok et al., 2018).
Hidden Markov models (HMMs) are another popular ML
method for assessing highly dynamic behavioral data
(Kim et al., 2010; P. Liu et al., 2016). HMMs infer transi-
tions between hidden (latent) states that best predict ob-
served data, potentially compensating for drawbacks of RF
models. As an initial test of utility, we compared the per-
formance between two ML models with/without leveraging
temporal information (Fig. 4). The same five derivative fea-
tures used for the RF models shown in Figure 3 were used
to train HMMs (Fig. 4B,C). When given an equal number of
latent states to the RF (6), the HMM identified some states
that roughly matched GT states [especially “investigating-
odor” (IVO) and “leaving” (LEA); Fig. 3B]. However, most
HMM states were not clearly matched to a hypothesis-re-
lated state (Fig. 4A), which was reflected in the confusion
matrix between the 6-state HMM and the 6-state RF classi-
fication RF (Fig. 4B). For the HMM state transition, most of
HMM states, except for state 0, exhibited high probability
of self-transition (Fig. 4C). Given the capacity for HMMs
to identify hypothesis-related states outside our RF state

Research Article: Methods/New Tools 6 of 15

January 2023, 10(1) ENEURO.0335-22.2022 eNeuro.org

https://doi.org/10.1523/ENEURO.0335-22.2022.ed1


definitions, and because the number of latent states is de-
fined by users, we generated HMMs with increasing num-
bers of hidden states in two batches, ranging from 6 to 12
states (Extended Data Fig. 4-1A,B) and 13 to 24 states
(Extended Data Fig. 4-3A,B). Despite the additional flexibil-
ity, these HMMs did not clearly identify new or missing

hypothesis-related states, which was reflected in the con-
fusion matrices comparing the HMM output to six-state RF
output. (Fig. 4D,E; Extended Data Figs. 4-1C, 4-2A,B, 4-3C).
Thus, despite advantages related to sequential information,
HMM labels had limited capacity to support hypothesis test-
ing in these conditions.

Figure 3. Plots of ground truth (GT) and performance of random forest (RF). A, Graphical representations of the GT behavioral
states. Each dot denotes the mouse position (midpoint between the ears) during manually annotated frames, with color indicating
the normalized instantaneous velocity of the animal center. At right are polar plots indicating the direction of the mouse head relative
to the horizontal axis. B, Feature importance for the RF. C, Confusion matrix for the RF versus the GT. D, Feature importance of the
optimized RF, which included rolling median filters of each derivative feature with temporal sliding windows (5, 10, 15, 30, and 60
frames) E, Confusion matrix for the optimized RF versus GT. F, Confusion matrix for the optimized RF versus GT for frames not in-
cluded in the training set (n=2218).

Research Article: Methods/New Tools 7 of 15

January 2023, 10(1) ENEURO.0335-22.2022 eNeuro.org

https://doi.org/10.1523/ENEURO.0335-22.2022.f4-1
https://doi.org/10.1523/ENEURO.0335-22.2022.f4-3
https://doi.org/10.1523/ENEURO.0335-22.2022.f4-1
https://doi.org/10.1523/ENEURO.0335-22.2022.f4-2
https://doi.org/10.1523/ENEURO.0335-22.2022.f4-3


Hybrid modes reHMM and reHMM1
Given the limitations of RF and HMM strategies, we

next considered a hybrid ML models, which have been
demonstrated to outperform either alone (Lester et al.,
2005; Antos et al., 2014; Sok et al., 2018). We first used

the outputs of RF and HMM to train a new HMMmodel for
6-state classification, named “reHMM” (Fig. 5). reHMM
model output showed a closer match between reHMM
states and GT compared with HMM-alone (Fig. 5A,B). For
example, the reHMM states 0 and 2 together split frames

Figure 4. Performance of the hidden Markov model (HMM). A, Graphical representations of HMM behavioral states for a 6-state classifi-
cation [HMM(6)]. Each dot denotes the mouse position (midpoint between the ears) during manually annotated frames, with color indicat-
ing the normalized instantaneous velocity of the animal center. At right are polar plots indicating the direction of the mouse head relative
to the horizontal axis. B, Confusion matrix for the HMM(6) versus the GT. C, State transition matrix of hidden Markov model for 6-state
classification. D, Confusion matrix for the HMM for 11-state classification [HMM(11)] versus the GT. E, State transition matrix of hidden
Markov model for 11-state classification. Additional data can be found in Extended Data Figures 4-1, 4-2, and 4-3.
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associated with the GT HID state, accounting for 52%
and 48%, respectively (Fig. 5B). The reHMM state 5 in-
cluded 64% of APP and 56% of HDO, which share the
feature that the mouse body is oriented toward odorant
cues.
Given the improvement of reHMM compared with the

6-state HMM alone, we sought to further enhance the
reHMM model’s interpretability. Leontjeva and Kuzovkin
reported that combining dynamic and static features ena-
bles classification models to simultaneously capture stat-
ic information and temporal dynamics (Leontjeva and
Kuzovkin, 2016). In our effort to optimize the RF, the dis-
tance between the mouse snout and the stimulus order
was the most informative static feature, so we added
this feature to the RF-only and HMM-only predictions
(creating a three-dimensional matrix). This input matrix,
including the predictions of RF-only, HMM-only, and
the distance measurement, was used to train a reHMM
variant, named “reHMM1” (Fig. 5C,D). reHMM1 states
were highly interpretable and mapped strongly to GT

states, suggesting similar classifying strength of the
reHMM1 to the RF model (Fig. 5C,D). For example, the
reHMM1 state four contained both APP and LEA, which
could be regarded as a back-and-forth state. IVO state
was exclusively distributed in the reHMM1 state 5, provid-
ing an avenue to decipher IVO patterns and transition fre-
quencies between IVO and others. Overall, this layered,
hybrid reHMM1model showed the capacity to classify be-
haviors in these experimental conditions with high inter-
pretability and accuracy, incorporating static and temporal
features to achieve its predictions.

TMT induced a heightened level of fear-like behavior
in mice
We next sought to test the reHMM1 model to evaluate its

performance in mouse risk assessment behavioral assays
(Fig. 6). To simplify interpretation, the reHMM1 states repre-
senting HDO, APP, and LEA were merged into one state
reHMM1 state 2. This state included transition states

Figure 5. Performance of reHMM and reHMM1. A, Graphical representations of hidden behavioral states, as predicted by the
reHMM. Dots represent the midpoint of the two ears and the color represents the velocity of the body center. Polar plots represent
the angle between the head direction vector and the horizontal x-axis. B, Confusion matrix for reHMM versus the GT. C, Graphical
representations of hidden behavioral states, as predicted by the reHMM1. D, Confusion matrix for reHMM1 versus the GT.
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between the entry to the safe area and the odor object, es-
sentially a back-and-forth (B-A-F) state. States 0, 1, and 3
effectively encapsulated HID, EXP, and IVO, respectively.
For visualization, each reorganized reHMM1 state was also
assigned a color code; red represented avoidant HID and
yellow represented neutral EXP, respectively. Orange repre-
sented B-A-F state and green represented attractive IVO, re-
spectively (Fig. 6A).
In an initial proof-of-concept experiment, TMT, female

mouse urine, and pure water were used as test odorants.
TMT, a compound derived from red fox feces, has been
widely used to induce fear-like behavioral responses in ro-
dents, such as freezing, avoidance, and defensive burying
(Fendt et al., 2005). Consistent with previous studies, the
reHMM1 output showed that mice spend less time on in-
vestigating TMT compared with female urine and pure
water (Fig. 6B). Moreover, reHMM1 revealed that mice

had a lower probability of transiting from state 0 to 2 and
state 3 to 3, while a higher probability of switching from
state 3 to 1 in the presence of TMT (Fig. 6C–E; Extended
Data Fig. 6–2). These observations suggest that TMT-ex-
posed mice were inclined to stay in HID and leave IVO.
During the first 2min following the first IVO event (the first
close investigation of the test odorant), the average inter-
vals between two consecutive IVOs were larger in TMT-
treated mice compared with pure water (Extended Data
Fig. 6-1A). Also, the average duration of IVO was much
shorter for mice encountering TMT compared with animals
faced with water and female urine (Extended Data Fig. 6-
1B). These data indicate that mice displayed less frequent
and shorter investigative responses to TMT. On the other
hand, we did not find differences in the total number of IVO
events, the latency to the first IVO event, or total movement
distance between the three treatments (Extended Data Fig.

Figure 6. TMT induced a heightened level of fear-like behavior in mice. Analysis was conducted for a 2-min window starting with
the first IVO event. A, Confusion matrix for the merged reHMM1 states versus the RF states. For simplicity, the three reHMM1
states matching the RF states approaching (APP), heading-out (HDO), and leaving (LEA) were merged into the back-and-forth (B-A-
F) state. Right, Graphical representation of the interpretation of merged reHMM1 states. Red indicates state 0 [hiding(HID)]. Yellow
indicates state 1 [exploration(EXP)]. Orange indicates state 2 [back-and-forth(B-A-F)]. Green indicates state 3 [investigating-odor
(IVO)]. B, Occupancy analysis for the reHMM1 state IVO. C–E, Transition probabilities between listed reHMM1 states. F, Heatmap
illustrating behavioral sequence aligned to the first IVO event. Each row indicates one mouse. Each column indicates the time (0.25
s). The color code is identical to the description in panel A. G, Behavioral sequence similarity, as evaluated by Euclidean distance.
H, Plot of linear discriminant analysis; *p, 0.05, one-way ANOVA followed by multiple comparisons tests. For this experiment, 24
mice (n=8 for each treatment group) were available for analysis. Additional data can be found in Extended Data Figure 6-1.
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6-1C–E). We next measured the Euclidean distance be-
tween the first-IVO-aligned reHMM1 classifications to in-
vestigate the behavioral sequence similarity in each odor
treatment, finding that the behavioral sequence of TMT-
treated mice differed from those of mice treated with pure
water and female urine (Fig. 6F,G). By applying this analyti-
cal workflow, many metrics were produced, including
reHMM1 state occupancy, the transition probability of
reHMM1 states, IVO frequency, IVO duration, IVO latency,
the total number of IVO, total movement distance, and be-
havioral sequence similarity. Thus, we used the LDA
classifier to compare the overall behavioral difference
across all behavioral metrics. LDA analysis revealed that
the behavioral outputs from mice confronted with differ-
ent odor cues could be readily distinguished (Fig. 6H).
These data show that the reHMM1 analytic workflow is
well-suited for behavioral pattern analysis in response to
appetitive and aversive odorants.

Snake feces stimulated risk assessment behaviors in
mice
Quantifying threat assessment behavior can be a challeng-

ing task, especially in the context of complex chemosignal
blends that laboratory strains of mice have never encoun-
tered in their natural context (e.g., predator cues). We investi-
gated the mouse behavioral responses to snake feces, a
predatory odor cue. In this experiment, TMT, female mouse
urine, and pure water were used as negative, positive, and
neutral controls, respectively. In this experiment, each ani-
mal was exposed to all 4 odorants in a pseudorandom order
(the exception was that negative control was always first
and TMT always last). reHMM1 state occupancy analysis
revealed that snake feces-treated mice spent more time in
IVO state than TMT, whereas less time compared with fe-
male urine (Fig. 7A). Similar to the observations of the first
pilot study, exposure to TMT was associated with a higher
occupancy of B-A-F, but a lower level of occupancy in IVO,
compared with female urine (Fig. 7A–C). Mice investigating
female mouse urine displayed higher occupancy of IVO
while lower HID relative to pure water (Fig. 7A,B). reHMM1
demonstrated that snake feces caused a higher probability
of transiting from state 1 to 3 compared with pure water
(Fig. 7D; Extended Data Fig. 7-2). Compared with TMT,
snake feces-encountered mice displayed a lower proba-
bility of leaving state 3 (3 to 1; Fig. 7E). Interestingly, the
probability of staying in state 3 (aligned with the “investi-
gating-odor” RF condition) in response to snake feces
was higher than TMT, but lower than female urine (Fig. 7F).
Also, this analysis suggested that snake feces caused a

higher frequency of IVO (shorter IVO interval) and more
total number of IVO relative to pure water (Extended Data
Fig. 7-1A–C). This suggested that the animals were ac-
tively assessing the snake feces, and that they found it
mildly threatening compared with conspecific cues. In
these conditions, TMT treatment was associated with in-
creased overall IVO frequency, but an overall decreased
IVO duration compared with pure water (Extended Data
Fig. 7-1A–D). This suggested that in these conditions,
where mice are habituated to their environment by a se-
ries of control and odorant presentations, TMT is not as

overtly fear-inducing as it is in other conditions. As ex-
pected, female mouse urine caused the longest IVO du-
ration among all treatments (Extended Data Fig. 7-1B).
In these conditions, we observed no difference in the
total movement, suggesting that animals did not freeze
for long periods of time in these conditions, even in the
presence of the well-established aversive TMT odorant
(Extended Data Fig. 7-1E).
First-IVO-aligned behavioral sequence analysis indi-

cated that the behavioral responses to all test and control
odorants were not generally distinguishable from each
other (Fig. 7H,I). LDA analysis, on the other hand, which
incorporated a broader range of metrics, revealed that be-
havioral responses to snake feces were separable from
other odorants, including TMT (Fig. 7J). These studies show
that mice exposed to multiple odorant presentations in this
threat assessment assay respond differently to odorants
than when they encounter them naively. The data also sug-
gest that mice respond to novel predatory cues with an in-
creased behavioral trend of risk assessment, not overt
aversion.

Snake feces extract promoted risk assessment
behaviors in mice
A major goal in chemosensory neuroscience is to iden-

tify specific chemosignals that drive behavioral changes.
To support the eventual identification of novel predatory
chemosignals, we introduced animals to fractions of snake
feces, including unfiltered and sterile filtered extracts, as
well as residual solids (Fig. 8). Snake feces and pure water
were used as positive and negative controls, respectively. A
second snake fecal treatment from a separate species was
used in place of TMT as the final positive control stimulus.
Model outputs showed that filtered and unfiltered extracts
and the remaining solid caused higher IVO occupancy than
pure water, but less time spent in IVO compared with snake
feces (Fig. 8A). Both snake feces treatments were associ-
ated with a lower HID occupancy and probability of staying
in state 0, compared with pure water (Fig. 8B,C; Extended
Data Fig. 8-2). Filtered and unfiltered extracts induced a
higher probability of transiting from state 1 to 3 and from
state 0 to 2, compared with pure water (Fig. 8D,E), whereas
mice treated with filtered and unfiltered extracts displayed a
higher probability of staying in state 1 relative to two snake
feces (Fig. 8F). Similar to the study shown in Figure 6, snake
feces increased the total number of IVO events compared
with pure water (Extended Data Fig. 8-1B,C). Unfiltered ex-
tracts also increased IVO events and IVO duration, while fil-
tered extracts only increased the total number of IVO
(Extended Data Fig. 8-1B,C). No difference in IVO interval,
the latency of IVO and movement distance was observed
(Extended Data Fig. 8-1A,D,E). The first-IVO-aligned behav-
ioral sequences of filtered and unfiltered extracts and the re-
maining solid differed from pure water and two snake feces
(Fig. 8G,H). Finally, LDA revealed that the behavioral outputs
of all odorants could be distinguished, with the exception of
the remaining solid and pure water control conditions
(Fig. 8I). In all, these results suggest filtered and unfiltered
extracts induced quantitatively different risk assessment be-
haviors than feces, suggesting that behavioral responses to
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complex odorant mixtures depend on the specific chemo-
signals present, not the presence or absence of a single
component of the mixture.

Discussion
Recent advances in ML have tremendously facilitated

our ability to measure and understand animal behavior
(Wang, 2019). Multiple ML-based software packages,
such as DeepLabCut (Mathis et al., 2018), Social LEAP
(SLEAP; Pereira et al., 2022), and DeepPoseKit (Graving
et al., 2019), can efficiently and accurately extract animal
movement and posture information from videos. Despite
this progress, there are still challenges for analyzing and
interpreting complex, diverse, and high-dimensional be-
havior datasets (Pérez-Escudero et al., 2014; Nakamura
et al., 2016). Currently, there are several analytical soft-
ware packages available that use either unsupervised
[e.g., B-SOiD (Hsu and Yttri, 2021), MoSeq (Wiltschko et

al., 2020)] or supervised [e.g., DeepEthogram (Bohnslav
et al., 2021), SimBA (Nilsson et al., 2020)] ML for pose esti-
mation and classification of behavioral data. In this study, a
novel layered, hybrid analytic workflow was developed with
the goal of incorporating the advantages of supervised and
unsupervisedMLmodels to improve the accuracy and inter-
pretability of animal behavior quantification.
In general, the objective of a study and the format of be-

havioral data determine the best analytic strategies and tools.
In many cases, experimenters carefully design conditions
that they hypothesize will generate changes in predefined be-
havioral states of interest. In these cases, supervised classi-
fiers, such as RF, are generally well-matched to the overall
goal (Nilsson et al., 2020; Winters et al., 2022). In our study, a
well-trained RF achieved relatively high initial accuracy
(.95%), but had high error rates in highly dynamic/transient
states (e.g., LEA and APP). Because RF classifiers do not in-
tegrate temporal/sequential components in their predictions,
we applied a series of rolling median filters to input data to

Figure 7. Snake feces stimulated risk assessment behaviors in mice. A–C, Occupancy analysis for listed reHMM1 states. D–F,
Transition probabilities between listed reHMM1 states. G, Heatmap illustrating behavioral sequences aligned to the first IVO event.
Each row indicates one mouse. Each column indicates the time (0.25 s). Red indicates state 0 [hiding(HID)]. Yellow indicates state 1
[exploration(EXP)]. Orange indicates state 2 [back-and-forth(B-A-F)]. Green indicates state 3 [investigating-odor (IVO)]. H, Behavioral
sequence similarity, as evaluated by Euclidean distance. I, Plot of linear discriminant analysis; *p, 0.05, one-way ANOVA followed
by multiple comparisons tests; ns: not significant. For this experiment, 16 mice were available for analysis. Additional data can be
found in Extended Data Figures 7-1 and 7-2.
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create temporally smoothed copies of the animal’s body po-
sitions and orientations (i.e., some temporal information).
This boosted the classification performance (to 0.9931) and
improved prediction accuracy for transient states (e.g., LEA
and APP). Since animal movement is highly dynamic, and
often includes fast-switching between behavioral states
(Fauchald and Tveraa, 2006), improving the accuracy of su-
pervised models in classifying transient states has great
value.
In experiments where the experimental goal is to more

generally explore the structure of animal behavior, unsuper-
vised models, such as HMMs, are well suited (Wiltschko et
al., 2020; Findley et al., 2021). The main caveat of HMMs is
that the outcomes may not map directly to specific behav-
iors of interest. In this study, our experimental design was
specifically intended to assess mouse threat assessment,
but HMM states mapped poorly onto our user-defined etho-
gram (GT states; Fig. 4). Increasing the number of HMM

states, in hopes of finding some latent states with high inter-
pretability, did not succeed (Fig. 4). This experience was the
primary motivation for pursuing a hybrid model. We found
that the reHMMmodel improved interpretability, even with a
small number of states (Fig. 5A,B). reHMM1, which incor-
porated RF, HMM, and a single high-importance input fea-
ture, resulted in excellent interpretability, nearly matching
user-defined GT states (Fig. 5C,D). The high degree of inter-
pretability of reHMM1 comes with the added benefit of
being backed by a dynamic model. The layered architecture
reduced burdens (computational time and end-user evalua-
tion) associated with determining the best parameters for
HMM training and application (e.g., the number of hidden
states). Furthermore, by taking advantage of high-value but
low-computational cost components (RF output, high-im-
portance raw features), reHMM1 has substantially reduced
complexity and computational cost, making it highly flexible
and adaptive.

Figure 8. Snake feces extract promoted risk assessment behaviors in mice. A, B, Occupancy analysis for listed reHMM1 states.
C–F, Transition probabilities between listed reHMM1 states. G, Heatmap illustrating behavioral sequence. Each row indicates one
mouse. Each column indicates the time (0.25 s). Red indicates state 0 [hiding(HID)]. Yellow indicates state 1 [exploration(EXP)].
Orange indicates state 2 [back-and-forth(B-A-F)]. Green indicates state 3 [investigating-odor (IVO)]. H, Behavioral sequence similar-
ity, as evaluated by Euclidean distance. I, Plot of linear discriminant analysis; Letter codes (e.g., “a”, “b”, “ab”, etc.) identify statisti-
cally distinct groups as assessed by one-way ANOVA followed by multiple comparisions tests. For this experiment, six mice were
available for analysis. Additional data can be found in Extended Data Figures 8-1 and 8-2.
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Our behavioral tests demonstrated that reHMM1 is
well-suited for behavioral pattern analysis in mouse
risk assessment behavior. TMT-induced behavioral re-
sponses in these conditions ran counter to typical find-
ings, specifically that TMT causes hiding/freezing and
total odor avoidance (Morrow et al., 2000). In our con-
ditions, TMT-exposed mice tended to stay away from
the odorant, but adopted a rapid-and-short investigative
pattern to sample (IVO) TMT (Fig. 6). Using reHMM1, we
also find that mice react to potentially risky cues (snake
feces and its extracts) with a different pattern of sampling
and exploring than TMT, consistent with risk assessment
(Fig. 7). A major benefit of reHMM1 in this context is that
traditional measurements from user-defined ethograms
(time spent in state, number of times entering state) can be
evaluated along with state transition information, producing
a broad and deep behavioral profile. Combined, the data
generated by the reHMM1 workflow are capable of distin-
guishing responses to odors with similar overall valence but
variably overlapping molecular components (e.g., TMT vs
snake feces, etc.). In the future, we anticipate that this ana-
lytical approach will allow identification of novel behavioral
effects of chemosensory secretions, and ultimately the
brain processes that underlie diverse chemosignal-
mediated behaviors.
The benefits of reHMM and reHMM1 workflows make

them attractive in experiments designed to investigate spe-
cific behavioral hypotheses, but they also have several
noteworthy limitations. First of all, we developed reHMM1
using specific ML models with complementary strengths
and weaknesses (e.g., HMM and RF). Although reHMM
and reHMM1 models do not require extensive tuning of
model hyperparameters, their performance still varies de-
pending on several factors, such as feature selection and
the specific behavioral ethogram chosen. Additionally, the
choice of the tracking feature to add into the reHMM1 layer
may qualitatively affect the end result. Here, the reHMM1
model incorporates the most important feature in RF classi-
fication, the distance from the mouse nose to the sample
dish. This choice resulted in HMM states that closely
matched the GT (ethogram) states, improving the mating-
rate to GT states. This had the consequence of seemingly
reducing the influence of the first-order HMM states (Figs. 5,
6). Meanwhile, in the the scenario of combinatorial explosion
of behavioral features, it would result in difficulty to select an
ideal feature or feature combination for reHMM1 model.
One of solution to address this potential issue is to incorpo-
rate the Explainable Artificial Intelligence (XAI) technique,
such as SHapley Additive exPlanations (SHAP), to explore
more detailed and explainable information about feature im-
portance, thereby assisting feature selection (Goodwin et
al., 2022). Third, since a major benefit of HMMs is objective
assignment of latent states that may have undiscovered im-
portant neurobiological underpinnings (Leos-Barajas et al.,
2017), the reHMM1 output may not always be superior to
reHMM. The value of the reHMM1 approach depends on
the degree to which investigators wish to adhere to subjec-
tive, but interpretable, behavioral states.
Overall, we found that applying layered, hybrid ML

workflows in our experimental context unveiled distinctive

mouse behavioral patterns induced by established and
experimental chemosensory stimuli, indicating diversity in
the way chemical signals modulate mouse risk assess-
ment behavior. Because of their inclusion of user-specified
ethograms, we anticipate that the reHMM and reHMM1
models will be especially powerful in the context of more
complicated experimental settings, such as multianimal
social interaction tests. Ultimately, we find that layered, hy-
brid analytic workflows improve the depth and reliability of
ML models and expand the ability to explore the dynamic
architecture of animal behavior.
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