Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research Article: New Research, Sensory and Motor Systems

Investigating the Speed and Accuracy of Human Movement Corrections to Visual, Somatosensory, and Tactile Perturbations: Evidence for Distinct Sensorimotor Processes

Sadiya Abdulrabba, Jessica Facchini and Gerome Aleandro Manson
eNeuro 19 March 2025, ENEURO.0548-24.2025; https://doi.org/10.1523/ENEURO.0548-24.2025
Sadiya Abdulrabba
Queen’s University, School of Kinesiology and Health Studies, 28 Division St, Kingston, ON, K7L 3N6
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jessica Facchini
Queen’s University, School of Kinesiology and Health Studies, 28 Division St, Kingston, ON, K7L 3N6
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerome Aleandro Manson
Queen’s University, School of Kinesiology and Health Studies, 28 Division St, Kingston, ON, K7L 3N6
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Humans can adapt their movements in response to expected and unexpected perturbations. The speed and accuracy of these movement corrections may depend on the type of sensory information driving the perception of these perturbations. While previous research has indicated that corrections based on somatosensory information, comprised of proprioceptive and tactile inputs, are faster than corrections based on visual information, other studies have found comparable correction speeds in response to visual and tactile inputs. The purpose of this study was to systematically investigate the latencies (how fast) and magnitudes (how large) of movement corrections in response to perturbations of external visual targets, as well as somatosensory (proprioceptive and tactile), and tactile targets on the non-reaching limb. Participants performed reaching movements to a light-emitting diode (i.e., visual target), the felt position of a brush touching the index finger of the non-reaching hand (i.e., a tactile target), and the index finger of their non-reaching hand (somatosensory target). During some trials, the target was displaced 3 cm away or toward the participant either before or after movement onset. Participants demonstrated faster and larger corrections to somatosensory target perturbations than to visual or tactile target perturbations. However, corrections to visual targets were more accurate than corrections to tactile targets. These findings support the hypothesis that distinct sensorimotor processes may underlie the adjustments made in response to somatosensory information versus those made in response to visual and tactile information.

Significance Statement This study focused on systematically comparing the latencies and magnitudes of corrections in response to visual, somatosensory, and tactile cues. We found that corrections to somatosensory cues, consisting of both proprioceptive and tactile information, were faster and larger than corrections to visual and tactile cues, although visual corrections were more accurate (reduced endpoint error) and precise (reduced endpoint variability) than tactile corrections. These findings support the hypothesis that distinct sensorimotor processes underlie movement corrections across different sensory modalities and emphasize the critical role of proprioceptive feedback in facilitating rapid, online adjustments.

Footnotes

  • We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). Nous remercions le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) de son soutien.

  • The authors declare no competing financial interests

  • NSERC Discovery grant

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Back to top
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Investigating the Speed and Accuracy of Human Movement Corrections to Visual, Somatosensory, and Tactile Perturbations: Evidence for Distinct Sensorimotor Processes
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Investigating the Speed and Accuracy of Human Movement Corrections to Visual, Somatosensory, and Tactile Perturbations: Evidence for Distinct Sensorimotor Processes
Sadiya Abdulrabba, Jessica Facchini, Gerome Aleandro Manson
eNeuro 19 March 2025, ENEURO.0548-24.2025; DOI: 10.1523/ENEURO.0548-24.2025

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Investigating the Speed and Accuracy of Human Movement Corrections to Visual, Somatosensory, and Tactile Perturbations: Evidence for Distinct Sensorimotor Processes
Sadiya Abdulrabba, Jessica Facchini, Gerome Aleandro Manson
eNeuro 19 March 2025, ENEURO.0548-24.2025; DOI: 10.1523/ENEURO.0548-24.2025
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Article: New Research

  • Excitatory synaptic transmission is differentially modulated by opioid receptors along the claustro-cingulate pathway
  • Reinforced odor representations in the anterior olfactory nucleus can serve as memory traces for conspecifics
  • Disrupted neuronal dynamics of reward encoding in the medial prefrontal cortex and the ventral tegmental area after episodic social stress
Show more Research Article: New Research

Sensory and Motor Systems

  • Reinforced odor representations in the anterior olfactory nucleus can serve as memory traces for conspecifics
  • A novel subpopulation of prepositus hypoglossi nucleus neurons projecting to the cerebellar anterior vermis and hemisphere in rats.
  • Upright posture: a singular condition stabilizing sensorimotor coordination
Show more Sensory and Motor Systems

Subjects

  • Sensory and Motor Systems
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.