Abstract
In the rodent whisker system, active sensing and sensorimotor integration are mediated in part by the dynamic interactions between the motor cortex (M1) and somatosensory cortex (S1). However, understanding these dynamic interactions requires knowledge about the synapses and how specific neurons respond to their input. Here, we combined optogenetics, retrograde labeling, and electrophysiology to characterize the synaptic connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of mice (both sexes). We found that M1 synapses onto IT cells displayed modest short-term depression, whereas synapses onto PT neurons showed robust short-term facilitation. Despite M1 inputs to IT cells depressing, their slower kinetics resulted in summation and a response that increased during short trains. In contrast, summation was minimal in PT neurons due to the fast time course of their M1 responses. The functional consequences of this reduced summation, however, were outweighed by the strong facilitation at these M1 synapses, resulting in larger response amplitudes in PT neurons than IT cells during repetitive stimulation. To understand the impact of facilitating M1 inputs on PT output, we paired trains of inputs with single backpropagating action potentials, finding that repetitive M1 activation increased the probability of bursts in PT cells without impacting the time-dependence of this coupling. Thus, there are two parallel but dynamically distinct systems of M1 synaptic excitation in L5 of S1, each defined by the short-term dynamics of its synapses, the class of postsynaptic neurons, and how the neurons respond to those inputs.
Significance statement Normal sensorimotor integration depends in part on the dynamic interactions between the primary motor cortex and the somatosensory cortex, but the functional properties of the excitatory synapses interconnecting the motor cortex with the somatosensory cortex are poorly understood. Our results show that the short-term dynamics of excitatory motor cortex synapses and the nature of the postsynaptic response they generate onto layer 5 pyramidal neurons in the somatosensory cortex depend on the postsynaptic cell type and if their axons project to other cortical areas or subcortical regions. These two parallel but dynamically distinct channels of synaptic excitation constitute previously unknown synaptic circuits by which different temporal patterns of motor cortex activity can shape how signals propagate out of the somatosensory cortex.
Footnotes
We thank Dr. Charles Lee Cox and the Michigan State University Center for Advanced Microscopy for imaging support and Luis E. Martinetti for stereotactic virus injection support.
The authors declare no competing financial interests.
This work was supported by the National Institutes of Health (NIH) grants R00-NS096108 (to S.R.C) and R01-NS117636 (to S.R.C).
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
Jump to comment: