Abstract
Inherited retinal degenerative diseases are a prominent cause of blindness. Although mutations causing death of photoreceptors are mostly known, the pathophysiology downstream in the inner retina and along the visual pathway is incompletely characterized in the earliest disease stages. Here, we investigated retinal, midbrain and cortical visual function using electroretinography (ERG), the optomotor response (OMR), visual evoked potentials (VEPs), respectively, and single unit electrophysiology at the primary visual cortex (V1) in light-adapted juvenile (approximately one-month-old) and young adult (three-month-old) RhoP23H/WT mice, representative of early-stage retinitis pigmentosa (RP). Photopic ERG revealed up to ∼30% hypersensitivity to light in RhoP23H/WT mice, as measured by the light intensity required to generate half-maximal b-wave (I50 parameter). RhoP23H/WT mice also showed increased OMRs toward low spatial frequency (SF) drifting gratings, indicative of visual overexcitation at the midbrain level. At the V1 level, VEPs and single-cell recordings revealed prominent hyperexcitability in the juvenile RhoP23H/WT mice. Mean VEP amplitudes for light ON stimuli were nearly doubled in one-month-old RhoP23H/WT mice compared with controls, and more than doubled for light OFF. Single-cell recordings showed a significantly increased spontaneous V1 neuron firing in the RhoP23H/WT mice, and persistent contrast and temporal sensitivities. In contrast, direction selectivity was severely compromised. Our data suggest that during early RP, the visual pathway becomes hyperexcited. This could have both compensatory and deleterious consequences for visual behavior. Further studies on the mechanisms of hyperexcitability are warranted as this could lead to therapeutic interventions for RP.
Significance Statement
Lost retinal function in many blinding retinal degenerative disorders could soon be alleviated by advanced therapies that restore photoreception. However, it is unknown whether a visual system rewired downstream of the photoreceptors can process signals adequately. We studied the functional consequences of early rod death along the visual pathway in young retinitis pigmentosa (RP) mice. Photopic inner retina responses were moderately hypersensitized in the electroretinograms (ERG) of RP mice. Reflex-based visual behavior and visual cortex electrophysiology showed hyperexcitability. Some aspects of complex visual processing were remarkably resistant to degeneration, whereas others were severely impacted. We conclude that the visual system adapts to lost photoreception by increasing sensitivity, but simultaneously becomes detrimentally hyperexcited. Mechanistic understanding could lead to therapeutic preservation and restoration of vision.
Footnotes
K.P. is Chief Scientific Officer of Polgenix Inc. All authors declare no competing financial interests.
This work was supported by the National Institute of Health Grant R01EY009339 (to K.P.) and the National Institutes of Health Grant R24EY027283 (to K.P.). H.L. was supported by the Academy of Finland Grant 346295, by a Knights Templar Eye Foundation Career Starter Grant, and by grants from the Finnish Cultural Foundation, the Orion Research Foundation, the Eye and Tissue Bank Foundation (Finland), Retina Registered Association (Finland), and Sokeain Ystävät/De Blindas Vänner Registered Association. This work was also supported by the National Science Center, Poland Grant 2019/34/E/NZ5/00434 (to A.T.F.); The International Centre for Translational Eye Research (MAB/2019/12) project is carried out within the International Research Agendas programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (A.T.F.).
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.