Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Negative Results, Cognition and Behavior

Chronic hM4Di-DREADD-Mediated Chemogenetic Inhibition of Forebrain Excitatory Neurons in Postnatal or Juvenile Life Does Not Alter Adult Mood-Related Behavior

Praachi Tiwari, Darshana Kapri, Amartya Pradhan, Angarika Balakrishnan, Pratik R. Chaudhari and Vidita A. Vaidya
eNeuro 3 February 2022, ENEURO.0381-21.2021; https://doi.org/10.1523/ENEURO.0381-21.2021
Praachi Tiwari
1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darshana Kapri
1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amartya Pradhan
1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Amartya Pradhan
Angarika Balakrishnan
1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pratik R. Chaudhari
1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vidita A. Vaidya
1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vidita A. Vaidya
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

G-protein-coupled receptors (GPCRs) coupled to Gi signaling, in particular downstream of monoaminergic neurotransmission, are posited to play a key role during developmental epochs (postnatal and juvenile) in shaping the emergence of adult anxiodepressive behaviors and sensorimotor gating. To address the role of Gi signaling in these developmental windows, we used a CaMKIIα-tTA::TRE hM4Di bigenic mouse line to express the hM4Di-DREADD (designer receptor exclusively activated by designer drugs) in forebrain excitatory neurons and enhanced Gi signaling via chronic administration of the DREADD agonist, clozapine-N-oxide (CNO) in the postnatal window (postnatal days 2–14) or the juvenile window (postnatal days 28–40). We confirmed that the expression of the HA-tagged hM4Di-DREADD was restricted to CaMKII-positive neurons in the forebrain, and that the administration of CNO in postnatal or juvenile windows evoked inhibition in forebrain circuits of the hippocampus and cortex, as indicated by a decline in expression of the neuronal activity marker c-fos. hM4Di-DREADD-mediated inhibition of CaMKIIα-positive forebrain excitatory neurons in postnatal or juvenile life did not impact the weight profile of mouse pups, and also did not influence the normal ontogeny of sensory reflexes. Further, postnatal or juvenile hM4Di-DREADD-mediated inhibition of CaMKIIα-positive forebrain excitatory neurons did not alter anxiety- or despair-like behaviors in adulthood and did not impact sensorimotor gating. Collectively, these results indicate that chemogenetic induction of Gi signaling in CaMKIIα-positive forebrain excitatory neurons in postnatal and juvenile temporal windows does not appear to impinge on the programming of anxiodepressive behaviors in adulthood.

Significance Statement

The experience of early adversity can program persistent alterations in mood-states. It has been suggested that a perturbation of signaling pathways within forebrain neurocircuits, in particular a disruption of the balance between Gq and Gi signaling in forebrain excitatory neurons during critical developmental epochs may program the dysregulation of anxiodepressive behaviors. Prior evidence indicates that increased Gq signaling-mediated activation of forebrain excitatory neurons in postnatal life can enhance adult anxiodepressive behaviors. Here, we have addressed whether Gi signaling-mediated inhibition of forebrain excitatory neurons in the postnatal and juvenile windows of life can influence adult anxiodepressive behaviors. Our findings indicate that chronic chemogenetic inhibition of forebrain excitatory neurons via Gi-mediated signaling during critical developmental time windows does not impact mood-related behavior.

  • anxiety
  • depression
  • DREADD
  • early life
  • Gi signaling
  • schizophrenia

Footnotes

  • The authors declare no competing financial interests.

  • The study was supported by project RTI4003 from the Department of Atomic Energy to Tata Institute of Fundamental Research, and by the Sree Ramakrishna Paramahamsa Research Grant (2020) from the Sree Padmavathi Venkateswara Foundation (SreePVF), Vijayawada, Andhra Pradesh.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Back to top
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chronic hM4Di-DREADD-Mediated Chemogenetic Inhibition of Forebrain Excitatory Neurons in Postnatal or Juvenile Life Does Not Alter Adult Mood-Related Behavior
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Chronic hM4Di-DREADD-Mediated Chemogenetic Inhibition of Forebrain Excitatory Neurons in Postnatal or Juvenile Life Does Not Alter Adult Mood-Related Behavior
Praachi Tiwari, Darshana Kapri, Amartya Pradhan, Angarika Balakrishnan, Pratik R. Chaudhari, Vidita A. Vaidya
eNeuro 3 February 2022, ENEURO.0381-21.2021; DOI: 10.1523/ENEURO.0381-21.2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Chronic hM4Di-DREADD-Mediated Chemogenetic Inhibition of Forebrain Excitatory Neurons in Postnatal or Juvenile Life Does Not Alter Adult Mood-Related Behavior
Praachi Tiwari, Darshana Kapri, Amartya Pradhan, Angarika Balakrishnan, Pratik R. Chaudhari, Vidita A. Vaidya
eNeuro 3 February 2022, ENEURO.0381-21.2021; DOI: 10.1523/ENEURO.0381-21.2021
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • anxiety
  • depression
  • DREADD
  • early life
  • Gi signaling
  • schizophrenia

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Negative Results

  • Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance
  • Cyfip1 Haploinsufficiency Does Not Alter GABAA Receptor δ-Subunit Expression and Tonic Inhibition in Dentate Gyrus PV+ Interneurons and Granule Cells
  • Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs
Show more Negative Results

Cognition and Behavior

  • A progressive ratio task with costly resets reveals adaptive effort-delay tradeoffs
  • Luminance Matching in Cognitive Pupillometry Is Not Enough: The Curious Case of Orientation
  • Prefrontal and subcortical c-Fos mapping of reward responses across competitive and social contexts
Show more Cognition and Behavior

Subjects

  • Cognition and Behavior
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.