Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research Article: New Research, Disorders of the Nervous System

Identifying a population of glial progenitors that have been mistaken for neurons in embryonic mouse cortical culture

Yang Zhang, Beika Zhu, Fulin Ma and Karl Herrup
eNeuro 22 January 2021, ENEURO.0388-20.2020; https://doi.org/10.1523/ENEURO.0388-20.2020
Yang Zhang
1Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beika Zhu
1Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fulin Ma
1Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karl Herrup
1Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Karl Herrup
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Experiments in primary culture have helped advance our understanding of the curious phenomenon of cell cycle-related neuronal death. In a differentiated postmitotic cell such as a neuron, aberrant cell cycle re-entry is strongly associated with apoptosis. Indeed, in many pathological conditions, neuronal populations at risk for death are marked by cells engaged in a cell cycle like process. The evidence for this conclusion is typically based on finding MAP2-positive cells that are also positive for cell cycle-related proteins (e.g., cyclin D) or have incorporated thymidine analogs such as BrdU or EdU into their nuclei. We now report that we and others may have partly been led astray in pursuing this line of work. Morphometric analysis of mouse embryonic cortical cultures reveals that the size of the 'cycling' MAP2-positive cells is significantly smaller than those of normal neurons, and their expression of MAP2 is significantly lower. This led us to ask whether, rather than representing fully developed neurons, they more closely resembled precursor-like cells. In support of this idea, we find that these small MAP2-positive cells are immunopositive for nestin, a neuronal precursor marker, Olig2, an oligodendrocyte lineage marker, and NG2, an oligodendrocyte precursor marker. Tracking their behavior in culture, we find that they predominantly give rise to GFAP+ astrocytes instead of neurons or oligodendrocytes. These findings argue for a critical reexamination of previous reports of stimuli that lead to neuronal cell cycle-related death in primary cultures.

Significance While many laboratories use cultures of rodent embryonic cortex to study the cell biology of brain function, few attend to the identity of the cells in their cultures. We find that a subpopulation of small MAP2-weakly-positive cells, presumed for decades to be neurons, are actually NG2+Olig2+Nestin+ precursor cells that give rise over time mostly to astrocytes. Subjecting the cultures to a challenge meant to mimic an in vivo cell cycle-related neuronal death, we find the percentage of 'cycling' MAP2+ cells does indeed increase, but only because large MAP2+ cells (true neurons) die with no change in their mitotic activity. The MAP2+ precursors remain constant in number and in cell cycle activity. This argues for re-interpretation of experimental neuronal culture data.

  • Alzheimer’s disease
  • cell cycle
  • cell death
  • neurodegeneration
  • precursor

Footnotes

  • The authors declare no competing financial interests.

  • This work received financial support from The Hong Kong University of Science and Technology (R9321), the Research Grants Council of the Hong Kong SAR (16101315, 16124916), the Leo and Anne Albert White Matter Trust, the National Health Medical Research Council of Australia (AWD00001421) and the University of Pittsburgh School of Medicine.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Back to top
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identifying a population of glial progenitors that have been mistaken for neurons in embryonic mouse cortical culture
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Identifying a population of glial progenitors that have been mistaken for neurons in embryonic mouse cortical culture
Yang Zhang, Beika Zhu, Fulin Ma, Karl Herrup
eNeuro 22 January 2021, ENEURO.0388-20.2020; DOI: 10.1523/ENEURO.0388-20.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Identifying a population of glial progenitors that have been mistaken for neurons in embryonic mouse cortical culture
Yang Zhang, Beika Zhu, Fulin Ma, Karl Herrup
eNeuro 22 January 2021, ENEURO.0388-20.2020; DOI: 10.1523/ENEURO.0388-20.2020
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • Alzheimer’s disease
  • cell cycle
  • cell death
  • neurodegeneration
  • precursor

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Article: New Research

  • Novel roles for the GPI-anchor cleaving enzyme, GDE2, in hippocampal synaptic morphology and function
  • Upright posture: a singular condition stabilizing sensorimotor coordination
  • Serotonergic signaling governs C. elegans sensory response to conflicting chemosensory stimuli.
Show more Research Article: New Research

Disorders of the Nervous System

  • Release of Extracellular Matrix Components after Human Traumatic Brain Injury
  • Gene variants related to primary familial brain calcification: perspectives from bibliometrics and meta-analysis
Show more Disorders of the Nervous System

Subjects

  • Disorders of the Nervous System
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.