Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Latest Articles
    • Issue Archive
    • Editorials
    • Research Highlights
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • EDITORIAL BOARD
  • BLOG
  • ABOUT
    • Overview
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • My alerts

Search

  • Advanced search
eNeuro
  • My alerts

eNeuro

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Latest Articles
    • Issue Archive
    • Editorials
    • Research Highlights
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • EDITORIAL BOARD
  • BLOG
  • ABOUT
    • Overview
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
PreviousNext
New Research, Development

NGF- and BDNF-dependent DRG sensory neurons deploy distinct degenerative signaling mechanisms

Andrés de León, Julien Gibon and Philip A. Barker
eNeuro 28 December 2020, ENEURO.0277-20.2020; DOI: https://doi.org/10.1523/ENEURO.0277-20.2020
Andrés de León
1Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
2Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julien Gibon
2Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Julien Gibon
Philip A. Barker
2Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are trophic factors required by distinct population of sensory neurons during development of the nervous system. Neurons that fail to receive appropriate trophic support are lost during this period of naturally occurring cell death. In the last decade, our understanding of the signalling pathways regulating neuronal death following NGF deprivation has advanced substantially. However, the signaling mechanisms promoting BDNF-deprivation induced sensory neuron degeneration are largely unknown. Using a well-established in vitro culture model of dorsal root ganglion (DRG), we have examined degeneration mechanisms triggered upon BDNF withdrawal in sensory neurons. Our results indicate differences and similarities between the molecular signalling pathways behind NGF and BDNF deprivation-induced death. For instance, we observed that the inhibition of Trk receptors (K252a), PKC (Gö6976), protein translation (cycloheximide) or caspases (zVAD-fmk) provides protection from NGF deprivation-induced death but not from degeneration evoked by BDNF-withdrawal. Interestingly, degeneration of BDNF-dependent sensory neurons requires BAX and appears to rely on reactive oxygen species generation rather than caspases to induce degeneration. These results highlight the complexity and divergence of mechanisms regulating developmental sensory neuron death.

Significant statement The elimination of neuronal cells generated in excess during embryonic stages characterizes the maturation of the nervous system. Here we address the developmental cell death mechanisms of BDNF-dependent dorsal root ganglion neurons in vitro, comparing and contrast them with those deployed in NGF-dependent sensory neurons. We observe several important differences between the molecular signalling pathways behind NGF and BDNF deprivation-induced death. Significantly, degeneration of BDNF-dependent sensory neurons requires BAX but not caspase activation, instead reactive oxygen species generation appears to play a key role in degeneration. This work highlights the complexity of cell death mechanisms in distinct embryonic sensory neuron populations.

  • axons
  • BAX
  • BDNF
  • degeneration
  • Dorsal root ganglion
  • NGF

Footnotes

  • Authors report no conflict of interest

  • This work was supported by Canadian Institute of Health Research to Philip Amos Barker (Grant MOP137057).

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Back to top
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
NGF- and BDNF-dependent DRG sensory neurons deploy distinct degenerative signaling mechanisms
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
NGF- and BDNF-dependent DRG sensory neurons deploy distinct degenerative signaling mechanisms
Andrés de León, Julien Gibon, Philip A. Barker
eNeuro 28 December 2020, ENEURO.0277-20.2020; DOI: 10.1523/ENEURO.0277-20.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
NGF- and BDNF-dependent DRG sensory neurons deploy distinct degenerative signaling mechanisms
Andrés de León, Julien Gibon, Philip A. Barker
eNeuro 28 December 2020, ENEURO.0277-20.2020; DOI: 10.1523/ENEURO.0277-20.2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • axons
  • BAX
  • BDNF
  • degeneration
  • Dorsal root ganglion
  • NGF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • SRF is required for maintenance of astrocytes in non-reactive state in the mammalian brain
  • Mapping sex-specific neurodevelopmental alterations in neurite density and morphology in a rat genetic model of psychiatric illness
  • Lytic cell death in specific microglial subsets is required for preventing atypical behavior in mice
Show more New Research

Development

  • SRF is required for maintenance of astrocytes in non-reactive state in the mammalian brain
  • Myosin Va Brain-Specific Mutation Alters Mouse Behavior and Disrupts Hippocampal Synapses
Show more Development

Subjects

  • Development
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.