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Abstract 138 
Alzheimer’s disease (AD) starts decades before clinical symptoms appear. Low glucose 139 
utilization in regions of the cerebral cortex marks early AD. To identify these regions, we 140 
conducted a voxel-wise meta-analysis of previous studies carried out with positron 141 
emission tomography that compared AD patients with healthy controls. The resulting 142 
map marks hypometabolism in the posterior cingulate, middle frontal, angular gyrus, 143 
middle and inferior temporal regions. Using the Allen Human Brain Atlas, we identified 144 
genes that show spatial correlation across the cerebral cortex between their expression 145 
and this hypometabolism. Of the six brains in the Atlas, one demonstrated a strong 146 
spatial correlation between gene expression and hypometabolism. Previous 147 
neuropathological assessment of this brain from a 39-year-old male noted a 148 
neurofibrillary tangle in the entorhinal cortex. Using the transcriptomic data, we estimate 149 
lower proportions of neurons and more microglia in the hypometabolic regions when 150 
comparing this donor’s brain with the other five donors. Within this single brain, signal 151 
recognition particle (SRP)-dependent cotranslational protein targeting genes, which 152 
encode primarily cytosolic ribosome proteins, are highly expressed in the hypometabolic 153 
regions. Analyses of human and mouse data show that expression of these genes 154 
increases progressively across AD-associated states of microglial activation. In addition, 155 
genes involved in cell killing, chronic inflammation, ubiquitination, tRNA aminoacylation, 156 
and vacuole sorting are associated with the hypometabolism map. These genes 157 
suggest disruption of the protein life cycle and neuroimmune activation. Taken together, 158 
our molecular characterization reveals a link to AD-associated hypometabolism that 159 
may be relevant to preclinical stages of AD. 160 

 161 
 162 
Significance Statement 163 
Fluorodeoxyglucose positron emission tomography (FDG-PET) is a frontline tool for the 164 
diagnosis of dementia. We sought to determine the molecular underpinnings of the 165 
metabolic signatures of Alzheimer’s disease revealed by FDG-PET. We found that of 166 
the six brains in the Allen Human Brain Atlas, a set of ribosomal proteins strongly 167 
aligned with the hypometabolism map in one of the six Atlased brains. While this brain 168 
was from a 39-year-old, it contained a neurofibrillary tangle in the entorhinal cortex. We 169 
observe changes in estimated neuron and microglia proportions that also suggest this 170 
individual had prodromal Alzheimer’s disease. In other studies, expression of the 171 
ribosomal genes increases across Alzheimer’s disease-associated microglial activation. 172 
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 173 
Visual Abstract 174 

 175 
 176 
 177 
 178 
 179 

Introduction 180 
 181 
 182 
 183 
 184 
Alzheimer’s disease, one of the most prevalent neurodegenerative diseases, is thought 185 

to affect approximately 5% of those aged 60 years and above worldwide (Qiu et al., 186 

2009). It is the most common form of dementia, which is clinically characterized by a 187 

severe decline in cognitive functioning and defined neuropathologically by the 188 
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emergence and topographical progression of amyloid plaques, neurofibrillary tangles, 189 

and neuronal loss (Masters et al., 2015). 190 

 191 
Currently, fluorodeoxyglucose positron emission tomography (FDG-PET) is a primary 192 

frontline tool for diagnosing dementia and its subtypes. FDG-PET uses a radioactive 193 

tracer - [18F] fluorodeoxyglucose - to measure glucose metabolism within the brain 194 

(Friedland et al., 1983), with altered cerebral glucose metabolism indicating AD with 195 

high sensitivity and specificity (Mosconi et al., 2008). Importantly, hypometabolism 196 

patterns can be seen in at-risk individuals decades before the development of 197 

symptoms (Chen et al., 2012; Landau et al., 2011; Langbaum et al., 2010; Mosconi et 198 

al., 2006; Reiman et al., 2004). This timing supports the concept that AD exists on a 199 

spectrum or continuum of pathologies that includes stages of subtle cognitive decline, 200 

mild cognitive impairment, and dementia (Albert et al., 2011; McKhann et al., 2011). 201 

Despite the clear link between metabolic changes measured by FDG-PET and risk for 202 

AD, it remains unclear which etiopathological mechanisms are responsible for driving 203 

these changes. 204 

 205 
Using the Allen Human Brain Atlas, we sought to characterize the pattern of regional 206 

hypometabolism found in patients with AD. By integrating this atlas with a meta-analytic 207 

map of FDG-PET differences, we identified genes with spatial expression patterns 208 

similar to that of the lower glucose metabolism in the AD brain. This transcriptomic 209 

approach was performed to identify consistent molecular markers of the FDG-PET 210 

pattern. To test the consistency of these markers, we performed the transcriptomic 211 
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analysis within each of the six donors, which revealed a surprisingly strong association 212 

in a single donor. To better understand this signal, we examined cell-type proportion 213 

estimates. To validate this molecular and cell-type specific marker of the FDG-PET 214 

pattern, we examined the relevant genes and cell-type in two datasets that profiled gene 215 

expression across AD-associated states. 216 

 217 
 218 

Methods 219 
 220 
 221 
 222 
Meta-analysis of Alzheimer’s FDG-PET studies 223 

 224 
 225 
We performed a meta-analysis of FDG-PET studies that compared, at rest, Alzheimer's 226 

patients with healthy controls. To compile a list of studies, a literature search was 227 

conducted on studies from January 1985 to January 2012. We used the following 228 

search query: [FDG-PET OR positron emission tomography OR fluorodeoxyglucose OR 229 

glucose metabolism] AND [dementia]. Studies were examined to fulfill the following 230 

criteria: (1) original research papers available in English (no case studies or reviews); 231 

(2) participants examined using [18F] FDG-PET at rest (no functional tasks); (3) AD 232 

patients compared with age-matched healthy controls; (4) clinical diagnosis of AD using 233 

NINCDS-ADRDA (McKhann et al., 1984) or DSM-IV (American Psychiatric Association, 234 

1994) criteria; and (5) whole-brain analyses (no region-of-interest analyses) conducted 235 

in standardized stereotaxic space with available coordinates. Each article was read 236 

twice to determine if the study met the inclusion criteria. 237 
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Coordinates of regional hypometabolism peaks from retained articles were used to 238 

create ALE maps using BrainMap’s GingerALE application (www.brainmap.org/ale) 239 

(Eickhoff et al., 2009). This software assigns each voxel an activation likelihood 240 

estimate equal to the probability of at least one of the reported peaks of 241 

hypometabolism being located in that voxel (Turkeltaub et al., 2002). These voxelwise 242 

maps were clustered to find distinct anatomical clusters (min cluster extent = 500mm3; 243 

false discovery rate q= 0.05). The identified clusters were then used to determine a 244 

threshold that marks which samples are inside regions of hypometabolism. 245 

Gene expression data 246 
 247 
 248 
We used the Allen Human Brain Atlas to identify genes with spatial expression patterns 249 

similar to the FDG-PET hypometabolism map. This Atlas provides a comprehensive 250 

transcriptional landscape of the adult human brain (Hawrylycz et al., 2012). The Atlas 251 

was obtained from six individuals (five males, one female), with age ranging from 24 to 252 

57 years. Custom 64K Agilent microarrays were used to assay genome-wide 253 

expression in 3,702 spatially-resolved samples (232 named brain regions). We also 254 

used the RNA-sequencing datasets that were generated on the Illumina HiSeq2000 255 

platform. These RNA-sequencing data were quantified with transcripts per million (TPM) 256 

and assayed a subset of anatomic structures from two of the six brains. The Allen 257 

Institute normalized the data and adjusted for array-specific biases, batch, and 258 

dissection method. Microarray probes were filtered using quality control data provided 259 

by Miller et al. (Miller et al., 2014). After this filtering, 31,452 probes remained of the 260 
 261 
58,692 on the microarray. 262 
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 263 
 264 
 265 
Differential expression analyses 266 

 267 
 268 
The Allen Human Brain Atlas gene expression data was first used at the sample and 269 

donor level to identify genes that are differentially expressed in the regions of 270 

hypometabolism identified by the ALE-based analysis. Expression values were 271 

mean-averaged for genes with multiple probes, resulting in 15,143 genes. This analysis 272 

was restricted to samples from the cerebral cortex, as marked by the Allen Human Brain 273 

Atlas annotations (allocortical regions, namely the hippocampal formation and piriform 274 

cortex, were excluded). For each donor and gene, expression values were compared 275 

between samples inside and outside of the hypometabolic regions using the 276 

Mann-Whitney U test. The Allen Institute provided MNI coordinates, which were used to 277 

map expression values into the voxel space of the meta-analysis. For analyses that 278 

spanned multiple donors, Fisher's method was used to generate a single meta p-value 279 

for each gene and direction (Fisher, 1925). We used the Benjamini–Hochberg false 280 

discovery rate (FDR) procedure for multiple test correction to adjust for the many tested 281 

genes (Benjamini and Hochberg, 1995). 282 

 283 
Gene Ontology enrichment analysis 284 

 285 
 286 
The Gene Ontology (GO) provides gene-level annotations that span specific cellular 287 

components, biological processes, and molecular functions (Ashburner et al., 2000). 288 

These annotations, defined by GO terms, were required to have annotations for 10 to 289 

200 tested genes (6,333 GO groups annotating 14,241 unique genes). To test for 290 
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enrichment, we sorted the genes from the most overexpressed to underexpressed in 291 

regions of hypometabolism. Within this ranking, the area under the receiver operating 292 

characteristic curve (AUC) was used to test for gene ontology terms that are enriched in 293 

either direction (overexpressed: AUC > 0.5, underexpressed: AUC < 0.5). The Mann–294 

Whitney U test was used to determine statistical significance with FDR correction for the 295 

GO groups tested. We used GO annotations from the GO.db and org.Hs.eg.db 296 

packages in R, version 3.8.2, which were dated April 24, 2019 (Carlson, 2016a, 2016b). 297 

We used the REVIGO tool to summarize many terms that were significant after 298 

correction (Supek et al., 2011). We used the default REVIGO parameters with 299 

uncorrected p-values for the input GO groups and restricted this analysis to the 300 

biological process branch of the GO. 301 

Estimation of Cell-Type Proportions 302 
 303 
 304 
The Marker Gene Profile (MGP) tool was used to estimate cell-type proportions from the 305 

cerebral cortex expression profiles (Mancarci et al., 2017). This method uses the first 306 

principal component of the expression of cell-type specific genes to estimate the relative 307 

abundance of a cell-type. We used 21 top marker genes from a single cell study of the 308 

adult human temporal cortex [Supplementary Table S3 in (Darmanis et al., 2015)]. This 309 

study used transcriptomic profiles to cluster cells into astrocyte, neuron, 310 

oligodendrocyte, oligodendrocyte precursor, microglia and endothelial groups. These 311 

marker genes were used to calculate AUC values and estimate cell-type proportions 312 

with the MGP tool. Proportions were estimated separately for each donor across the 313 

same cortical samples used in the differential expression analysis. 314 
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Single-cell RNA sequencing analysis of mouse microglia 315 
 316 
 317 
Supplemental data from a single-cell RNA sequencing study of wild type and AD 318 

transgenic mouse model (5XFAD) were used to examine gene expression in immune 319 

cell types (Keren-Shaul et al., 2017). Keren-Shaul and co-authors profiled 320 

trancriptomically 8,016 immune cells from three wild type and three 5XFAD mice and 321 

clustered these cells into 10 distinct subpopulations based on expression. Of these 10 322 

clusters, 3 expressed microglia markers. Two of these microglia clusters contained cells 323 

primarily from 5XFAD and not wild type mice and named them disease-associated 324 

microglia (DAM). For our analysis, we consider these clusters separately as different 325 

microglial states: normal, intermediate (group II DAM), and AD-associated (group III 326 

DAM). 327 

Single-nucleus RNA sequencing analysis 328 
 329 
 330 
Supplemental data from a single-nucleus RNA sequencing study of the human 331 

prefrontal cortex were used to examine differential expression across AD states in 332 

microglia. Specifically, for each gene, we extracted adjusted p-values 333 

(IndModel.adj.pvals), mean expression, and fold changes (IndModel.FC) from 334 

Supplement Table 2 in Mathys, Davila-Velderrain, et al. (Mathys et al., 2019). After 335 

quality control, Mathys, Davila-Velderrain, et al. clustered the transcriptomes of 70,634 336 

nuclei from 48 individuals into eight broad cell-type clusters. For this work, we focused 337 

on data from the 1,920 microglia nuclei. The 48 participants in this study were classified 338 

into no (24), early (15) and late (9) AD pathology. To test for enrichment of our genes of 339 

interest, we sorted the genes from the most overexpressed to underexpressed for the 340 
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differential expression results for no versus early pathology and early versus late 341 

pathology analyses. Within this ranking, the area under the receiver operating 342 

characteristic curve measure (AUC) was used to test for significantly enriched genes in 343 

either direction. We also used the mean expression to determine which genes increase 344 

in expression across the three pathology groups. For a given set of genes, the 345 

hypergeometric test was used to determine if a greater number of genes increase 346 

across pathology than expected by chance. 347 

 348 
Code Accessibility 349 

 350 
 351 
Scripts for reproducing the analyses are publicly available online at 352 

https://github.com/leonfrench/AD-Allen-FDG and as Extended Data 1. 353 

 354 
 355 
 356 
 357 

Results 358 
 359 
 360 
 361 
 362 
Meta-analysis of FDG-PET studies of AD 363 

 364 
 365 
Our literature search for FDG-PET studies identified 3,229 titles. Screening of the 366 

abstracts yielded 230 relevant studies. Upon review of the full articles, 29 relevant 367 

studies remained. When two studies utilized the same patient population, one of the 368 

overlapping studies was excluded, resulting in a total of 27 studies yielding 33 369 

independent samples with a total of 915 Alzheimer’s patients and 715 healthy controls 370 

(details in Extended Data Figure 1-1). Activation Likelihood Estimation (ALE) 371 

meta-analysis of these studies identified the following cortical regions as showing 372 
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(consistently) lower glucose metabolism in patients vs. controls: posterior cingulate 373 

gyrus, middle frontal region, angular gyrus, middle and inferior temporal regions. A 374 

cluster analysis revealed 23 clusters (min cluster extent = 500mm3; FDR q= 0.05). A 375 

voxel-wise threshold of 0.006 was set to mirror this clustering map (Figure 1) and was 376 

used to determine if a given voxel was inside an AD-associated region of 377 

hypometabolism in subsequent transcriptomic analyses. 378 
 379 
 380 
 381 
 382 

 383 
 384 
 385 
 386 
 387 
 388 
 389 
 390 
Figure 1: Cortical surface views of the ALE meta-analysis results. Regions where 391 

hypometabolism was not detected are transparent (ALE value of 0.006 or less). Lower 392 

glucose utilization (AD vs. controls) ranges from low (yellow) to high (black). 393 
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Many genes are differentially expressed in cortical 394 

regions with AD-associated hypometabolism 395 

To identify molecular signatures underlying AD hypometabolism, we next performed a 396 

transcriptome-wide analysis to test for genes that correlate with the FDG-PET derived 397 

map. Using all six brains included in the Allen Atlas, we first identified the genes that 398 

were differentially expressed in the FDG-PET-defined hypometabolic regions of the 399 

cerebral cortex (1 female and 5 male, aged 24–57 years). The number of cerebral 400 

cortex samples profiled by the Allen Institute ranged from 182 to 481 per donor; 401 

5.9-9.9% overlapped with the hypometabolic regions. Of the 15,143 genes tested, 99 402 

were significantly expressed at higher levels, and 51 at lower levels in these 403 

hypometabolic regions, after correction, across all donors. Substantial variability across 404 

the six brains in the Allen Human Brain Atlas has been previously noted both 405 

genome-wide and in the context of AD (French and Paus, 2015; Grothe et al., 2018; 406 

Hawrylycz et al., 2015; Ritchie et al., 2018). Given this variability, we then tested each 407 

brain separately. Strikingly, one brain drove the majority of the above atlas-wide signal 408 

for spatial expression overlap with the FDG-PET-derived map. In this brain 409 

(10021/H0351.2002), 647 genes were differentially expressed, with 74% being 410 

expressed at lower levels in the hypometabolic regions. In the remaining five donor 411 

brains, differentially expressed genes were only found in the oldest donor (donor 412 

12876/H0351.1009, 57-year-old male). Taken together, our analysis of brain 413 
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10021/H0351.2002 marks it as an outlier with hundreds of genes that align spatially with 414 

the patterns of lower glucose metabolism observed in patients with AD (vs. controls). 415 

Brain-specific analyses point to a unique donor 416 

We examined the demographic information and metadata of this donor to help 417 
 418 
understand the above observation. Brain 10021/H0351.2002 was from a 39-year-old 419 

male African American individual. The postmortem interval was 10 hours, the lowest of 420 

the six donors. In agreement, RNA Integrity values (RIN) for this brain are higher than 421 

the other donors for all four regions assayed for RIN (frontal pole: 7.5, occipital pole: 422 

7.1, cerebellum: 8.6, and brainstem: 7.3). As documented by the Allen Institute, this 423 

donor, like the others, had no known history of neuropsychiatric or neurological 424 

conditions. The presence of a broad range of drugs was tested for in postmortem blood 425 

by the Allen Institute. In donor 10021/H0351.2002, atropine, caffeine, lidocaine and 426 

monoethylglycinexylidide were detected at levels usually not toxicologically significant. 427 

We note that monoethylglycinexylidide is a metabolite of lidocaine, an anesthetic 428 

commonly used during dental procedures. Among the six donors, only 429 

10021/H0351.2002 tested positive for lidocaine and monoethylglycinexylidide. The 430 

included brains were also classified as “normal” by a radiologist or pathologist. While 431 

considered neurotypical, it was noted that 10021/H0351.2002 contained a single 432 

neurofibrillary tangle in the entorhinal cortex. Neurofibrillary tangles in the hippocampus 433 

and entorhinal cortex are considered early events in AD progression (Guillozet et al., 434 

2003). Neurofibrillary tangles were not found in the other five brains (three of which are 435 

older than this donor). The presence of a neurofibrillary tangle is a unique feature of this 436 
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individual. The postmortem interval and RIN values suggest that tissue quality is not 437 

driving the Alzheimer’s associated molecular patterns observed. 438 

ER translocation genes are enriched for overexpression 439 

in areas of Alzheimer's associated hypometabolism 440 

To distil the molecular results, we performed GO enrichment analysis on the 441 

transcriptome-wide results from donor brain 10021/H0351.2002. In total, 215 GO 442 

groups were significantly enriched. Table 1 shows the top 10 GO terms enriched for 443 

genes upregulated in hypometabolic regions and Extended Data Table 1-1 contains 444 

complete enrichment results for all donors separately. Due to the high degree of overlap 445 

in gene membership among our top GO terms, we used REVIGO tool to summarize 446 

them (Supek et al., 2011). This tool removes redundant GO terms based on semantic 447 

similarity, providing a dispensability metric. Of the 98 biological process terms enriched 448 

for overexpression, three were assigned the lowest possible dispensability score of 449 

zero: SRP-dependent cotranslational protein targeting to membrane (GO:0006614, 87 450 
 451 

-28
 452 

genes, AUC = 0.874, pFDR < 10 453 
454 

), chronic inflammatory response (GO:0002544, 15 455 
 456 
genes, AUC = 0.78, pFDR < 0.05), and cell killing (GO:0001906, 94 genes, AUC = 0.60, 457 

pFDR < 0.05). The strongest signal is from genes involved in SRP-dependent 458 

cotranslational protein targeting to membrane (Figure 2). This process targets protein 459 

translocation to the endoplasmic reticulum via the signal-recognition particle (SRP). 460 

These genes are primarily components of the cytosolic ribosome and henceforth 461 

referred to as ‘ER translocation’ genes. Six of these genes are found within the top 20 462 
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genes with higher expression in hypometabolic regions (RPL34, RPL32, RPS27, 463 

RPS27A, RPL37A, and RPS15A). In contrast, genes that are underexpressed in 464 

regions of hypometabolism are less significantly enriched for specific GO terms (lowest 465 
 466 

-8
 467 

pFDR = 7.3 × 10 468 
469 

). However, these top terms contain more diverse themes (bottom half 470 
 471 
of Table 1), some of which have been previously implicated in AD. The most significant 472 

GO terms representing these themes are: ‘ubiquitin ligase complex’, ‘tRNA 473 

aminoacylation’, ‘ATPase activity, coupled’, ‘HOPS complex’ (involved in endosomal 474 

vesicle tethering), and ‘microtubule organizing center part.’ The ubiquitin-proteasome 475 

system has been linked to AD (Oddo, 2008). Of the four genes that encode ubiquitin, 476 

three with available data are strongly overexpressed in regions of hypometabolism in 477 

this brain. In summary, this enrichment analysis points to spatial differences in vesicle 478 

fusion, protein translation, targeting, and degradation. 479 
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145 GO:0044450 0.395 0.00244 

59 GO:0008094 0.33 0.00145 

13 GO:0030897 0.137 0.00135 

186 GO:0042623 0.396 0.00026 

Table 1: Top GO groups enriched for differential expression in areas of AD associated 480 

hypometabolism in brain 10021/H0351.2002. 481 

 482 
Name Genes ID AUC p-valueFDR 483 

 484 
 485 

SRP-dependent cotranslational protein targeting to 486 
 487 

membrane 488 
489 

87 GO:0006614 0.874 1.35E-29 490 

 491 
 492 

cotranslational protein targeting to membrane 90 GO:0006613 0.865 2.07E-29 493 

protein targeting to ER 92 GO:0045047 0.847 2.86E-27 494 

cytosolic ribosome 87 GO:0022626 0.856 3.45E-27 495 
 496 
 497 

establishment of protein localization to endoplasmic 498 
 499 

reticulum 500 
501 

96 GO:0072599 0.828 1.66E-25 502 

 503 
 504 

structural constituent of ribosome 107 GO:0003735 0.794 1.05E-22 505 
 506 
 507 

ribosomal subunit 158 GO:0044391 0.737 1.01E-21 508 
 509 
 510 

nuclear-transcribed mRNA catabolic process, 511 
 512 

nonsense-mediated decay 513 
514 

104 GO:0000184 0.783 2.07E-20 515 

 516 
 517 

protein localization to endoplasmic reticulum 109 GO:0070972 0.765 9.44E-19 518 

cytosolic large ribosomal subunit 47 GO:0022625 0.894 6.73E-18 519 

….. 520 
 521 
 522 

microtubule organizing center part 523 
 524 
 525 

DNA-dependent ATPase activity 526 
 527 
 528 

HOPS complex 529 
 530 
 531 

ATPase activity, coupled 532 
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tRNA aminoacylation for protein translation                                 40             GO:0006418      0.268      9.84E-05 533 

amino acid activation                                                                    43             GO:0043038      0.275      8.24E-05 534 

aminoacyl-tRNA ligase activity                                                     33             GO:0004812      0.243      8.24E-05 535 

cullin-RING ubiquitin ligase complex                                            111           GO:0031461      0.355      3.84E-05 536 

tRNA aminoacylation                                                                    42             GO:0043039      0.259      1.91E-05 537 

ubiquitin ligase complex                                                               195           GO:0000151      0.368      7.35E-08 538 

 539 
 540 

 541 
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 542 
 543 
 544 
 545 
 546 
Figure 2: SRP-dependent cotranslational genes ranked based on differential expression 547 

in hypometabolic regions associated with AD. Genes are marked with dots, with the 548 

y-axis representing the genome-wide differential expression rank and ranges from 549 

overexpression (top) to underexpression (bottom). The black line marks the median 550 

expression rank of the SRP-dependent cotranslational genes. The dashed grey line 551 

marks the gene with the most stable expression between inside and outside of each 552 

donor's hypometabolic regions. Red highlights genes that pass correction for multiple 553 

testing. 554 

 555 
Validation of ER translocation gene enrichment with RNA sequencing data 556 

 557 
 558 
Focusing on donor 10021/H0351.2002, the top-ranked gene ontology group, 559 

‘SRP-dependent cotranslational protein targeting to membrane’/’ER translocation’, 560 

contains genes that are involved in the targeting of proteins to the endoplasmic 561 

reticulum. Given the high and ubiquitous expression of ribosomal protein genes, the ER 562 

translocation signal may be due to ceiling effects induced by the dynamic range of 563 

microarray gene expression profiling. We tested for the association using RNA 564 

sequencing data to address this concern, which has a broader dynamic range. We 565 

again observe that the ER translocation genes are enriched (100 cerebral cortex 566 
 567 

-9
 568 

samples, AUC = 0.733, pFDR < 10 569 
570 

). While limited in sample coverage for donor 571 
 572 
10021/H0351.2002, the RNA sequencing data validates the finding of differential 573 

expression of ER translocation genes. 574 
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 575 
Estimates of cell-type proportions are disrupted in hypometabolic regions in 576 

brain 10021/H0351.2002 577 

To test if regional transcriptomic differences might be due to cell-type proportions, we 578 

performed enrichment analyses of cell type-specific marker genes based on the 579 

differential expression results. In the five brains, microglia marker genes were 580 

expressed at low levels in the hypometabolic regions (underexpressed; AUC = 0.1, pFDR 581 

< 10-8) while astrocyte and neuron markers were expressed at high levels 582 

(overexpressed; AUC > 0.66, pFDR < 0.05). In contrast, brain 10021/H0351.2002 showed 583 

an opposite pattern of enrichment. Using the Marker Gene Profile (Mancarci et al., 584 
 585 
2017) tool, which uses a more complex parametric method, we also observe an 586 

interaction between hypometabolic regions and brain 10021/H0351.2002, whereby 587 

estimates of microglia proportions are higher inside hypometabolic regions in brain 588 

10021/H0351.2002 (5 genes, t = 2.1, p = 0.033) and estimated proportions of neurons 589 

are lower (21 genes, t = -4.0, p < 0.0001). 590 

 591 
ER translocation gene expression is high in AD-associated microglia (DAM) 592 

 593 
 594 
 595 
Based on the differential expression of microglia markers in donor 10021/H0351.2002, 596 

we examined the ER translocation genes in microglia from an AD mouse model 597 

(Keren-Shaul et al., 2017). We tested if the ER translocation genes increase in a 598 

stepwise pattern across the normal, intermediate, and full DAM clusters. For the 12,712 599 

genes with data available, 6.5% monotonically increase in expression across these cell 600 

type clusters that represent distinct states of AD-associated microglial activation. Of the 601 
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80 mouse homologs of the ER translocation genes, 75% increase in a stepwise fashion 602 

(Figure 3, hypergeometric p < 10-52). Compared with all gene ontology groups, this is the 603 

most significant enrichment (Extended Data Figure 3-1). In this single-cell dataset, ER 604 

translocation genes are expressed in AD-associated microglia in a progressive pattern 605 

that suggests these genes increase with AD-associated microglial activation. 606 
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 607 

 608 
 609 
 610 
Figure 3. Heatmap of the ER translocation gene expression across three microglia cell 611 

clusters from the AD mouse model (left half) and AD pathology subgroups (right half). 612 
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Expression for each gene is z-scored with high expression in red and low in blue. 613 
 614 
Genes are ordered based on hierarchical clustering using complete linkage (genes with 615 

similar expression across the mouse and human data are clustered together). Three 616 

human genes are duplicated because they have two homologous mouse genes (RPL6, 617 

RPL13, and SRP54). Human genes without homologous mouse genes are not 618 

displayed. Complete results spanning all GO groups are available as Extended Data 619 

Figure 3-1 (AD mouse model) and Figure 3-2 (AD pathology subgroups). Data from 620 

other cell-types in the AD pathology subgroups for the ER translocation genes are 621 

available in Extended Data Figure 3-3. 622 

 623 
Expression of ER translocation genes is correlated with AD pathology 624 

 625 
 626 
We next examined cell-type specific transcriptomic data from postmortem human brain 627 

samples to reconnect the molecular markers with AD pathology. Specifically, using data 628 

from a single-nucleus study of the human prefrontal cortex, we next tested if the ER 629 

translocation genes are differentially expressed across stages of AD pathology (Mathys 630 

et al., 2019). Guided by our findings in mice, we restricted our analyses to microglia. 631 

When comparing expression between no- and early-pathology subgroups, we find that 632 

the ER translocation genes are enriched for higher expression in microglia from the 633 

early pathology individuals (79 genes, AUC = 0.716, p < 10-10). For the comparison 634 

between early- and late-pathology subgroups, the ER translocation genes are also 635 

enriched for higher expression in the late-pathology microglia (77 genes, AUC = 0.627, 636 

p < 0.0005). Beyond these pairwise tests, we counted how many genes increase with 637 

disease progression. Broadly, for the 7,319 genes with data available, the average 638 
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microglial expression of 17.9% progressively increases across the pathological groups. 639 

For the ER translocation genes, this proportion triples to 55.8% (Figure 3, 43 of 77 640 

genes progressively increase, hypergeometric p < 10-13). Compared to all GO groups, 641 

this is the second most significant group with the mostly overlapping set of cytosolic 642 

ribosome genes ranked first (Extended Data Figure 3-2). While this relationship is 643 

strongest in microglia, astrocytes, oligodendrocytes, and their progenitor cells also have 644 

progressive increases in the ER translocation genes with proportion (proportion 645 

increased > 36%, all p < 0.0002, Extended Data Figure 3-3). In contrast, neither 646 

inhibitory nor excitatory neurons had progressively increased ER translocation gene 647 

expression across the pathological groups. In this single-nucleus dataset, microglial 648 

expression of the ER translocation genes is correlated with AD progression. 649 

 650 
 651 

Discussion 652 
 653 
 654 
 655 
In this study, we projected the cerebral cortex's transcriptome onto the spatial pattern of 656 

glucose hypometabolism found in AD cases. Our goal was to identify the molecular and 657 

cellular markers of this map. Of the six normal brains tested, only one demonstrated a 658 

robust spatial association between gene expression and the hypometabolism pattern. In 659 

support of this association, prior neuropathological examination of this individual found a 660 

neurofibrillary tangle. It is plausible that brain atlases seeking to assay the normal brain 661 

may contain samples from donors in the hypothetical stage of preclinical AD (Sperling et 662 

al., 2014). Our findings suggest that donor 10021/H0351.2002 may have been on this 663 

path. 664 
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 665 
 666 
 667 
ER translocation genes, which encode proteins of the cytosolic ribosome and target 668 

protein translation to the endoplasmic reticulum, best align with the hypometabolic 669 

pattern in brain 10021/H0351.2002. Using the transcriptomic data for this individual, we 670 

estimate a lower proportion of neurons and more microglia in hypometabolic regions. 671 

Beyond this single brain, we validate the associations between ER translocation genes 672 

and AD in microglia. Specifically, these genes have a staged expression pattern that 673 

increases across cellular and pathological AD-associated states in human and mouse 674 

microglia. Together, these results that connect neuroimaging markers of AD with 675 

single-cell signals of neuroinflammation identify ER translocation machinery as an early 676 

dysregulated process in AD. 677 

 678 
 679 
 680 
It is striking that the ER translocation GO group was the most significantly enriched set 681 

in our analysis of the 10021/H0351.2002 donor brain and AD-associated microglia. It is 682 

known that cytosolic ribosome genes are strongly co-expressed (Lee et al., 2004). 683 

While we did not perform co-expression analysis, a change across this gene set will be 684 

easily detected with a pathway or gene ontology analyses due to their high 685 

co-expression. This coherence is partly why it ranks above all other gene sets tested. 686 

Nonetheless, we note that a RPL34 is a top-ranked gene, providing a strong signal at 687 

the level of single genes. To gauge the chance of this GO group being top-ranked in 688 

multiple studies, we checked if the group is multifunctional or contains commonly 689 

differentially expressed genes. We found that this group ranked average in terms of 690 
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multifunctional genes, relative to other groups (ranked 6,848th of 11,404 GO groups) 691 

(Gillis and Pavlidis, 2011). This group was also not top-ranked in any of the 635 studies 692 

systematically examined in a broad study of differential gene expression predictability 693 

(Crow et al., 2019). More directly, the ER translocation genes are stable, with a 694 

below-average prior probability of differential expression (ER translocation genes 695 

median = 0.246, remaining genes = 0.562, Mann-Whitney U test p < 10-9). Therefore, 696 

while ER translocation genes are strongly co-expressed, the prior likelihood of the ER 697 

translocation genes being differentially expressed is low. 698 

 699 
 700 
 701 
The ribosome and protein synthesis have been previously associated with mild cognitive 702 

impairment and AD (Ding et al., 2005; Hernández-Ortega et al., 2016; Langstrom et al., 703 

1989; Sajdel-Sulkowska and Marotta, 1984). Pathological tau has also been shown to 704 

determine translational selectivity and co-localize with ribosomes (Koren et al., 2019; 705 

Meier et al., 2016). Beyond the ER translocation genes, we note other GO groups with 706 

functional relevance. For example, ‘chronic inflammatory response’ and ‘cell killing’ 707 

genes were enriched for overexpression in the hypometabolic regions in brain 708 

10021/H0351.2002. In the other direction, the genes in the homotypic fusion and protein 709 

sorting (HOPS) complex are underexpressed in hypometabolic regions in brain 710 

10021/H0351.2002. This complex contains vacuole sorting genes and regulates 711 

autophagosome-lysosome fusion (Balderhaar and Ungermann, 2013). The top two most 712 

underexpressed gene sets in the hypometabolic regions are ‘ubiquitin ligase complex’ 713 

and ‘tRNA aminoacylation.’ While ubiquitin ligase complex genes are underexpressed, 714 
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genes encoding ubiquitin are overexpressed in the hypometabolic regions in brain 715 
 716 
10021/H0351.2002. In summary, analysis of this single brain identifies genes that 717 

function in the protein life-cycle and neuroinflammation, which are known to be 718 

disrupted in AD (Cheng et al., 2018; Gadhave et al., 2016; Heneka et al., 2015). 719 

 720 
 721 
 722 
Intriguingly, other studies have associated the ER translocation genes with 723 

neurodegeneration. In a recent postmortem study of two cohorts, the ER translocation 724 

genes were strongly downregulated in brain samples from Parkinson’s disease cases 725 

when compared to controls (Nido et al., 2020). While this contrasts our findings of 726 

upregulation, in the context of AD, two recent studies have also highlighted the ER 727 

translocation genes. First, an analysis of the Alzheimer’s brain transcriptome found that 728 

these genes are up-regulated in Caribbean-Hispanic AD cases but not non-Hispanic 729 

Caucasians (Felsky et al., 2020). The authors of this study speculate that the 730 

SRP-dependent protein targeting genes relate the gingipain hypothesis of AD causation 731 

that implicates Porphyromonas gingivalis (P. gingivalis) (Dominy et al., 2019). A second 732 

study supports this connection by showing that the ER translocation genes are 733 

up-regulated in cortical samples with detected P. gingivalis sequences and are enriched 734 

for the arginine and lysine residues that the gingipain proteases cleave at (Patel et al., 735 

2020). By performing neuroanatomical analyses, this study also discovered that the ER 736 

translocation genes are highly expressed in hypothalamus, cholinergic neurons, and the 737 

basal forebrain. This spatial signature may explain early cholinergic degeneration and 738 

sleep disruptions in AD. Together, our findings and these studies that implicate the 739 
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same genes promote ER translocation as an underlying disease mechanism that 740 

connects the cholinergic and gingipain hypotheses of AD causation. 741 

Conclusion 742 

In a transcriptomic atlas, the hypometabolism pattern that marks Alzheimer’s disease 743 

was correlated with the expression of genes encoding ribosomal ER translocation 744 

proteins. This association was observed in the brain of a 39-year old that contained a 745 

neurofibrillary tangle in the entorhinal cortex. In this brain, the estimated proportion of 746 

microglia was higher in the hypometabolic regions. We speculate that this individual 747 

may have been in the hypothesized preclinical stage of AD that may last decades 748 

(Sperling et al., 2011). In AD-associated microglia obtained from the cortex of 48 749 

individuals with a broad range of AD pathology, we extend these findings at the cellular 750 

level to show expression of the ER translocation genes progressively increases with AD 751 

pathology. This is most pronounced in microglia from individuals with early pathology. 752 

Our transcriptomic analysis of AD-associated hypometabolism warrants further study of 753 

ribosomes, the protein life cycle, and neuroimmune activation in models of early AD. 754 
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