Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
New Research, Novel Tools and Methods

Characterising Sleep Spindles in Sheep

Will T. Schneider, Szilvia Vas, Alister U. Nicol and A. Jennifer Morton
eNeuro 2 March 2020, ENEURO.0410-19.2020; https://doi.org/10.1523/ENEURO.0410-19.2020
Will T. Schneider
1Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Szilvia Vas
1Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alister U. Nicol
1Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Jennifer Morton
1Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Jennifer Morton
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sleep spindles are distinctive transient patterns of brain activity that typically occur during non-rapid eye movement (NREM) sleep in humans and other mammals. Thought to be important for the consolidation of learning, they may also be useful for indicating the progression of aging and neurodegenerative diseases. The aim of this study was to characterise sleep spindles in sheep (Ovis aries). We recorded electroencephalographs (EEG) wirelessly from 6 sheep over a continuous period containing two nights and a day. We detected and characterised spindles using an automated algorithm. We found that sheep sleep spindles fell within the classical range seen in humans (10- 16 Hz), but we did not see a further separation into fast and slow bands. Spindles were detected predominantly during NREM sleep. Spindle characteristics (frequency, duration, density, topography) varied between individuals, but were similar within individuals between nights. Spindles that occurred during NREM sleep in daytime were indistinguishable from those found during NREM sleep at night. Surprisingly, we also detected numerous spindle-like events during unequivocal periods of wake during the day. These events were mainly local (detected at single sites) and their characteristics differed from spindles detected during sleep. These ‘wake spindles’ are likely to be events that are commonly categorised as ‘spontaneous alpha activity’ during wake. We speculate that wake and sleep spindles are generated via different mechanisms, and that wake spindles play a role in cognitive processes that occur during the daytime.

Statement of Significance Sleep spindles provide an indication of brain health and function. In this study we characterise sleep spindles in sheep (Ovis aries) for the first time. We found that sleep spindles in sheep are similar to those found in humans in many respects (such as density, duration and frequency) and occurred mainly during NREM sleep. Interestingly however, we also saw spindles during wake in the day. Spindles detected during wake were characteristically distinct from those occurring during sleep. We suggest that wake and sleep spindles are generated via different mechanisms and may have different functional roles. Wake spindles may be a component of cognitive processes that occur during the daytime, such as memory retrieval and attention.

  • automated detection
  • awake EEG
  • learning
  • slow waves
  • spectral analysis
  • wake spindles

Footnotes

  • Authors report no conflict of interest.

  • This work was funded by CHDI.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Back to top
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterising Sleep Spindles in Sheep
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Characterising Sleep Spindles in Sheep
Will T. Schneider, Szilvia Vas, Alister U. Nicol, A. Jennifer Morton
eNeuro 2 March 2020, ENEURO.0410-19.2020; DOI: 10.1523/ENEURO.0410-19.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Characterising Sleep Spindles in Sheep
Will T. Schneider, Szilvia Vas, Alister U. Nicol, A. Jennifer Morton
eNeuro 2 March 2020, ENEURO.0410-19.2020; DOI: 10.1523/ENEURO.0410-19.2020
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • automated detection
  • awake EEG
  • learning
  • slow waves
  • spectral analysis
  • wake spindles

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching
  • TrkB Signaling Influences Gene Expression in Cortistatin-Expressing Interneurons
  • Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity
Show more New Research

Novel Tools and Methods

  • Adapt-A-Maze: An Open Source Adaptable and Automated Rodent Behavior Maze System
  • Generation of iPSC lines with tagged α-synuclein for visualization of endogenous protein in human cellular models of neurodegenerative disorders
  • Chronic Intraventricular Cannulation for the Study of Glymphatic Transport
Show more Novel Tools and Methods

Subjects

  • Novel Tools and Methods
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.