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Abstract: Within neuroscience, models have many roles, including driving hypotheses, 31 

making assumptions explicit, synthesizing knowledge, making experimental predictions, and 32 
facilitating applications to medicine. While specific modeling techniques are often taught, the 33 
process of constructing models for a given phenomenon or question is generally left opaque. 34 
Here, informed by guiding many students through modeling exercises at our CoSMo summer 35 
school we provide a practical ten step breakdown of the modeling process. This approach 36 
makes choices and criteria more explicit and replicable. Experiment design has long been 37 
taught in neuroscience; the modeling process should receive the same attention. 38 

 39 
Significance: Modeling in Neuroscience is often perceived as a mysterious process and is 40 

hard to teach. Here we provide the first how-to-model guide that breaks down the modeling 41 
endeavor into a step-by-step process.  42 

 43 
  44 
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Introduction: 45 
The development of models is an integral part of neuroscience and related disciplines, such 46 

as psychology, kinesiology and cognitive science. Models can provide unique and useful 47 
insights. For example, computational models are used to compactly describe large amounts of 48 
data. Models are often employed to obtain causal claims about the relation between neural 49 
properties and behavior. They make predictions and can thus allow more targeted experiments. 50 
Models allow virtual experimentation making it easier to get intuitions. Models also force 51 
scientists to make their assumptions explicit which makes scientific communication more 52 
precise. Finally, models can lead to applications across science, healthcare and technology; 53 
e.g. one can plan interventions by simulating their impact on brain and behavior. Model-driven 54 
approaches thus accelerate progress across clinical and basic research.  55 
 56 
There are countless models in neuroscience and for each modeling technique we can find a 57 
paper describing how it is constructed. For the more popular techniques we can find textbooks 58 
that describe the mechanics of constructing and testing models, pitfalls, tips and tricks usually 59 
tailored to the particular types of data and questions that made the technique popular.  60 
However, when approaching new questions, new data types, or different scientific goals and 61 
objectives, it is unclear how to start.  Confronted with a phenomena and a scientific goal, every 62 
researcher is faced with a difficult set of questions. Which concepts should we use? Which 63 
mathematical framework, i.e. technique? Which code? What should the overall logic be? All 64 
these questions are currently unarticulated and hidden in the scientific training process, and 65 
students implicitly learn approaches across neuroscience through imitation and mentoring. 66 
While this can be an effective way of transmitting modeling techniques for ongoing questions, it 67 
is an ineffective way to train students to innovate, competently address new problems, or 68 
synthesize and extend methods. Instead there should be a clearly structured thought process 69 
that clearly identifies how the phenomenon along with the goals of modeling give rise to the 70 
ultimate models. What is missing is a procedure by which we can address a phenomenon with 71 
modeling in a way that brings us closer to our scientific goals.  72 

 73 
We have observed many students learning how to build models during our 8-year experience 74 
with CoSMo (summer school in Computational Sensory-Motor neuroscience, 75 
www.compneurosci.com/CoSMo) where we taught students from senior undergraduates to 76 
seasoned researchers how to model.  Through teaching and project work we have tried to 77 
convey to them the process of constructing models from scratch. All three of the authors are 78 
also building models, and importantly we cover a broad range of types of modeling. This 79 
includes machine learning, Bayesian modeling, linear systems modeling, realistic muscle 80 
modeling, spiking neural networks, and single-cell models. In addition, we have brought dozens 81 
of leading computational neuroscientists as guest lecturers in the course, providing us with 82 
template examples of a broad array of successful modeling approaches applied to a diverse set 83 
of phenomena and questions. As such, we feel that we have experienced the model 84 
construction process in a uniquely crosscutting way. While the modeling process is complex and 85 
multifaceted, we believe it can be formalized and made explicit.  86 
 87 
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Here, we propose a pipeline to modeling that breaks the whole enterprise down into a series 88 
of (sometimes interdependent) decision processes. Note that the approach outlined here is not 89 
the only way to approach the modeling exercise; rather it represents one possible systematic, 90 
step-by-step approach that – if carried out carefully – should leave little room for failure.  By 91 
using this approach, we have directed hundreds of CoSMo students in small groups through the 92 
full “from scratch” modeling process to successful conclusions in just two weeks. 93 

 94 

 95 
Figure 1: The modeling exercise. Models interact with experiments through the generation 96 

of novel model-based experimental predictions. Experimental data will in turn provide new 97 
unexplained data and hypotheses that call for new or refined models. Note that modelers do not 98 

necessarily need to test their own experimental predictions or collect their own unexplained 99 
data; but good modelers should interact with experimentalists. Many good experiments come 100 

from modelers annoyingly asking for data.  101 
 102 
10 steps to modeling 103 
We will suppose that the modeler knows the phenomena of interest, and has data or specific 104 

observations that need to be explained. A good modeling approach needs a good phenomenon 105 
to describe. Below we will highlight a modeling process that consists of 10 main steps, grouped 106 
into 4 sections (Figure 1): A. framing the question; B. implementing the model; C. model testing; 107 
and D. publishing the model. Throughout the discussion, we will use a common example 108 
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phenomenon that will be well known to most of our readers: Assume we did not have clocks and 109 
ignored that they once existed. Now imagine what an archeologist finding a clock (such as the 110 
one in Figure 2) would go through to find out what it was for. Similarly to the Antikythera 111 
mechanism (https://en.wikipedia.org/wiki/Antikythera_mechanism), we would have to build a 112 
model to explain certain aspects of the observed clock behavior. As such, the clock device in 113 
analogy to the brain computes something and we’re trying to figure out what it is. We will 114 
discuss how we might model the the movement of “hands” across the markings of an analog 115 
clock. We will go through all the modeling steps as part of a modeling process with which we 116 
could address the movement of the digits of the clock. With this example we will be able to 117 
highlight all the ten steps of the modeling process.  118 

 119 

 120 
Figure 2: Mechanical watch. Even knowing what it does, it’s inner workings are far from 121 
trivial. Imagine an archeologist finding one of those and not knowing what this is for. 122 

 123 
A.   Framing the question 124 
Step 1: Finding a phenomenon and a question to ask about it 125 
The starting point to all models is a question related to a phenomenon of interest. Thus, the 126 

first practical step for the modeler is to build a list or table of the critical observations (e.g. see 127 
Table 1) that define the interesting aspects of the phenomenon - what sets it apart from other 128 
things or for which we lack good explanations. For the clock’s movement the distinguishing 129 
features for us are:  they are precise, they are circularly periodic, and multiple hands have 130 
nested periodicities. These periodicities are approximate multiples of another precisely timed 131 
phenomena - the rotation of the earth. Defining the precise phenomenon is critical to asking a 132 
good question.  133 

 134 
Table 1: Example of critical, distinguishing observations of the clock. 135 

 
 Question-

Answer 

Phenomenon  
 

 
 
what 

 
 
how 

 
 
why 
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1 tick/sec Loud for 100ms 
then silent for 
900ms 

Whatever that 
thingamajig is called 

Timekeeping. Duh. 

Gears exist Notches on 
circles 

More notches = 
slower rotation 

Translate faster 
rotation / slower 
rotation 

1 rot/hour periodicity 120 notches on hour 
ring, 2 on second ring 

Because an hour is 
a useful division of 
the day 

 136 
Once we have characterized the phenomenon, we need to define a meaningful modeling 137 

question. It helps to get clarity on the type of question we are asking: Are the characteristics that 138 
define the what of the phenomena well-formed, or do we need to better describe the data? Do 139 
we want to ask how something works? Or are we interested in why the phenomenon exists in 140 
the first place? The observations about the clock can lead to different types of questions – what 141 
is the relation between the gears and the movement of the arms, how do the gears produce the 142 
observed pattern of arm motions, and why would anyone build such a mechanism (see table 1). 143 
None of these questions is inherently more or less interesting; they could all represent legitimate 144 
goals for a model builder (K. Kording, Blohm, Schrater, & Kay, 2018). However, a clear choice 145 
of such a goal is essential to allow meaningful models.  Clearly specify your goal at the outset, 146 
to yourself and in all your communication about the modeling project. 147 
 148 

Once we have a general phenomenon and question in mind, we can demarcate which 149 
aspects of the data our model should capture. Without an exact question, chances are high that 150 
one will get lost in the vast oceans of the unknown. This leads to our first dictum of modeling: 151 
Write everything down in a precise way!, beginning with the question. Imprecise questions lead 152 
to rapid failure.  “Model a clock” would be a bad definition of a goal, after all it does not identify 153 
key observations or criteria for success or failure.   “How do the angles of the hands predict the 154 
time of the day?”, on the other hand, would be a well defined question. It both specifies the 155 
phenomenon (time of day relation) and implies criteria for success (low variance at predicting 156 
time of the day).  157 

 158 
At this step, it is also helpful to identify aspects of observations that the model will not 159 

address to answer the question. E.g. we may decide that we do not (for the current model) care 160 
about the mechanisms in the clock.  By focusing on distinguishing features of the phenomena 161 
together with intuitions about the factors that should be included in an explanation, the model is 162 
focused both towards a concrete question and at an appropriate level of abstraction. By 163 
maintaining focus, we avoid the inevitable “mission creep” which results from having a fuzzy 164 
question; fuzzy questions inevitably pull researchers towards attempting to answer a much 165 
larger family of apparently related questions. Having focus also provides a natural Occam’s 166 
Razor quality to our models. Through focus our models address the knowledge gap central to 167 
the question while minimizing the complexity of the approach. 168 

 169 
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As part of the objective, the model evaluation method must also be defined. This leads to 170 
our second modeling dictum: “Know when to stop!”.  A well-defined modeling goal must have a 171 
well-defined stopping criteria, or else we will suffer endless mission creep.  We should be able 172 
to answer the following questions: When are we satisfied with the new model? What would it 173 
mean for a model to be better than another model for our criterion? These are difficult 174 
questions, but there are clear desiderata that good evaluation criteria should adhere to. The 175 
evaluation must ensure the model incorporates the critical observations. The evaluation must 176 
make the model connect with actual or potential data. In the clock example, we might wish to 177 
reproduce the observed periodicity with a low error. Or we might want to provide an explanation 178 
of why there are so many gears and what they’re good for. Thinking about a specific experiment 179 
that could potentially answer the questions posed is often tremendously useful to ensure these 180 
desiderata are satisfied. It provides a specific, tangible and intuitive instantiation of an abstract 181 
question. Moreover, it inherently provides a benchmark goal for the model to be designed. 182 
Indeed, the model should be able to simulate this exact experiment to provide a model-based 183 
answer. In the clock, removing a gear or changing a gear ratio could be a good experiment to 184 
test the role of gears. Being able to simulate results from a hypothetical experiment or real 185 
experiment thus becomes part of the modeling objective.  186 

 187 
Finally, it is also important to determine precise evaluation criteria based on well-defined 188 

qualitative and/or quantitative properties the model should exhibit. This is crucial because data 189 
derived from experimental observations is naturally variable and thus determining criteria which 190 
allow us to judge the model’s performance is important to ultimately determine when the 191 
modeling exercise is accomplished. For example, is the goal to reproduce general trends / 192 
tendencies, or is a detailed match of model and data of importance? Are there certain specific 193 
experimental effects or relationships that the model must reproduce? How will performance be 194 
measured? E.g. if the clock is really meant for timekeeping, then a model of the clock should 195 
match its periodicity very closely (i.e. within measurement noise). We will further elaborate on 196 
the model evaluation in section C (steps 8 and 9). Establishing the evaluation method right from 197 
the start will ensure a fair, critical evaluation of the modeling effort and a timely finalization of the 198 
model.    199 

 200 
In our experience, step 1 is the most difficult for both novice and experienced researchers.  201 

It is the step that requires the most thought, and it is a step often revisited for refinement after 202 
realizing that the subsequent steps aren’t working. 203 

 204 
Step 2: Understanding the state-of-the-art 205 
Before diving into the modeling itself, it is obviously essential to survey the literature. This 206 

survey serves to provide additional information about the phenomena, if there is controversy or 207 
specific conditions under which it occurs, and provides background on the set of questions that 208 
have already been addressed.  From a modeling perspective, it provides insight into the types of 209 
abstractions and approaches that might have already been used: What has already been done 210 
in terms of modeling? Are there previous models that one can use as a starting point? What 211 
hypotheses have other researchers (theoreticians and experimentalists alike) emitted regarding 212 
the phenomenon in question? Are there any alternative and/or complementary models or 213 
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explanations? In the clock example, we may know the elementary theory from school that if we 214 
have a gear with N cogs and another with K cogs that it translates the rotation speed as N/K.   215 
This second step will ensure that no important aspects (theoretical and experimental) related to 216 
the model are accidentally omitted. It will also provide the specific data sets and/or alternative 217 
models to compare the new model against. In addition, this review might provide insight as to 218 
the specific evaluation criteria (e.g. root mean square fit error) that are typically employed in the 219 
field. A literature survey should thus always be carried out prior to building a new model.  220 

 221 
It is also important to gain an intuitive and practical understanding of previously proposed 222 

models and theories. Such an understanding can only be obtained by re-implementing previous 223 
models and explore their potential and limitations in a hands-on fashion. Exploring previous 224 
models familiarizes the researcher with specific approaches, toolkits and mechanisms that have 225 
previously been proposed. Exploring strengths and weaknesses of existing models will help 226 
identify and justify the need for a new model.  Step 2 can be characterized as a foraging task 227 
where the researcher better characterizes the phenomena, the explanatory gap and gathers 228 
together a set of possibly useful ingredients into the modeler’s workshop: concepts, methods, 229 
mechanisms etc.   230 

 231 
Finally, the literature review should also allow determining the skill set needed in order to 232 

understand previous modeling endeavors. This could result in the need to learn new skills, 233 
whether or not those skills will also be helpful for building the new model. Thus, a good 234 
understanding of the state-of-the-art of a field is instrumental to understanding previous models 235 
and proposing a new model in the light of previous work.  However, our question-centric 236 
approach eschews premature adoption of any of these approaches.  Instead we advocate 237 
evaluating previous approaches through the lens of the focused question and its basic 238 
ingredients.  239 

 240 
Step 3: Determining the basic ingredients  241 
After defining phenomena and objectives, we can now become a bit more specific. Every 242 

modeling effort starts with an intuition that will provide an inventory of specific concepts and/or 243 
interactions that need to be instantiated.  What variables and/or parameters in the question and 244 
inventory are needed in the model? Are those constants or do they change over space, time, 245 
conditions etc.? Are there any concepts (e.g. value, utility, uncertainty, cost, salience, goals, 246 
strategy, plant, dynamics, etc.) that need to be instantiated as variables? Can these variables 247 
be observed / measured directly or are they latent (internal) variables in the model? In order to 248 
instantiate latent variables, they should be related to potential measurements, whether 249 
practically possible or not. In our clock example, the angular speed of the gears (latent variable) 250 
might matter in determining the movement of the arms (observed) and we know it’s constant for 251 
a given gear but different across gears. What details can be omitted (e.g. materials the clock is 252 
made of)? What are the constraints, initial conditions? How are these variables expected to 253 
interact? For example, there is a specific relationship between gear speeds in the clock that is 254 
constant and determined by the fraction of number of cogs. What should be the model’s inputs 255 
(potentially under experimental control) and outputs (that could be measured)? I.e. outputs 256 
should typically be the same as the data the model addresses.  Answering these questions will 257 
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set up the elements that are required in the model as well as the specific conditions that have to 258 
be satisfied by the model. 259 

 260 
A second much more difficult to acquire - but crucial - set of instruments for the modeler is a 261 

library of potential explanatory mechanisms. Such a library is usually collected over time by 262 
hands-on exploration of different models, approaches, pieces of math and algorithms. This goes 263 
hand in hand with building an intuition for a research field through exploratory data/model 264 
analysis and careful reading of the relevant literature. An intuition is then formed as a result of 265 
experiences with different model classes and data. For the clock example, models that produce 266 
oscillatory behavior (i.e. periodicity) might be of particular interest. We claim that there is no way 267 
around this learning by doing step (and regular cataloguing of this explanatory set should be a 268 
priority for the community).  But as a result, the potential required explanatory mechanism(s) will 269 
also help in providing specific concepts and interactions that need to be instantiated. Once the 270 
model ingredients and potential mechanisms have been identified, specific hypotheses can be 271 
expressed in mathematical language.   272 

 273 
Step 4: Formulating specific, mathematically defined hypotheses  274 
Contrary to the question asked in Step 1, hypotheses propose a specific relationship that 275 

could explain a given phenomenon. To formulate a hypothesis in modeling terms, we need to 276 
map our intuitions and proposals about mechanisms and variables into precise mathematical 277 
language. In this sense, a model is a mathematical quantification of verbal hypotheses.  The 278 
first step in achieving this is to relate the ingredients identified in step 3 by quantifying specific 279 
hypotheses. For example the 60:1 ratio of periodicities between the smaller hands of the clock 280 
corresponds to tracking seconds/minute. These hypotheses can be expressed in terms of 281 
relations between variables and restate the original question from step 1 in the form of relations 282 
between variables, mediated by hypothesized mechanisms and interactions. Thus, these 283 
hypotheses are the ones that are identified from the original question and ask: What is the 284 
model mechanism expected to do? How are the different parameters expected to influence the 285 
model results? Answering these questions with words / sentences will set the modeler up to 286 
start expressing relationships between parameters and variables in mathematical language. 287 

 288 
Going back to our clock example and supposing we do not know what this device is for, a 289 

series of hypotheses can be emitted related to the what, how and why questions. First, we can 290 
hypothesize that the gears will lead to different arm speeds. Second, it is the exact gear ratio 291 
that is of importance and this gear ratio is determined by the dynamics of the spring-balance 292 
wheel system. Third, we can hypothesize that clocks are there as time keeping machines. For 293 
all of these hypotheses we have made use of our inventory of observations about the movement 294 
of the arms, the gears, the spring and the balance wheel. We also need to keep in mind the use 295 
of the clock, i.e. people use the clock for scheduling purposes and to regulate / coordinate 296 
human behavior. These verbal hypotheses represent the starting point for mathematical 297 
abstraction, identifying key components and concepts needed for each question. 298 

 299 
Once the hypotheses are spelled out, variable names should be assigned so that 300 

hypotheses can be expressed succinctly in those terms. What mathematical relationships are 301 
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expected? It is good to be explicit here, e.g. y(t)=f(x(t),k) but z(t) does not influence y. Can we 302 
hypothesize anything about the form of f? One advantage of this explicit mathematical notation 303 
is that it is also made clear that x, y and z change over time while k is a constant. Constraints, 304 
initial conditions and any other known or expected relationships can be expressed in a similar 305 
way. In our clock example, we can first write that angular velocity of the slowest hand is vx = 306 
f(r,v0), where r is the gear ratio and v0 is the resulting speed of the spring-balance wheel 307 
system driving the gears (latent variable); we hypothesize f to be linear. We can further write a 308 
relationship for the gear ratio r and hypothesize that the gear ratio between 2 arms determines 309 
their relative angular speed. Let z(t) be the angle of the fastest hand, y(t) the intermediate, and 310 
x(t) the slowest hand. Then we hypothesize vy = r*vx, thus the angular position y(t) = 311 
r*x(t)+constant mod 2*pi, and as above, y(t) is not influenced by z(t), rather the converse is true.  312 
The spring-balance wheel system should act like a harmonic oscillator determining v0, i.e. v0 = 313 
f(m,k) where m is the mass of the balance wheel and k is the spring constant.  Formulating 314 
hypotheses for the why question is also possible. If it is indeed a time-keeping machine used to 315 
organize human activities (as opposed to a similar-looking astronomical position tracker such as 316 
the Antikythera mechanism, for example), then there should be a correlation between different 317 
peoples’ behavior that is based on their consultation of the clock (and no correlation if it was an 318 
astronomical or other device)319 

320 

321 

322 

323 

324 

325 

 326 
  327 
Finally, it should be noted that Steps 1-4 are linear in an ideal case scenario, but often need 328 

to be carried out iteratively (see Figure 3). Indeed, every step has the potential to unmask a 329 
weak, imprecise, already answered, not interesting or too ambitious question. In that case the 330 
original question has to be modified, adapted, clarified or changed altogether, after which all 331 
following steps require re-consideration. This can also happen at later stages during the 332 
modeling exercise but if Steps 1-4 are carried out properly, this should be much less likely to 333 
happen. We are now at the point where the practical modeling can begin. 334 

 335 
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 336 
Figure 3: Iterative view of the first steps of the modeling exercise. Consecutive thought 337 

processes often identify lack, omissions, imprecisions and uncertainties that require the modeler 338 
to go back and refine the thoughts. This is true when framing the question and independently 339 

applies during model implementation. Note that these two processes are serial. One should not 340 
start the implementation process without having fully satisfied the all model framing criteria and 341 
steps. Solid arrows denote direct transitions/dependencies; dashed arrows stand for iterative 342 

reconsideration. Once a phenomenon/question is identified, required ingredients and literature 343 
review are carried out, which ideally leads to a potential experimental test. If no such test can be 344 

found, maybe the question needs reformulating. One should be able to identify specific 345 
hypotheses; otherwise there is a lack of specificity/precision in the question that needs to be 346 
revisited. Toolkit selection, drafting and implementation of the model involves iterative unit 347 
testing. Unit testing can identify pitfalls in drafting or even in the choice of the toolkit (less 348 

frequently) that requires adjustment of the model plan.  349 
  350 
B.   Implementing the model 351 
Step 5: Selecting the toolkit 352 
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Once the modeling goals are set and the hypotheses are quantified, the most appropriate 353 
modeling approach to address the question needs to be selected. It is important to state that 354 
different model toolkits can potentially provide an answer to the same question asked. But not 355 
all toolkits are equivalent; quite the opposite. Indeed, different toolkits afford answering different 356 
types of questions, such as being able to extrapolate versus finding mechanistic reasons for a 357 
given phenomenon. Important considerations are: what modeling tools should be used (e.g. 358 
mechanics) and what level of abstraction (e.g. what is the purpose of this device) is 359 
appropriate? Based on the hypotheses and goals, this should now be relatively easy to do. In 360 
the clock example, we might not care about the material properties of the gears but only the 361 
number of teeth in the gears. We also cannot lump all gears together because they activate 362 
different arms. As a general rule, the model should stay as high-level/abstract as possible, but 363 
be as detailed as necessary (Occam’s razor, (Feldman, 2016; Seiradakis & Edmunds, 2018)). 364 
The choice of a modeling toolkit then allows the production of a real model. 365 

 366 
Determining which toolkit to use can be far from trivial and requires prior knowledge about 367 

the toolkit. As a guideline, a good question to ask is how flexible the toolkit is in terms of 368 
behavior. There is no “right” tool and often there is more than one option to choose from. Tools 369 
should interface with data that the model is trying to address. For example if data consist of 370 
changing time series then the toolkit has to have a dynamic component that can reproduce 371 
those time-dependent signal changes.  If we’re interested in understanding the spring-balance 372 
wheel and gear mechanism of the clock, we might turn toward mechanical finite element toolkits 373 
to understand the physical properties of these elements influence the functioning of the clock; or 374 
we could just care about the resulting clock arm dynamics and use higher-level kinematics tools 375 
instead. Toolkit selection supposes a good knowledge of what the strengths and limitations of 376 
each available toolkit are. Preference should be given to toolkits that have more flexibility, span 377 
a wider range of behaviors, and are potentially lumpable (i.e. can be reduced in size by using 378 
techniques such as population averaging or state-space reductions). E.g. neural networks span 379 
a large range of behaviors but lumping is hard. On the other hand linear systems theory lumps 380 
well but does not have the same level of detail as neural networks (but see (Eliasmith & 381 
Anderson, 2004) for one particular way to do that). In summary: Knowledge is key. 382 

 383 
Choosing the toolkit also means determining how the model will be solved (i.e. simulated). 384 

For example, can an analytical solution be computed or is numerical integration of equations 385 
required? If numerical integration is needed, what is the temporal, spatial, etc. resolution? In the 386 
eye movement literature many models make use of the Laplace transform of dynamical 387 
systems; this would require learning about the Laplace formalism and how to use it. Here, we 388 
will assume that a way to solve the equations of the chosen toolkit can be found. This requires 389 
of course knowledge about the appropriate fields of physics, mathematics, computer science 390 
etc. if applicable, and it is very difficult to succeed as a modeler without such appropriate 391 
background.  392 

 393 
Step 6: Planning the model  394 
We are now ready to start building up the model. This is the point where diagrams are 395 

drawn, sketches can be made, equations are formalized and preliminary pieces of code are 396 
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written. The goal of this step is to put all the components of the hypothesized relationships and 397 
explanations in place. As the most important rule the model should always be kept as simple as 398 
possible! It is advised to start with a first draft of the model on paper. All toolkits allow for a 399 
graphical representation to be built, but the nature of these drawing can be quite different. For 400 
example, a mechanical model of the clock (Figure 4A,B) will look different from a dynamical 401 
systems description (Figure 4C) of the clock movements, including potentially different inputs 402 
(such as in Figure 4), latent variables, constants, initial conditions and outputs. Draw out the 403 
model components and how they connect to each other / influence one another. This flow 404 
diagram (e.g. Figure 4B,C) will help organizing the equations. It will allow to explicitly indicate 405 
which variables “flow” from one model component to the next. This model diagram will set up 406 
the basic components that are expected to be required in the model. 407 

 408 

 409 
Figure 4: model diagrams. A. Mechanical elements of a mechanical clock. B. Flow 410 

diagram equivalent of the mechanical clock. C. Dynamical systems equivalent of the mechanical 411 
clock. Note: inputs are different between full model (B) and reduced model (C). Exemplary 412 

variables (tilted text) passed between model elements also differ in nature.  413 
 414 
Now each model box, icon or flow can be considered individually and its internal workings 415 

should be drafted in terms of mathematical equations. These should be explicit equations that 416 
can later be implemented in simulation programs. In case of the clock example, the gear train 417 
box might be subdivided into one functional box for each gear in the flow diagram determining 418 
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the equations of motion of the gear and relating the boxes’ input (previous gear’s angular 419 
velocity) to the output (this gear’s angular velocity). It can require extensive work to identify the 420 
appropriate mathematical relationships, equations and formalisms. But at this stage, filling the 421 
boxes, quantifying the icons and/or specifying the interactions between them should be 422 
relatively easy since the basic input and output variables of the model’s subsystems have 423 
already been defined and the modeler’s goal thus “only” is to relate those variables. It is 424 
important to keep in mind here that a model must include a way to relate model variables to 425 
measurements. Otherwise the modeling exercise will typically feel pointless. Ultimately, the 426 
drafting process will result in a first model on paper that is ready to be implemented and might 427 
become a model diagram in a subsequent publication. 428 
 429 

Step 7: Implementing the model 430 
The model is now ready to be implemented. This means that computer simulations can be 431 

set up and run and/or analytical solutions can be found. Each box, icon or flow relationship 432 
identified in Step 6 should be implemented separately and tested or understood individually 433 
before connecting them into the overall model. This “unit test” procedure will ensure the 434 
individual components’ functionality before evaluating the more complex behavior of the full 435 
model. 436 

 437 
Individual model components can then be combined. If there are any alternatives or 438 

uncertainties, it is advised to start with the easiest implementation of the model or of part of the 439 
model and test its functionality along the way. A general guideline is to build up the model step 440 
by step and test its function at each step. Starting with a simple version of the model and 441 
progressively adding all the elements, will not only produce an understanding of what simpler 442 
models can do but also minimize errors in construction. Moreover, playing with all the 443 
components of the model on implementation time can provide deep insights into the way they 444 
actually work. In our clock example, there are gears for rewinding the clock’s spring 445 
mechanisms. Those gears can be modelled but they will not influence the arms movement 446 
(unless the spring is loose of course). Thus these rewinding gears are not crucial for the 447 
timekeeping function of the clock mechanism and can be left out if that kind of understanding is 448 
our goal. Answering the question why a certain model component is crucially needed will 449 
ultimately allow justifying the model architecture during the publication process. This process 450 
should be continued until the model has been fully implemented. 451 

 452 
Once we have implemented a model we want to make sure we properly understand our own 453 

implementation. This makes it necessary to deeply analyze its behaviour (Otto & Day, 2011). 454 
We should plot model behavior as a function of model parameters.  We can analyze model 455 
stability / equilibrium points. We can ask how similar the model performs to known models, e.g. 456 
those that can be analytically solved. Each modeling toolkit usually comes hand in hand with a 457 
set of model analysis tools; details about the latter can be found in the specific toolkit literature. 458 
All these steps may help us in finding mistakes in our model implementation.  459 

 460 
C.   Model testing 461 
Step 8: Completing the model 462 
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One of the hardest questions in modeling is to decide when to stop improving the model and 463 
call it final. Referring back to the goals (step 1) and hypotheses (step 4) is crucial here. Does 464 
the model answer the original question sufficiently, i.e. with enough detail to advance knowledge 465 
in the field of study? Equally importantly, does the model satisfy the evaluation criteria that have 466 
been determined prior to building the model? Does it speak to the hypotheses, either confirming 467 
or invalidating them? In other words, can the model produce the parametric relationships that 468 
have hypothesized in step 4? If the answer to all these questions is “yes”, then the modeling 469 
exercise might be done. If the original goal has not been met, then the modeler may need to get 470 
back to the drawing board. 471 

 472 
We need to be mindful on finishing a project when the time has come. On the one hand we 473 

can usually improve model fits, on the other hand, we do that at the risk of overfitting the data 474 
we have. Occam’s razor might help here to determine if it is worth considering more 475 
complicated models with more parameters, that are perhaps irrelevant or uninterpretable in 476 
order to obtain a better fit to the data. The cost of such more complicated models is always the 477 
reduced explanatory power. This is mathematically quantified in measures such as the Akaike 478 
information criterion, as explained in the following step.  479 

 480 
Step 9: Testing and evaluating the model 481 
In steps one and four, we set up goals/ hypotheses and objectives for our modeling 482 

approach. Once we have implemented and tested the model we can now evaluate how well we 483 
did in the modeling approach. How to evaluate how well a model did, supremely depends on the 484 
nature of the goals. For example, if we only care about the relation between the second and the 485 
minute digit of the clock, then explaining their relative movement well would be sufficient. If we 486 
want to answer why clocks exist, our answer would have to look very differently. The objectives 487 
we defined further up determine how exactly a model is to be evaluated. 488 

 489 
However, many different modeling approaches are aimed at describing data. This generally 490 

leads to a statistical problem - how can we ask which model better describes the data. Statistics 491 
has given us many tools to ask this question. These range from the mean squared error, to 492 
methods that correct for the number of free parameters (e.g. the Akaike information criterion) to 493 
the ability to predict new and unseen data. Model comparison is a centerpiece in the modern 494 
modeling enterprise. Indeed, model comparison is useful to compare a new model against 495 
existing precursors / alternatives. It is also often useful to build a class of models instead of just 496 
creating one specific instance, in which case model comparison is often used as a means of 497 
selecting the best model among the class of models proposed.  498 

 499 
Finally, it is important to ask questions about generalizability. The model explains the 500 

phenomenon we set out to describe. But knowing this is not enough. Will the model also 501 
adequately describe similar situations? Can what we learned from one clock generalize to 502 
others? Without quantifying generalization it is unclear how valuable a model is and no 503 
modeling study should be finished without asking the generalization question. 504 

 505 
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Debunking myths: 
- Models are not built to win a beauty contest but to explore the unknown. 
- Modeling is not a grade school art show: Multiplying evaluation criteria to find one in 

which your model succeeds is not a good idea. 
- The model that best fits your data may not be the best model (e.g. because of overfitting 

and limits to your data) 
- Modeling is not a fashion show: models should not be judged in terms of fashionable 

concepts and mechanisms. 
- Models are not your children. Even if you have created them, diapered them, trained 

them, etc., don’t be a parent protecting your model at all costs but accept if they fail. 
After all, it’s meant to fail! The question is how much can we learn from it and how much 
can it advance knowledge until it fails. 

- Don’t be a model bigot. You shouldn’t just hate a model because it uses a different 
language than you would use. Understand what they say first! Irrational toolkit 
preference is inappropriate and hinders knowledge advancement. Don’t judge the 
mechanic by its toolkit but by what (s)he can do with it! 

 506 
D.   Publishing 507 
Step 10: Publishing models 508 
Once everything has been done right, the model has been built, simulations are running and 509 

satisfactory results have been obtained, the goal is to communicate those findings through a 510 
scientific publication. This is a tricky exercise in itself and it is worth spending a few words 511 
highlighting aspects that will much improve the likelihood of acceptance. In addition, this section 512 
should be a guideline equally for authors and reviewers so that model evaluations can be as fair 513 
as possible. 514 

 515 
Model publishing essentially comes down to conveying each of the previous 9 steps to the 516 

audience in a structured fashion (K. P. Kording & Mensh, 2016; Otto & Day, 2011). The 517 
introduction section should describe the phenomenon / question that the model addresses (step 518 
1), provide relevant background information from the literature review (step 2) and maybe 519 
introduce some of the ingredients needed (step 3) as well general hypotheses (step 4). Methods 520 
will detail all model ingredients (step 3) and hypotheses (step 4), justify the choice of the toolkit 521 
(step 5) to answer the question asked and meet the goals. The final graphical draft of the model 522 
(step 6) typically becomes the first figure. Implementation details (step 7) as well as the 523 
procedures of model testing and evaluation (step 9) will also be detailed in the Methods section. 524 
Results will summarize model performance (step 8) and provide the testing and evaluation 525 
statistics (step 9) along with answering the original question (step 1) and speaking to each of 526 
the specific and general hypotheses (step 4). Thus overall, following the 10 steps of modeling 527 
also streamlines and simplifies the publishing step, especially if detailed notes have been taken 528 
all along the way.  529 

 530 
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Finally, there are a series of important guidelines to respect when publishing models: 531 
● Know the target audience. Write in a way that your audience can understand. In most 532 

cases the target audience should be experimentalists!  533 
● In order for a model to receive the appropriate appreciation, it is absolutely crucial to 534 

clearly describe what the goals, hypotheses and performance criteria were (K. Kording 535 
et al., 2018)!  536 

● A model should always be graphically represented (Rougier, Droettboom, & Bourne, 537 
2014) if at all possible.   538 

● Show model behavior in parallel (i.e. side by side or superimposed) with the data that 539 
the model was designed to explain. This is a powerful way to prove to the research 540 
community that the model mechanisms have been correctly interfaced with the produced 541 
behavior.  542 

● Publish the model code. Clean up the code and make it readable and understandable to 543 
others. Ideally, the published code should reproduce all results figures in the article. 544 
Publishing the code hugely increases the usefulness of the model for science (Prlić & 545 
Procter, 2012). Consider ModelDB (https://senselab.med.yale.edu/modeldb/) or similar 546 
repositories to publish your model.  547 

● Publish the data that you fit your model to in one of the relevant databases (e.g. 548 
crcns.org, figshare, OSF.io, etc). 549 

 550 
Discussion 551 
 552 
We have argued that following these 10 simple steps should leave modelers with little room 553 

for failure. As mentioned before, we have successfully applied this pipeline 2-week long small-554 
group model building exercises at CoSMo. It is worth pointing out that this success was 555 
irrespective of model type or class, i.e. it worked for models ranging from neural networks to first 556 
principle derivations of normative behavior, and from model-driven data analysis to pure theory. 557 
Of course, for each type of question/model, the extent and practical implementation of the 558 
different how-to-model steps might looks different and be more or less extensive. However, 559 
importantly all step tend to apply to all types of modeling approaches.  560 

 561 
What’s a good model? 562 
Consider you have done everything right as outlined in the 10 easy steps to modeling. You 563 

framed the question precisely, had specific testable hypotheses, choose the right toolkit, 564 
implemented the model, fit it to data, selected the right number of parameters / the best model, 565 
cross-validated your results and compared your best model to alternatives from the literature. 566 
Does that mean your model is a good model? In fact, what are the criteria of a good model?  567 

 568 

“All models are wrong, but some are useful” (Box, 1976) 
“The words true model represent an oxymoron” (Anderson & Burnham, 2002) 
“Everything should be made as simple as possible, but no simpler” (Einstein) 

 569 
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There are many potential criteria motivating the development of a model and many of them 570 
are valid criteria in judging whether the goals have been achieved (K. Kording et al., 2018). 571 
Criteria could be: explain data, interface with data, generalizes within sample / out of sample, 572 
robustness, reproducibility, bridging fields, across-fields predictions, interpretability, inspires 573 
experiments, clinical relevance, falsifiability, mechanistic insight, people care (funding), new 574 
predictions, technological applications, intervention / policy implications, non-arbitrary structure 575 
(elegance), subsumes previous models / data (unification), self-consistency, plausibility of 576 
hypotheses, simplicity, computing efficiency, realism, and normativity. Evidently, not all models 577 
satisfy all those criteria; in fact, satisfaction of any single criterion might be sufficient to consider 578 
the model as being of value. The precise choice of the evaluation criterion should be dictated by 579 
the modelers stated goals and the field’s consensus on how to evaluate of such goal is met. 580 
However, one universally important aspect about modeling is the subsumption principle, i.e. a 581 
good model should capture all existing phenomena in a domain, not just the data in front of the 582 
modeler.  583 

 584 
Depending on the model criteria (see above), questions and goals, a different model toolkit 585 

might be chosen for the same phenomenon to explain. This is because different toolkits allow 586 
answering different types of questions and achieving different modeling goals (Kording et al., 587 
2018; Blohm et al., 2019). As a result, models vary greatly along many dimensions, such as 588 
granularity (David Marr’s computational, algorithmic and physical/implementation levels), 589 
generality (Peter Dayan’s and Larry Abbott’s descriptive, mechanistic and interpretive models) 590 
or scale (physical extent of system modeled). Depending on where is a model is situated in this 591 
high-dimensional model space, there are typically different constraints, scopes, evaluation 592 
criteria, etc. for a model. It is thus useful to know where a model is situated in this space as it 593 
constrains the goals and defines the limitation of a model (Blohm et al., 2019). 594 
 595 

Good modeling practices 596 
Meaningful model development in neuroscience should go hand in hand with good modeling 597 

practices. For example, iteratively modifying the model structure to obtain a better fit to the data 598 
is often done; however, this is not always advised because changing the model structure might 599 
imply changing the hypotheses on the fly, which is essentially HARKing (“Hypothesis After 600 
Results” justification). Furthermore, pre-registration might prevent some of the biases in model 601 
comparison that stem from researchers’ motivation to show that their new model fits data better 602 
than previous models. Following our 10 simple rules in the correct order (see Figure 3) guards 603 
against this (often involuntary) fallacy. We strongly advise to not make any changes to the 604 
model hypotheses and structure after steps 1-6 have been completed. One good way to stay 605 
honest would be to pre-register (Nosek, Ebersole, DeHaven, & Mellor, 2018) the model plan, 606 
outlining hypotheses and test strategies developed in steps 1-6. This does not prevent 607 
researchers from performing crucial adjustments to their models if initially hypothesized models 608 
fail to produce the expected result. Crucially though, pre-registration “forces” authors to report 609 
the iterative adjustments, allowing the community to benefit from the insights gained throughout 610 
the process. For example, one could imagine a situation under which the clock’s hypothesized 611 
purpose would be to predict the movement of the stars; knowing this is wrong would help the 612 
community move forward in understanding the clock. Note, that pre-registering the modeling 613 
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study in itself is to be considered separately from pre-registering potential experimental 614 
predictions that result from the model. In summary, we suggest that pre-registration of modeling 615 
efforts would lead to a cleaner, more comprehensive and reproducible model building process in 616 
which logical steps and reasonings are clearly outlined and reproducible.   617 

 618 
There might be limitations to when a modeling study should be pre-registered. The above 619 

procedure might be most suitable when a model is a specific implementation of a hypothesized 620 
mechanism to explain previously described phenomena for which there is data. It might make 621 
less sense when the modeling effort consists in developing new theoretical tools or general 622 
theories, e.g. a new machine learning approach or a new principled way of learning. However, 623 
we would argue that these exceptions are rather rare in neuroscience research compared to the 624 
abundance of models that directly target data.   625 
 626 

Conclusion 627 
This 10 step pipeline has proven to remove some of the apparent arbitrariness of the 628 

neuroscientific modeling process and provide teachable instructions on how to succeed in 629 
modeling. Indeed, currently modeling looks much like a fashion show with the whims and trends 630 
dictating what’s hot. This arbitrariness in the modeling approach may also lead to misguided 631 
model judgments. We emphasize that modeling is not a beauty contest; models need to be 632 
judged based on their well-defined goals, not their appearance or fashionability. To allow of fair 633 
judgment, authors have the responsibility to clearly lay out their thought process. While this 10 634 
step guide is tailored toward the neuroscience community, it should help achieve this goal 635 
throughout life sciences and beyond. 636 

 637 
 638 

Example box 
Modelling eye movements 
David A. Robinson is generally considered the father of quantitative oculomotor research. 
Here, we will use one of his most influential modeling studies (Robinson, 1973: Models of the 
saccadic eye movement control system) as an example illustrating our 10 steps “how to 
model”. 

- Step 1: In general, Robinson asked whether we can understand the neural organization 
that controls saccadic eye movements by establishing relationships between 
computations in an abstract controller and the activity in subcortical brain areas, such as 
motor nuclei. In doing so, he is really addressing two different questions: (1) are eye 
movements expressible as the result of an abstract controller (causal question) and (2) is 
the neural activity compatible with latent variables in an abstract controller (explanatory 
question)? For the latter, Robinson referred to novel specific data from oculomotor nuclei.  
- Step 2: Robinson grounds his model in the literature, using a previously published and 
highly influential model of the extraocular muscle and eye ball mechanics (Robinson, 
1964) as a starting point for his oculomotor controller. He could also rely on 
electrophysiological recordings in oculomotor neurons (e.g. (Robinson, 1964, 1970)) as 
well indirect evidence for a neural integrator in the eye premotor circuitry (Skavenski & 
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Robinson, 1973). Finally, he obtained crucial intuitive insight from the stereotypical nature 
of saccadic eye movements, specifically the high degree of regularity of their velocity 
profile. 
- Step 3: Since Robinson was interested in producing eye movements to a target, model 
input is an abstract motor goal and model output is eye position (see Figure Box 1). How 
did Robinson choose the right variables? How did he make sure that these variables were 
compatible with the phenomenology in terms of magnitude, resolution (level of detail) and 
timescale? It was known from oculomotor neuron electrophysiology that the eye plant 
needed a pulse and a step command to overcome elastic and viscous forces respectively. 
Robinson’s model needed to generate such neural commands as latent variables and 
used a neural integrator to produce the step from a pulse. Finally, he needed a pulse 
generator that was able to convert a motor error (or goal) into a pulse that could then drive 
the saccade. He was only interested in reproducing average population firing rates, not 
single action potentials. He also only considered eye movements starting from the primary 
eye position. 

Figure Box 1: Updated version of Robinson’s simple saccade model (Scudder, 1988). 
Saccade target shift ( ) is compared to an internal estimate of saccade progression 

computed through the resettable neural integrator ( , suggested by Scudder (1988), not 
Robinson) to provide a motor error (err). Based on circumstantial evidence, Robinson’s 
insight led him to postulate the pulse generator ( ) to provide a desired eye velocity 

drive (v*). This pulse command was scaled to match the eye plant dynamics (gain ) and 
provided the saccade drive. However, Robinson recognized that visco-elastic forces would 

pull the eye back to primary position if not actively compensated for. This is how he 

proposed the neural integrator ( ) to provide a tonic drive that overcomes the viscoelastic 
forces. Tonic and phasic drives add up and are sent to extraocular muscles of the eye 
plant that he modeled as a second-order system to move the eye (E). Red labels are 

mappings of individual computations to specific brain areas. CBLM: cerebellum; BG: basal 
ganglia; SC: superior colliculus; MLF: medial longitudinal fasciculus; MVN: medial  

vestibular  nucleus; NPH: nucleus prepositus hypoglossi; MN: motor neurons. Grey boxes 
indicate Robinson’s innovations. Black box denotes a later modification of Robinson’s 

model by Scudder (1988), included here for correctness.  

- Step 4: Robinson hypothesized that saccades result from a pulse input to the ocular 
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plant. He also hypothesized that a neural integrator existed and that it integrated a scaled 
version of the pulse command. Pulse and step commands should then be added up again 
at the level of the motor neurons (see Figure Box 1). 
- Step 5: Robinson used linear control systems theory as a toolkit to address his question 
because he believed that the brain needed to implement some natural neural control law 
and he knew that any such dynamical system could be locally well approximated by a 
linear system (see goals, step 1). In choosing this toolkit, he hoped to span all 3 levels of 
Marr from computational (i.e. overall system behavior describing eye movements) to 
algorithmic (how this behavior could be implemented most efficiently) to physical (neural 
population coding of the individual components of his model). 
- Step 6: Robinson drew a draft diagram of the model given his knowledge and 
hypotheses (similar to Figure Box 1). He could then fill in the boxes using linear control 
theory language. For example, his hypotheses allowed him to write down a potential pre-
motor circuit transfer function. He also already knew the transfer function of the eye plant 
from his previous work. Finally, he needed a pulse generator. Since little was known about 
it, he chose what he thought was the simplest arrangement reproducing the correct 
saccade dynamics. Note that Robinson also chose all his latent variables in his model to 
represent observable firing rates of real neural areas. 
- Step 7: Robinson’s first model was elegant in that it used known physiology to produce 
saccadic eye movements in a seemingly simple fashion. However, he knew that this 
model was unlikely to be able to reproduce other aspects of saccades or their neural 
control, such as saccades to moving targets. He (and other authors) therefore 
incrementally expanded his model in follow-up studies to include missing aspects. 
- Step 8: Robinson considered his task achieved when his models were able to 
qualitatively reproduce the specific data he set out to model. He thereby answered his 2 
initial questions, i.e. that latent variables in his model are indeed consistent with 
oculomotor electrophysiology and that linear control systems theory could accurately 
capture the brain’s control of eye movements, at least in the brainstem. 
- Step 9: Robinson only carried out qualitative model evaluations. This included 
comparing model and real eye movement behavior as well as comparing model 
predictions of latent variables to neuronal recordings. Nowadays, reviewers would 
probably encourage him to provide more quantitative comparisons with eye movement 
data as well as a critical evaluation of his models with other existing ones, but scientific 
standards were different in 1973. However, his model made very interesting predictions 
regarding the presence of a common neural integrator for all eye movements as well as a 
phasic (pulse) motor command. Since Robinson’s eye plant model in 1964, he also 
believed that principles of linear control theory can be used to describe all eye 
movements, which led to half a century of extremely fruitful theoretical and experimental 
work (breadth of application). As a result of his model-driven approach, the eye movement 
system is now arguably the best understood neural system. 
- Step 10: Robinson published his manuscript in a journal called Kybernetik (nowadays 
Biological Cybernetics), which is mostly targeted towards engineers trying to understand 
biological systems. He clearly laid out his goals, described all details of his approach and 



 

 21 

relates his findings to experimental data. But enough said; we encourage the reader to 
generate his/her own opinion by reading Robinson’s paper. 
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