Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
New Research, Neuronal Excitability

Interaction of cortical and amygdalar synaptic input modulates the window of opportunity for information processing in the rhinal cortices

Janske G.P. Willems, Wytse J. Wadman and Natalie L. M. Cappaert
eNeuro 6 August 2019, ENEURO.0020-19.2019; https://doi.org/10.1523/ENEURO.0020-19.2019
Janske G.P. Willems
1Center for NeuroScience - Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098 XH Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wytse J. Wadman
1Center for NeuroScience - Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098 XH Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalie L. M. Cappaert
1Center for NeuroScience - Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098 XH Amsterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The perirhinal (PER) and lateral entorhinal (LEC) cortex function as a gateway for information transmission between (sub)cortical areas and the hippocampus. It is hypothesized that the amygdala, a key structure in emotion processing, can modulate PER-LEC neuronal activity before information enters the hippocampal memory pathway. This study determined the integration of synaptic activity evoked by simultaneous neocortical and amygdala electrical stimulation in PER-LEC deep layer principal neurons and PV interneurons in mouse brain slices. The data revealed that both deep layer PER-LEC principal neurons and PV interneurons receive synaptic input from the neocortical agranular insular cortex (AiP) and the lateral amygdala (LA). Furthermore, simultaneous stimulation of the AiP and LA never reached the firing threshold in principal neurons of the PER-LEC deep layers. PV interneurons however, mainly showed linear summation of simultaneous AiP and LA inputs and reached their firing threshold earlier. This early PV firing was reflected in the forward shift of the evoked inhibitory conductance in principal neurons, thereby creating a more precise temporal window for coincidence detection which likely plays a crucial role in information processing.

Significance Statement The perirhinal and lateral entorhinal cortices (PER-LEC) function as a gateway for information transmission between the neocortex and the hippocampus and this information flow can be modulated by the amygdala. Here, we showed that simultaneous input of the neocortex and the amygdala coincided onto principal neurons and PV interneurons of the PER-LEC deep layers. PV interneurons linearly summated these synaptic inputs and reached their firing threshold earlier. This earlier PV firing resulted in an earlier rise of the inhibitory conductance in principal neurons, likely causing a more precise temporal window for excitatory coincidence detection. This process probably indicates a significant role for the inhibitory network in regulating integration of emotion and information for processing in the PER-LEC deep layer network.

  • entorhinal cortex
  • parvalbumin interneurons
  • patch clamp
  • perirhinal cortex
  • voltage sensitive dye imaging

Footnotes

  • The authors declare to have no conflicts of interests.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Back to top
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interaction of cortical and amygdalar synaptic input modulates the window of opportunity for information processing in the rhinal cortices
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Interaction of cortical and amygdalar synaptic input modulates the window of opportunity for information processing in the rhinal cortices
Janske G.P. Willems, Wytse J. Wadman, Natalie L. M. Cappaert
eNeuro 6 August 2019, ENEURO.0020-19.2019; DOI: 10.1523/ENEURO.0020-19.2019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Interaction of cortical and amygdalar synaptic input modulates the window of opportunity for information processing in the rhinal cortices
Janske G.P. Willems, Wytse J. Wadman, Natalie L. M. Cappaert
eNeuro 6 August 2019, ENEURO.0020-19.2019; DOI: 10.1523/ENEURO.0020-19.2019
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • entorhinal cortex
  • parvalbumin interneurons
  • patch clamp
  • perirhinal cortex
  • voltage sensitive dye imaging

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching
  • TrkB Signaling Influences Gene Expression in Cortistatin-Expressing Interneurons
  • Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity
Show more New Research

Neuronal Excitability

  • Psychedelics Reverse the Polarity of Long-Term Synaptic Plasticity in Cortical-Projecting Claustrum Neurons
  • Variation in the Involvement of Hippocampal Pyramidal Cell Subtypes in Spatial Learning Tasks
  • Dentate Granule Cell Capacitance Is Stable across the Light/Dark Cycle
Show more Neuronal Excitability

Subjects

  • Neuronal Excitability
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.