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Abstract 52 

 53 
Approach-avoidance conflict arises when the drives to pursue reward and avoid harm are 54 

incompatible. Previous neuroimaging studies of approach-avoidance conflict have shown large 55 

variability in reported neuroanatomical correlates. These prior studies have generally neglected 56 

to account for potential sources of variability, such as individual differences in choice 57 

preferences and modeling of hemodynamic response during conflict. In the present study, we 58 

controlled for these limitations using a hierarchical Bayesian model (HBM). This enabled us to 59 

measure participant-specific per-trial estimates of conflict during an approach-avoidance task. 60 

We also employed a variable epoch method to identify brain structures specifically sensitive to 61 

conflict. In a sample of 28 human participants, we found that only a limited set of brain 62 

structures (inferior frontal gyrus, right dorsolateral prefrontal cortex and right pre-supplementary 63 

motor area) are specifically correlated with approach-avoidance conflict. These findings suggest 64 

that controlling for previous sources of variability increases the specificity of the 65 

neuroanatomical correlates of approach-avoidance conflict. 66 

 67 

Significance Statement 68 

Approach-avoidance conflict is implicated in many psychiatric syndromes. Previous fMRI 69 

studies of this important process have potential biases caused by overlooking individual 70 

differences in the evaluation of reward and threat in their analyses. We present a method to 71 

model individual differences in approach-avoidance conflict and demonstrate how to incorporate 72 

this model into fMRI analyses. We found our approach to have greater specificity than previous 73 

studies, which highlights the importance of capturing large variability in participant behavior. 74 

 75 

Keywords 76 

 77 

Approach-Avoidance Conflict, fMRI, Hierarchical Bayesian Modeling  78 
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Introduction 79 

The drive for self-preservation is fundamental to every living organism. Behavioral 80 

psychologists have long argued that animals evaluate objects and events in their environments 81 

along an appetitive-aversive continuum (Elliot, 2008; Corr, 2013), where animals are motivated 82 

to approach things that sustain them (e.g. rewarding or pleasurable stimuli) and to avoid things 83 

that threaten them (e.g. harmful or painful stimuli). Approach-avoidance conflict arises in 84 

situations where these drives are incompatible, such as when the approach towards reward also 85 

increases the possibility of danger. Approach-avoidance conflict is an important phenomenon as 86 

it is thought to be core to the etiology and maintenance of psychiatric disorders including 87 

depression and anxiety (American Psychiatric Association, 2013). 88 

In recent years, many studies have investigated the neural substrates underlying 89 

approach-avoidance conflict using electrophysiology in rodents (Friedman et al., 2015) and non-90 

human primates (Amemori et al., 2015) and neuroimaging in humans (Talmi et al., 2009; Park et 91 

al., 2011; Bach et al., 2014; Aupperle et al., 2015; O’Neil et al., 2015; Schlund et al., 2016; Loh 92 

et al., 2017). The results of the human neuroimaging literature have implicated a diverse 93 

collection of brain structures in approach-avoidance conflict including cortical structures such as 94 

the anterior cingulate, insula, orbitofrontal cortex, and dorsolateral prefrontal cortex, and 95 

subcortical structures including the amygdala, hippocampus, and striatum. There is considerable 96 

heterogeneity in these findings, however, such that none of the aforementioned brain structures 97 

are consistently identified as being involved in approach-avoidance conflict across these studies. 98 

This naturally prompts the question of where some of the variability might stem from.  99 

One possibility is that the heterogeneity reflects variability in approach-avoidance 100 

behavior across participants. Approach-avoidance tendencies are naturally varying across 101 
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individuals (Carver & White, 1994), such that there are robust individual differences in the 102 

valuation of reward and threat cues. As such, the point of maximal approach-avoidance conflict 103 

is unlikely to be the same across participants. Ignoring these individual differences and averaging 104 

across them, however, has been shown to reduce contrast statistics in fMRI group level analysis 105 

(Ahn et al., 2011). One solution is to explicitly model individual differences in approach-106 

avoidance conflict, such as with hierarchical Bayesian modeling (Kruschke, 2015), and 107 

incorporate trial-by-trial estimates of approach-avoidance conflict into the fMRI analysis in order 108 

to align participants along a latent evaluation space (O’Doherty et al., 2007; Ahn et al., 2011). In 109 

doing so, we are less likely to average out conflict-related changes in BOLD signal. 110 

A second possibility is that the heterogeneity in findings directly reflects variability in 111 

previous modeling of conflict-related changes in BOLD signal. A hallmark feature of approach-112 

avoidance conflict is prolonged reaction times. Interpreting changes in BOLD signal between 113 

two conditions that also involve differences in response times is challenging, however, due to the 114 

time-on-task effect (Taylor et al., 2014). Because the BOLD signal sums approximately linearly 115 

as a function of stimulation duration (Dale & Buckner, 1997), brain structures not directly 116 

involved in the representation of approach-avoidance conflict may still show increases in BOLD 117 

signal by virtue of prolonged processing of the constitutive elements of conflict (e.g. rewarding 118 

or threatening stimuli). Controlling for response time is necessary then to identify brain 119 

structures that are directly involved in the processing of approach-avoidance conflict (brain 120 

regions that show increased intensity of activity, not just prolonged activity). With the exception 121 

of Talmi et al. (2009), the neuroimaging studies of approach-avoidance conflict cited above do 122 

not document having incorporated response times into their fMRI analyses.  123 
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In the present study, we investigated the neural signatures of human approach-avoidance 124 

conflict with functional neuroimaging controlling for the issues discussed above. We measured 125 

changes in the fMRI BOLD signal as participants completed an approach-avoidance conflict 126 

task. In the task, participants repeatedly chose between a risky option, returning greater reward at 127 

the risk of potential electrical stimulation, and a safe option, returning a much smaller reward but 128 

no risk of electrical stimulation. Using a novel hierarchical Bayesian model (HBM), we 129 

estimated participants’ per-trial approach-avoidance conflict and used these to inform our fMRI 130 

analyses. Moreover, we controlled for the time-on-task effect using the variable epoch method 131 

(Grinband et al., 2008) in order to identify brain structures that showed greater intensity of 132 

activity, rather than prolonged activity, during approach-avoidance conflict. We found that using 133 

these methods increased the specificity of the structures responding to conflict.  134 

Methods 135 

Subjects 136 

Thirty-six individuals (13 females, 23 males, age: M = 33.94 yrs, SD = 8.80) were 137 

recruited from the Greater Boston area to participate as healthy volunteers in a research program 138 

to develop novel deep brain stimulation (DBS) technologies (Widge et al., 2017). All participants 139 

reported being right-handed and without a current or past diagnosis of a psychiatric or 140 

neurological disorder and were in the normal healthy range for the Mini-International 141 

Neuropsychiatric Interview (MINI; Sheehan et al., 1998). Women were scanned at or near the 142 

ovulation phase of their menstrual cycles (when estradiol is lowest) to minimize potential gender 143 

confounds (Zeidan et al., 2011). The study was approved by the Partners Healthcare System 144 

Human Research Committee, and all participants provided written informed consent prior to 145 
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enrollment. Participants were paid $600 for the successful completion of the larger study 146 

protocol. 147 

Eight individuals were excluded from analysis: five due to technical complications (see 148 

below), two for missing responses for more than 20% of trials, and one due to corrupted 149 

DICOMs. This resulted in a final sample of 28 participants (10 females, 18 males). 150 

Task 151 

We employed a modified version of the Aversion-Reward Conflict (ARC) task (Sierra-152 

Mercado et al., 2014). During this task, participants make a series of choices between two 153 

options: a safe option or a risky option (Figure 1). Selecting the safe option returns a reward of 154 

$0.01 and the participant never receives electrical stimulation. In contrast, selecting the risky 155 

option returns a reward between $0.05 and $0.95, and the participant receives electrical 156 

stimulation with probability 10%, 50% or 90%, as indicated by a bar in the center of the screen. 157 

This required participants to evaluate their preference for a greater reward with a risk of 158 

electrical stimulation relative to a lesser reward with no risk of electrical stimulation. Participants 159 

were instructed to choose as fast as possible without choosing randomly and were informed that 160 

their choices would be reflected in their final study payment. (In fact, each participant was 161 

compensated with a generous flat payment.) Prior to starting the task, participants were asked to 162 

report back the instructions so that their comprehension could be verified. Next, participants 163 

completed ten practice trials to become accustomed to the timing of the task. 164 

This ARC task had three levels of risk: 10%, 50%, and 90% likelihood of electrical 165 

stimulation. Rewards were sampled from all cent values between $0.05 and $0.95. Trials were 166 

counterbalanced such that there were an equal number of trials at each risk level, while rewards 167 

were uniformly and equally sampled within each risk level. Each participant completed 108 total 168 
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trials and the order of trials was kept constant for all the participants. Long inter-trial intervals of 169 

10.5 ± 0.875 seconds separated sequential trials in the task (a slow event-related design). The 170 

duration of the full task was 28.5 minutes.  171 

 Electrical stimulation was administered to the ankle through a Coulbourn Aversive 172 

Finger Stimulator (Harvard Apparatus, E13-22; maximum level of stimulation = 4.0 mA). The 173 

amperage of electrical stimulation was calibrated individually for each participant prior to 174 

performing the ARC task. Participants experienced increasing levels of stimulation until they 175 

reported reaching a subjective threshold qualified as “highly annoying but not painful”. For five 176 

participants this threshold could not be established because the highest stimulation setting of 4.0 177 

mA was too painful, but penultimate 2.3 mA setting was not experienced as annoying. These 178 

participants did not exhibit behavioral variation (i.e., they always accepted the risky choice) and 179 

consequently these participants were excluded from the analysis.  180 

Behavioral Analysis 181 

Our aim was to infer the level of approach-avoidance conflict experienced by each 182 

participant during every trial. We devised a novel HBM that predicts participants’ choices (safe 183 

or risky option) and response times. The decision to model response times was motivated by 184 

well-documented relationship between decision conflict and prolonged response times and prior 185 

demonstrations that including response times in behavioral models improved the accuracy of 186 

single-trial parameter estimation (Prerau et al., 2009; Pederson et al., 2016). The model is 187 

composed of a logistic regression on the choice data and a gamma regression on the response 188 

times. We assume the binary choice responses, y ∈ (0 = safe choice, 1 = risky choice) are drawn 189 

from the Bernoulli distribution: 190 

𝑝(𝑦𝑖𝑗|𝜃𝑖𝑗) = 𝜃
𝑖𝑗

𝑦𝑖𝑗
(1 − 𝜃𝑖𝑗)

1−𝑦𝑖𝑗 



7 

 

 7 

where 𝜃𝑖𝑗 is the likelihood-of-take for trial i and participant j, and is itself estimated from: 191 

𝜃𝑖𝑗 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝛽0𝑗 + 𝛴𝛽𝑛𝑗𝑥𝑛𝑖𝑗) 

Here, 𝛽0𝑗  is the intercept for participant j; the remaining 𝛽𝑛𝑗 regression coefficients reflect 192 

the modulatory influence of independent variables, X, on the baseline likelihood-of-take. In this 193 

model, there are three independent variables: 50% risk (𝛽1), 90% risk (𝛽2), and reward (𝛽3). The 194 

50% risk (𝛽1) and 90% risk (𝛽2), coefficients are binary predictors, whereas reward (𝛽3) is a 195 

continuous predictor that was normalized to have mean = 0 and standard deviation = 1. The 196 

intercept term, 𝛽0, thus reflects the likelihood of take for 10% risk and $0.50 reward offer.  197 

The continuous response times, z, are assumed to be drawn from the gamma distribution: 198 

𝑝(𝑍𝑖𝑗|𝑘𝑗 , 𝜇𝑖𝑗) = 𝐺𝑎𝑚𝑚𝑎 (𝑘𝑗 ,
𝑘𝑗

𝜇𝑖𝑗
) 

where 𝑘𝑗 is the shape parameter for participant j and 𝜇𝑖𝑗 is the mean of the distribution predicted 199 

by: 200 

𝜇𝑖𝑗 = 𝛼0𝑗 + 𝛼1𝑗 ∙ 𝑑𝑖𝑗 

We chose a gamma distribution because it is well-suited for characterizing response times and 201 

other strictly positive data with a long rightward tail (Yousefi et al., 2015). Here, 𝛼0𝑗 was the 202 

average response time for participant j and 𝛼1𝑗 was the slope term determining how much 203 

response time increased with conflict. We represent conflict, 𝑑𝑖𝑗, as the inverse of the distance-204 

to-decision boundary of trial i for participant j, represented as: 205 

𝑑𝑖𝑗 = 0.25 − (0.5 − 𝜃𝑖𝑗)
2 

This measure, d, has the shape of an inverted parabola. It is greatest when 𝜃 = 0.5, or 206 

when a participant is equally likely to select the safe or risky option. It is smallest when 𝜃 = 0.0 207 

or 𝜃 = 1.0, or when a participant is most likely to select the safe or risky option, respectively. 208 
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Therefore, d reflects the degree of conflict a participant experienced during the evaluation phase 209 

of a given trial. The model fit then identified the set of parameters that maximized the joint 210 

likelihood of both the choice and response time data due to the relationship between 𝜃 and d. 211 

As a hierarchical model, each of the participant-level regression parameters defined 212 

above (e.g. 𝛼0𝑗 , 𝛼1𝑗 , 𝛽0𝑗 , 𝛽1𝑗 , . . . , 𝛽𝑛𝑗) are drawn a corresponding group-level distribution, centered 213 

at group-level means (e.g. 𝛼0𝐺 , 𝛼1𝐺 , 𝛽0𝐺 , 𝛽1𝐺 , . . . , 𝛽𝑛𝐺). Thus, the model simultaneously estimates 214 

group- and participant-level parameters, partially pooling the data so as to minimize the 215 

influence of outliers. Figure 2 presents a detailed diagram of the model which includes the choice 216 

of priors. We assumed Student’s t-distribution priors on the choice (𝛽) regression coefficients to 217 

ensure robust logistic regression (Gelman et al., 2008; Ghosh et al., 2017) using the 218 

recommended degrees of freedom, 𝜂 = 5 (Stan Development Team, 2017). 219 

The behavioral model was fit using Hamiltonian Monte Carlo (HMC) sampling in Stan 220 

v2.15 (Carpenter et al., 2017) with four chains of 2000 steps each (1000 burn-in, thinning = 4), 221 

yielding 1000 posterior samples total. The convergence of the chains was computed using the 𝑅 222 

statistic (Gelman et al., 2014), which measures the degree of variation between chains relative to 223 

the variation within chains. The Stan development team recommends as a rule of thumb that all 224 

parameters have 𝑅  statistics no greater than 1.1. All parameters in our showed good convergence 225 

(𝑅 ≈ 1). Similarly, the number of effective samples approached 1000 for most parameters 226 

indicating that the chains exhibited low autocorrelation. Once fitted, per-trial estimates of d were 227 

generated by multiplying the observed trial features (risk level and reward value) by the modal 228 

individual-level parameter estimates.  229 
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Image Acquisition and Preprocessing 230 

All MRI scans were completed at the Athinoula A. Martinos Center for Biomedical 231 

Imaging. Of the 28 participants included in this analysis, 20 were scanned using a 3T Siemens 232 

Trio scanner and 8 were scanned using a 3T Siemens Prisma scanner (scanner type was entered 233 

as a covariate in the analyses). All participants were scanned with a 32-channel head coil. Foam 234 

cushions were used to restrict head movements. Task images were projected using a rear 235 

projection system and PsychToolbox (V3) stimulus presentation software (Kleiner et al., 2007).  236 

For each participant, both structural and functional images were collected. The structural 237 

sequences involved a high-resolution, four-multiecho, T1-weighted, magnetization-prepared, 238 

gradient-echo image (TR = 2510 ms, TE = 1.64 ms, flip angle = 7
o
, voxel size = 1.0 x 1.0 x 1.0 239 

mm) (van der Kouwe et al., 2008). Functional images were acquired using a multiband SMS-3 240 

T2*-weighted echo-planar-imaging (EPI) sequence sensitive to blood-oxygen-level dependent 241 

(BOLD) contrast (TR = 1750 ms, TE = 30 ms, flip angle = 75
o
, voxel size = 2.0 x 2.0 x 2.0 mm, 242 

PAT = GRAPPA, accelerated factor TE = 2). Sixty-three interleaved slices were aligned 243 

perpendicular to the plane intersecting the anterior and posterior commissures, and the whole 244 

brain was imaged (FOV = 220 mm). For the purpose of EPI-dewarping, a fieldmap was also 245 

collected for each participant (63 interleaved slices, TR = 500 ms, TE 1 = 3.41 ms, TE 2 = 5.87 246 

ms, flip angle = 55
o
, voxel size = 2.0 x 2.0 x 2.0 mm).  247 

Anatomical reconstructions of each participant’s brain were generated from the T1 248 

structural image using Freesurfer v5.3 (Fischl, 2012). The functional data were first corrected for 249 

slice timing using the Fourier phase shift interpolation from SPM8 and then for B0 using FSL’s 250 

epidewarp (http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl). FS-FAST v5.3 251 

was used for subsequent preprocessing with their default settings: coregistration with the 252 
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corresponding Freesurfer anatomical reconstruction; motion correction to the first acquisition 253 

using the AFNI motion correction tool (http://afni.nimh.nih.gov/afni/); normalization to 254 

fsaverage/MNI space; and smoothing using 6 mm FWHM kernel.  255 

fMRI Modeling and Analysis 256 

Neuroimaging analyses were limited to a priori regions of interest in line with the 257 

literature (Talmi et al., 2009; Park et al., 2011; Bach et al., 2014; Aupperle et al., 2015; O’Neil et 258 

al., 2015; Schlund et al., 2016; Loh et al., 2017). Specifically, a cortical mask was constructed 259 

for left and right hemispheres using the Mindboggle atlas (Klein and Tourville, 2012) consisting 260 

of areas encompassing the cingulate cortex, dorsomedial prefrontal cortex, orbitofrontal cortex, 261 

dorsolateral and ventrolateral prefrontal cortex, and insular cortex (Figure 3). Similarly, a 262 

subcortical mask was constructed using the automated subcortical segmentation standard in 263 

Freesurfer (Fischl et al., 2002) consisting of the bilateral striatum (caudate, putamen), 264 

hippocampus, and amygdala.  265 

In the first level analysis, we modeled the deliberation phase (time to response) using the 266 

variable epoch method (Grinband et al., 2008). The deliberation phase was modeled using two 267 

sets of boxcar regressors: one control regressor and one parametric modulation regressor. For 268 

both regressors, the boxcar for each trial was scaled in duration according to that trial’s observed 269 

response time. The boxcar for each trial in the parametric modulation term was scaled in 270 

amplitude according to estimated decision conflict (d) for that trial. The parametric modulation 271 

boxcars corresponding to trials with missing responses were scaled to zero amplitude. 272 

Additionally, several separate control analyses were performed with the same procedure to 273 

determine the effect of 1) using the variable epochs method, 2) using an HBM to model 274 

individual differences and 3) using conflict as the parametric modulator over and above using 275 
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risk or reward as the parametric modulator. For the first control analysis, fixed epochs were used 276 

instead of variable epochs, where the trial duration was not scaled and instead was uniform; from 277 

the presentation of the first stimulus (the risk bar) to 3.5 seconds after that time when subject 278 

responses were cut off. For the second control analysis, an equivalent non-hierarchical model 279 

was used (i.e. estimating only group parameters, excluding participant-level parameters) to 280 

model the conflict parametric modulator. For the third set of control analyses, risk and reward 281 

were used, in separate analyses, to parametrically modulate the deliberation-phase regressor 282 

instead of conflict, and, in another separate analysis, risk, reward and conflict were all used as 283 

parametric modulators with three parametrically modulated deliberation-phase regressors in the 284 

same first-level analysis. All regressors were convolved with the SPM hemodynamic response 285 

function. All estimated regression coefficients in first level analysis were converted to percent 286 

signal change (PSC; Pernet, 2014). 287 

The fMRI data were preprocessed using a high-pass filter, nuisance regressors and 288 

motion scrubbing. A discrete cosine transform basis set was added to high-pass filter the data at 289 

0.01 Hz. The six possible directions of motion were incorporated into the first-level analyses 290 

(after being demeaned, detrended, and orthogonalized) as nuisance regressors. Finally, motion 291 

scrubbing was used to mitigate the impact of high-motion acquisitions on the data (Siegel et al., 292 

2014). Volumes for which the calculated framewise displacement (Power et al., 2012) exceeded 293 

0.9 mm were excluded from analyses, and the first four acquisitions were discarded. 294 

In the second level analysis, the beta coefficients estimated for each participant were 295 

submitted to a weighted least squares (WLS) regression where F-contrasts were computed for the 296 

control and parametrically modulated regressors. Scanner type (Trio vs. Prisma) was entered as a 297 

secondary nuisance regressor. Five thousand permutations of the WLS model were also 298 
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computed following the Freedman–Lane procedure (Winkler et al., 2014). Every statistical map, 299 

both observed and permuted, was submitted to threshold-free cluster enhancement (Smith and 300 

Nichols, 2009) using the recommended parameters (H = 2, E = 0.5, step = 0.1). Finally, the 301 

permutation maps were used to compute family-wise error (FWE) corrections (α = 0.05) for each 302 

voxel (Winkler et al., 2014). Any resulting clusters were discarded if they covered less than 100 303 

mm
2
 on the surface or fewer than 20 contiguous voxels of the volume. 304 

Code Accessibility 305 

All data and analysis scripts are available online at openneuro.org/datasets/ds001814 and 306 

github.com/mghneurotherapeutics/DARPA-ARC respectively. The data and scripts are freely 307 

available at these locations with instructions for access and suggested citation included. 308 

Results 309 

Behavioral Results 310 

Participants exhibited the expected response trends for the ARC task: greater risk of 311 

electrical stimulation decreased on average the likelihood of selecting the risky option, whereas 312 

increasing reward increased the likelihood of selecting the risky option (Figure 3). The 95% 313 

highest density intervals (HDIs) of the posterior distribution for the group-level parameters 314 

showed decreases in risky-choice taking for the 50% (β1 = -1.922, 95% HDI: [-2.606, -1.139]) 315 

and 90% risk (β2 = -4.180, 95% HDI: [-5.273, -3.257]) conditions. In contrast, increases in risky-316 

choice taking were observed in response to increasing reward (β3 = 10.652, 95% HDI: [8.239, 317 

12.887]).Thus, risk biased choice behavior towards avoidance (i.e. selecting the safe option), and 318 

reward biased choice behavior towards approach (i.e. selecting the risky option), indicating that 319 

the ARC task elicited the intended behavioral effects.  320 
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At the subject level, the 95% HDIs of the posterior estimates for the 50% risk (𝛽1) and 321 

90% risk (𝛽2) coefficients were strictly negative for 19/28 participants and 24/28 participants, 322 

respectively. The 95% HDIs for the reward coefficients (𝛽3) were strictly positive for 27/28 323 

participants. No participants exhibited an increase in choice preference for the risky option with 324 

increasing risk and no participants exhibited an increase choice preference for the safe option 325 

with increasing reward. In summary, all the participants had response trends that matched our 326 

expectations for the ARC task, and most participants’ behavior was modulated by both risk and 327 

reward. 328 

For the response time component of our HBM, we found that approach-avoidance 329 

conflict was positively correlated with response times (Figure 4B). At the group-level, the 95% 330 

HDI of the posterior distribution on the conflict-RT slope parameter was strictly positive (α1 = 331 

0.456, 95% HDI: [0.388, 0.528]). The model estimated an average increase in response times of 332 

0.456 seconds at maximal conflict. Thus, the ARC task was also successful in eliciting this 333 

hallmark behavioral signature of increased response times during approach-avoidance conflict. 334 

It is important to note we observed considerable variability in the choice preferences of 335 

our participants (Figure 5). The most approach-biased participant selected the risky option on 336 

almost all trials (93%), whereas in contrast the most avoidance-biased participant selected the 337 

safe option on almost all trials (16%). This strongly demonstrates the notion that the points of 338 

maximal approach-avoidance conflict are unlikely to be the same across participants and 339 

reinforces the need for methods like HBMs that explicitly take into consideration these large 340 

individual differences.  341 

Importantly, posterior predictive checks showed that our model accurately captured 342 

participants’ choice behavior (Figure 5). The root-mean-square error between predicted and 343 
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observed average risky choice was 0.023. To assess the possibility of model overfitting, we 344 

compared the widely applicable information criterion (WAIC; Watanabe, 2013) of our HBM to 345 

an equivalent non-hierarchical model (i.e. estimating only group parameters, excluding 346 

participant-level parameters). WAIC scores are reported here on deviance scale where lower 347 

scores denote greater fitness. The hierarchical model (WAIC = 1319.4) was strongly preferred to 348 

its non-hierarchical equivalent (WAIC = 2611.5) despite its greater complexity. We also 349 

compared our hierarchical model to a secondary hierarchical model that included interaction 350 

terms between risk and reward. This model performed slightly worse than the main effects-only 351 

model (WAIC = 1320.8). As such, we proceeded with the more parsimonious model with main 352 

effects only for fMRI analysis. 353 

In summary, the ARC task successfully elicited approach, avoidance, and approach-354 

avoidance conflict behaviors from all participants. Specifically, participants were (1) more likely 355 

to select the risky option with increasing reward; (2) more likely to select the safe option with 356 

increasing risk of electrical stimulation; and (3) slower to respond with increased approach-357 

avoidance conflict. Moreover, participants exhibited large individual differences in their choice 358 

preferences, which were accurately captured by our HBM. It is worth reiterating that ignoring 359 

these differences can reduce contrast effects in fMRI analysis by averaging over the neural 360 

correlates of dissimilar cognitive processes (Ahn et al., 2011).  361 

Imaging Results 362 

For the control regressor (i.e. measuring the average BOLD signal change during the 363 

deliberation phase, without modulation by conflict), we found activations within the a priori 364 

cortical and subcortical regions of interest (Figure 6) that were selected based on prior literature 365 

(see the fMRI Modeling and Analysis section). Peak voxels and their corresponding statistics are 366 
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reported in Table 1. Large, significant BOLD signal increase was observed in bilateral dorsal 367 

anterior cingulate and dorsomedial prefrontal cortex (dACC/dmPFC; BA 32), midcingulate 368 

cortex (BA 23/24), pre-supplementary motor area (pre-SMA; BA 6), anterior insula (BA 13), and 369 

dorsolateral prefrontal cortex (dlPFC; BA 46). Among subcortical structures, the control 370 

deliberation regressor was positively correlated with BOLD signal activation in bilateral dorsal 371 

hippocampus and striatum (caudate, putamen). Smaller, significant activations were also 372 

detected in the right lateral orbitofrontal cortex (OFC; BA 11) and right putamen. These results 373 

corroborate the distributed network of neural structures previously reported to be recruited 374 

during approach-avoidance conflict tasks (Talmi et al. 2009; Park et al., Bach et al., 2014; 375 

Aupperle et al., 2015; O’Neil et al., 2015; Schlund et al., 2016; Loh et al., 2017). 376 

Significant change in BOLD signal for approach-avoidance conflict regressor was 377 

observed in a much more restricted set of structures (Figure 7,). Approach-avoidance conflict 378 

was positively correlated with BOLD signal activation only in bilateral rostral inferior frontal 379 

gyrus (IFG; pars orbitalis; BA 47), right dlPFC (BA 46), and right dmPFC/pre-SMA (BA 32). 380 

No significant positive activations were detected in subcortical structures, and no negative 381 

activations were detected in any a priori region of interest. In contrast to the aforementioned 382 

previous literature, our results suggest that only a select set of cortical structures tracked 383 

approach-avoidance conflict. Interestingly, our analysis revealed conflict representations in the 384 

right IFG, a structure previously unreported in the approach-avoidance conflict literature. 385 

The control analyses showed the difference between these results and results from 386 

analyses with fixed epochs, averaging across subjects and using a simpler risk or reward only 387 

model. As shown in Figure 8, using fixed epochs caused smaller, more widespread, positive 388 

activations encompassing bilateral striatum and left insula in addition to the structures activated 389 
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in the main, variable epochs analysis. The non-hierarchical Bayesian model (used in combination 390 

with variable epochs) had no significant activations that correlated with the conflict regressor. 391 

Using risk and reward as regressors in a model with only the non-parametrically modulated, 392 

control deliberation regressor and risk or the control deliberation regressor and reward also 393 

yielded almost no significant activations with the exception of a small, negative activation 394 

correlated with reward in a small area of right dlPFC and lateral OFC. When the risk and reward 395 

regressors were modeled in combination with conflict, not only were there no significant 396 

activations for the risk and reward regressors, but the significant activations for the conflict 397 

regressor was suppressed. 398 

Discussion 399 

In this study, we investigated the neural basis of human approach-avoidance conflict 400 

while accounting for two possible sources of heterogeneity in the literature; individual approach-401 

avoidance variability and time-on-task. Using hierarchical Bayesian modeling, we controlled for 402 

individual differences in approach-avoidance preference by comparing participants’ fMRI data 403 

according to each participant’s relative points of maximal approach-avoidance conflict. Using 404 

the variable epochs method in our fMRI analyses, we also controlled for the time-on-task effect. 405 

Thus, we were able to differentiate brain structures strictly sensitive to approach-avoidance 406 

conflict from those representing information correlated with deliberation more generally. The 407 

present findings corroborate previous reports of the anatomical correlates of approach-avoidance 408 

behavior by our finding that BOLD signal increased during deliberation across a broad network 409 

of cortical and subcortical brain structures (dACC/dmPFC, pre-SMA, dlPFC, OFC, insula, 410 

striatum, hippocampus). Importantly, the current findings deviate from the previous literature 411 

insofar that our controlled analyses found conflict-related changes in BOLD signal only in a 412 
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select set of structures (i.e. IFG, dlPFC, and pre-SMA). Collectively, the current findings suggest 413 

the importance of careful methodology in isolating the neuroanatomical correlates of latent 414 

psychological states such as approach-avoidance conflict. 415 

To examine the effect of using an HBM, we compared these results to results from the 416 

non-hierarchical Bayesian model analysis. The HMB methodology was clearly warranted by the 417 

large differences observed between the approach-avoidance behavior of different participants as 418 

shown in Figure 5 and described in the Behavioral Results section. The need for this 419 

methodology was confirmed by the suppression of any significant areas of activation when a 420 

non-hierarchical Bayesian model was used. Thus, accounting for individual differences with an 421 

HBM resulted increased group-level fMRI contrast statistics, consistent with previous findings 422 

(Ahn et al., 2011). 423 

Another important difference between the present findings and past studies is our use of 424 

the variable epochs method (Grinband et al., 2008), which we included so as to control for the 425 

time-on-task effect and minimize the risk of mismodeling the hemodynamic response. By 426 

controlling for time-on-task, our analysis was explicitly interested in identifying brain structures 427 

that show an increase in the BOLD signal due to an increase in the intensity, not duration, of the 428 

activity of the underlying neural populations. One natural question is whether approach-429 

avoidance conflict is more accurately modeled as the prolonged, but not increased, engagement 430 

of brain structures. One problem with this view, as noted above, is that this makes it difficult to 431 

disentangle conflict-specific signals from other correlated but unrelated signals (e.g. processing 432 

of reward or threat stimuli). As such, we opted to use a more conservative definition of 433 

approach-avoidance conflict (increase in amplitude of BOLD signal, above and beyond that 434 

expected from prolonged engagement, as measured by our parametric modulation regressor). 435 
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The conservativeness of this variable epochs method compared to fixed epochs was confirmed in 436 

the control analyses shown in Figure 8, where areas with significant activation in the variable 437 

epochs analysis were found to be a subset of areas with significant activation for the fixed epochs 438 

analysis. Thus, our analysis was conservative but well suited to identify regions specifically 439 

implicated in the processing of approach-avoidance conflict. 440 

To control for whether our results relate to approach-avoidance and not some simpler 441 

approach or avoidance alternative mechanism, we ran three different analyses 1) with risk as the 442 

parametrically modulated regressor, 2) with reward as the parametrically modulated regressor 443 

and 3) with three parametrically modulated regressors for risk, reward and conflict. The first two 444 

analyses showed that risk or reward alone are not capable of explaining the regions of conflict 445 

that had significant activations correlated with conflict (Figure 7); as described in the results 446 

section, these analyses had almost no areas of significant activation. In the third analysis, the 447 

suppression of significant conflict activations (described in the results section) suggested that 448 

including risk and reward in the same model as conflict caused the variance to be split between 449 

all three variables’ explanatory power. Reward and risk are approach and avoidance stimuli, 450 

respectively, so by definition these stimuli covary strongly with the approach-avoidance 451 

measure—conflict. This control analysis therefore confirms that the explanatory power of 452 

conflict is dependent on risk and reward and also shows that including regressors with high 453 

covariance can cause a false-negative result.  454 

Another point worth noting is that our analysis assumes only linear changes in the BOLD 455 

response to conflict. The variable epochs method utilized here is insensitive to any nonlinear 456 

changes in the BOLD signal that may arise as a function of response time, raising the possibility 457 

of remaining biases in the present results. Interestingly, in a finite impulse response analysis of 458 
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the hemodynamic response during prolonged response times, Yarkoni et al. (2009) found that 459 

structures in the prefrontal cortex were better described by increases in the amplitude of 460 

hemodynamic response but not by changes in its shape. These findings suggest that not using a 461 

finite impulse response analysis did not bias the hemodynamic response in this present analysis, 462 

but further studies are necessary to answer this question more definitively.  463 

There were additional discrepancies between the present study and previous studies on 464 

approach-avoidance tasks. Though positive BOLD activation was detected during deliberation in 465 

the right orbitofrontal cortex (OFC), the effect was considerably smaller than previously reported 466 

findings (Talmi et al., 2009; Schlund et al., 2016). This may reflect signal-to-noise ratio issues 467 

particular to surface-based analysis of the OFC (Stenger, 2006). Additionally, in contrast to 468 

Schlund et al. (2011) and Aupperle et al. (2015), amygdala activation was not detected during 469 

deliberation. In this study, suboptimal calibration of the stimulation amperage likely diminished 470 

participants’ perception of threat from the stimulation and consequently their amygdala 471 

activation. Finally, the bilateral hippocampus activations detected during deliberation were 472 

located dorsally, rather than anteriorly/ventrally as have been previously reported in literature on 473 

threat processing (Bach et al., 2014). The dorsal hippocampus has been associated with cognition 474 

and planning (Fanselow and Dong, 2010), so these activations could reflect participants’ 475 

processing of the conditional structure of the ARC task (e.g. “if safe is chosen, then 0% chance 476 

of electrical stimulation; if risky is chosen, then X% chance of electrical stimulation”).  477 

This study had several limitations. Due to the equipment issues described above, as well 478 

as the use of non-adaptive rewards, we were unable to calibrate the reward and risk of the ARC 479 

task according to each participant’s choice preferences. This may be one reason why we 480 

observed an approach-bias on average. This also means that the present study undersampled 481 



20 

 

 20 

trials at or near the points of participants’ maximal approach-avoidance conflict. A consequence 482 

of this undersampling is that many of the high conflict decisions participants made in this task 483 

occurred during high risk trials, making it harder to divorce conflict from risk. Future approach-484 

avoidance conflict experiments should consider incorporating adaptive design optimization 485 

(Myung et al., 2013) in order to titrate the levels of rewarding and threatening stimuli according 486 

to future participants’ choices preferences to minimize the influence of these potential biases.  487 

Finally, it is worth noting that the set of structures we found correlated with approach-488 

avoidance conflict (i.e. IFG, dlPFC and pre-SMA) share overlap with the putative response 489 

inhibition network (Aron et al., 2004, 2014; Aron and Poldrack, 2006). One interpretation of the 490 

present results is that approach-avoidance conflict is another process requiring response 491 

inhibition, wherein the IFG inhibits prepotent motor responses in order to facilitate prolonged 492 

evidence accumulation during difficult choices. This interpretation is consistent with the 493 

increased response times observed in the present experiment. The possible role of the inhibition 494 

network during approach-avoidance conflict points to a clear direction for future studies; 495 

investigating whether the putative response inhibition network works to signal response conflict 496 

to other brain structures, such as through the hyperdirect pathway to the basal ganglia (Frank et 497 

al., 2015). Alternately, these structures may be involved in the resolution of approach-avoidance 498 

conflict, such as by biasing choice towards approach or avoidance. In either case, the framework 499 

that this study presents for the consideration of individual-level behavioral variation and the 500 

time-on-task effect would likely lead to benefits in specificity and accuracy of future studies 501 

investigating similar cognitive processes.  502 
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Legends 623 

 624 
Figure 1: The Aversion-Reward Conflict (ARC) task. Participants are presented with a safe 625 

choice (blue) and a risky choice (orange). The safe choice pays a guaranteed small reward 626 

($0.01) and no aversive stimulation. The risky choice pays a guaranteed larger reward ($0.05 - 627 

$0.95), and a probability of stimulation as indicated by the centered white bar. Participants 628 

decide whether to accept a higher payout at risk of aversive stimulation. 629 

Figure Contributions: Darin Dougherty, Thilo Deckersbach, Alik Widge and Samuel Zorowitz 630 

designed the task, Sam Zorowitz created the figure. 631 

 632 

Figure 2: A Kruschke-style diagram of the hierarchical model. The “~” symbol indicates 633 

stochastic dependency, whereas the “=” symbol indicates a deterministic dependency. Ellipses 634 

indicate the indices over which the dependency applies. The parameter of most interest is d, the 635 

inverse distance-to-decision-boundary, which measures the estimated conflict experienced on a 636 

given trial.  637 

Figure Contributions: Samuel Zorowitz created the model. 638 

 639 

Figure 3: A priori cortical regions of interest. Regions (Freesurfer labels) were selected from 640 

the Mindboggle atlas (mindboggle.info/data.html) based on the diffuse locations of activations 641 

previously reported in the approach-avoidance decision making literature. 642 

Figure Contributions: Samuel Zorowitz chose the regions of interest based on prior literature and 643 

created the figure. 644 

 645 

Figure 4: Group-level behavior results. (A) The estimated likelihood of choosing the risky 646 

option for each risk level and across rewards. The model estimated decreases in risky decision 647 

making at both 50% risk (β1 = -1.922, 95% HDI: [-2.606, -1.139]) and 90% risk (β2 = -4.180, 648 

95% HDI: [-5.273, -3.257]). In contrast, the model estimated increases in risky decision making 649 

in response to increasing reward (β3 = 10.652, 95% HDI: [8.239, 12.887]). (B) The estimated 650 

linear component of deliberation time as a function of decision conflict, d. The model estimated 651 

an increase in deliberation time with decision conflict (α1 = 0.456, 95% HDI: [0.388, 0.528]). 652 

Shaded regions denote the 95% highest density interval (HDI). 653 

Figure Contributions: Samuel Zorowitz, Katherine Link and Alexander Rockhill performed the 654 

behavioral analysis. 655 

 656 

Figure 5: Individual differences in behavior. Participants in the ARC task exhibited large 657 

individual differences in behavior. (A) Participants varied in their approach-avoidance 658 

preferences (though the majority were approach-biased). (B) Participants varied in the extent to 659 

which their deliberation increased in response to decision conflict (but all participants showed 660 

increased response times during conflict). Each point represents one participant. The horizontal 661 

axis denotes the observed behavior (proportion of risky choices, A; response time increases, B), 662 

and the vertical axis denotes the model predicted behavior. Proximity to the diagonal indicates 663 

goodness of fit.  664 

Figure Contributions: Samuel Zorowitz, Katherine Link and Alexander Rockhill performed the 665 

behavioral analysis. 666 

 667 
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Figure 6: Percent signal change (PSC) during deliberation. The control regressor measures 668 

changes in the BOLD signal during deliberation (independent of approach-avoidance conflict). 669 

Positive activation was found in cortical and subcortical regions including the lateral and medial 670 

prefrontal cortex, striatum, and hippocampus. All voxels corrected for multiple comparisons 671 

through 5000-iteration permutation testing and voxel-wise FWE corrections (α = 0.05). 672 

Abbreviations: LH = left hemisphere; RH = right hemisphere. 673 

Figure Contributions: Samuel Zorowitz and Alexander Rockhill performed the fMRI analysis; 674 

Samuel Zorowitz, Alexander Rockhill and Kristen Kellard collected the data. 675 

 676 

Figure 7: Percent signal change (PSC) during conflict. The parametric modulation regressor 677 

measures changes in BOLD signal during deliberation as a function of approach-avoidance 678 

conflict. Positive activation was detected only in bilateral inferior frontal gyrus (IFG), and right 679 

dorsolateral prefrontal cortex (dlPFC) and pre-supplementary motor area (pre-SMA). All voxels 680 

corrected for multiple comparisons through 5000-iteration permutation testing and voxel-wise 681 

FWE corrections (α = 0.05). 682 

Figure Contributions: Samuel Zorowitz and Alexander Rockhill performed the fMRI analysis; 683 

Samuel Zorowitz, Alexander Rockhill and Kristen Kellard collected the data. 684 

 685 

Figure 8: Percent signal change (PSC) during conflict for the fixed epochs analysis. In this 686 

case, epochs were made from the first stimulus presentation to the end of the response period 687 

instead ending when the subject responded for each particular trial. More widespread, less 688 

specific, smaller, positive activation was detected in the same structures as Figure 7 with the 689 

addition of activation in bilateral striatum, left insula as well as greater activation in bilateral 690 

dlPFC. All voxels corrected for multiple comparisons through 5000-iteration permutation testing 691 

and voxel-wise FWE corrections (α = 0.05). 692 

Figure Contributions: Alexander Rockhill performed the fMRI analysis; Samuel Zorowitz, 693 

Alexander Rockhill and Kristen Kellard collected the data. 694 

 695 

Table 1: Coordinates and statistics of peak BOLD activations. The reported statistics are the 696 

percent signal change (PSC) and weighted-least squares (WLS) contrast against baseline (F) 697 

statistic. The first set of results reflect the unmodulated deliberation and the second set reflect the 698 

contrast between deliberation parametrically modulated by conflict and unmodulated 699 

deliberation. All coordinates reported in the Montreal Neurological Institute (MNI) space and 700 

reflect the peak of activation. All voxel statistics were corrected for multiple comparisons 701 

through 5000-iteration permutation testing and voxel-wise FWE corrections (α = 0.05). 702 

Abbreviations: LH = left hemisphere; RH = right hemisphere; dACC = dorsal anterior cingulate 703 

cortex; dmPFC = dorsomedial prefrontal cortex; MCC = midcingulate cortex; DLPFC = 704 

dorsolateral prefrontal cortex; OFC = orbitofrontal cortex; pre-SMA = pre-supplementary motor 705 

cortex; IFG = inferior frontal gyrus. 706 

Figure Contributions: Samuel Zorowitz and Alexander Rockhill performed the fMRI analysis; 707 

Samuel Zorowitz, Alexander Rockhill and Kristen Kellard collected the data.  708 
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Tables 709 

 710 

Deliberation Phase (Control) 

ROI X Y Z PSC F 

dACC/dmPFC: LH -12 22 36 0.08 352.92 

RH 7 15 24 0.09 462.05 

MCC: LH -7 -22 29 0.15 328.72 

RH 7 -15 31 0.18 529.27 

pre-SMA: LH -9 7 51 0.10 419.56 

RH 10 14 47 0.10 373.34 

dlPFC: LH -36 9 24 0.12 223.96 

RH 36 18 25 0.11 312.87 

Anterior Insula: LH -31 27 9 0.2 351.91 

RH 31 27 8 0.16 413.00 

Lateral OFC: RH 13 38 -24 0.07 95.60 

pre-Motor: LH -37 -2 43 0.14 291.16 

RH 36 -3 44 0.14 333.73 

Caudate: LH -10 7 3 0.07 28.42 

RH 10 11 5 0.06 25.16 

Putamen: LH -20 5 1 0.05 29.04 

RH 34 -7 -7 0.04 22.15 

Hippocampus: LH -14 -39 -3 0.09 34.95 

RH 14 -39 -1 0.10 34.47 
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Deliberation Phase (Conflict) 

IFG: LH -39 45 7 0.05 56.53 

RH 42 45 -6 0.05 55.10 

dlPFC: RH 42 27 31 0.04 68.02 

pre-SMA: RH 9 27 46 0.04 59.55 

 711 




















