eNeuro

Research Article: New Research | Neuronal Excitability

Excitatory Neuronal Responses of Ca²⁺ Transients in Interstitial Cells of Cajal in the Small Intestine

Salah A. Baker¹, Bernard T. Drumm¹, Karolina E Skowronek¹, Benjamin E. Rembetski¹, Lauren E Peri¹, Grant W. Hennig², Brian A Perrino¹ and Kenton M. Sanders¹

¹Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA ²Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA

DOI: 10.1523/ENEURO.0080-18.2018

Received: 21 February 2018

Accepted: 12 March 2018

Published: 16 March 2018

Author contributions: S.A.B., B.T.D., and K.M.S. designed research; S.A.B., B.T.D., K.E.S., B.E.R., L.P., G.W.H., B.A.P., and K.M.S. performed research; S.A.B., B.T.D., and K.M.S. contributed unpublished reagents/ analytic tools; S.A.B., B.T.D., K.E.S., B.E.R., L.P., G.W.H., B.A.P., and K.M.S. analyzed data; S.A.B., B.T.D., and K.M.S. wrote the paper.

Funding: http://doi.org/10.13039/10000062HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) P01 DK41315 P30-GM110767

The authors declare no competing financial interests.

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) [P01 DK41315] [P30-GM110767].

S.A.B. and B.T. Drumm contributed equally to this work.

Corresponding author: Kenton M. Sanders, Department of Physiology and Cell Biology, University of Nevada School of Medicine, MS 352, Reno, NV, 89557, USA. Phone: (775) 784-6061. Fax (775) 784-6903. E-mail: ksanders@medicine.Nevada.edu

Cite as: eNeuro 2018; 10.1523/ENEURO.0080-18.2018

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2018 Baker et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

1	Excitatory neuronal responses of Ca ²⁺ transients in interstitial
2	cells of Cajal in the small intestine
3	*Salah A. Baker ¹ , *Bernard T. Drumm ¹ , Karolina E Skowronek ¹ , Benjamin E.
4	Rembetski ¹ , Lauren E Peri ¹ , Grant W. Hennig ² , Brian A Perrino ¹ & Kenton M.
5	Sanders ¹ .
6	1 Department of Physiology and Cell Biology,
7	University of Nevada School of Medicine,
8	Reno, NV 89557, USA
9	2 Department of Pharmacology,
10	University of Vermont, Burlington,
11	VT 05405, USA.
12	
13	Abbreviated title: Regulation of Ca ²⁺ transients in ICC by excitatory neurons
14	Corresponding author: Kenton M. Sanders, Department of Physiology and Cell
15	Biology, University of Nevada School of Medicine, MS 352, Reno, NV, 89557,
16	USA. Phone: (775) 784-6061. Fax (775) 784-6903.
17	E-mail: ksanders@medicine.nevada.edu1
18	Number of pages: 48
19	Number of figures: 13; Number of tables 1; Number of multimedia 1
20	Number of words: Abstract 218; Introduction 774; Discussion 1422
21	Conflict of interest: None. The authors declare no competing financial interests
22	Acknowledgements: The authors are grateful to Ms. Nancy Horowitz for help
23	with breeding of animals and tamoxifen treatments. ICC were purified by FACS

*Salah A. Baker and Bernard T. Drumm contributed equally to this work

24	from enzymatic dispersions of jejunal muscles in the Cell Cytometry and FACS
25	Core Laboratory supported by a Phase III COBRE award from the NIGMS (P30-
26	GM110767). This Core was developed and supervised by the late Dr. Douglas
27	Redelman and more recently by Mr. Byoung Koh. This project was funded by
28	P01 DK41315 from the NIDDK.
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

eNeuro Accepted Manuscript

47 Abstract

48

49 Interstitial cells of Cajal (ICC) regulate smooth muscle excitability and motility in the gastrointestinal tract. ICC in the deep muscular plexus (ICC-DMP) of the 50 51 small intestine are aligned closely with varicosities of enteric motor neurons and thought to transduce neural responses. ICC-DMP generate Ca²⁺ transients that 52 activate Ca²⁺ activated Cl⁻ channels and generate electrophysiological responses. 53 We tested the hypothesis that excitatory neurotransmitters regulate Ca²⁺ 54 55 transients in ICC-DMP as a means of regulating intestinal muscles. Highresolution confocal microscopy was used to image Ca²⁺ transients in ICC-DMP 56 57 within murine small intestinal muscles with cell-specific expression of GCaMP3. 58 Intrinsic nerves were stimulated by electrical field stimulation (EFS). ICC-DMP exhibited ongoing Ca²⁺ transients before stimuli were applied. EFS caused initial 59 suppression of Ca²⁺ transients, followed by escape during sustained stimulation. 60 and large increases in Ca²⁺ transients after cessation of stimulation. Basal Ca²⁺ 61 activity and the excitatory phases of Ca²⁺ responses to EFS were inhibited by 62 63 atropine and neurokinin 1 receptor (NK1) antagonists, but not by NK2 receptor antagonists. Exogenous ACh and substance P increased Ca²⁺ transients, 64 atropine and NK1 antagonists decreased Ca²⁺ transients. Neurokinins appear to 65 66 be released spontaneously (tonic excitation) in small intestinal muscles and are the dominant excitatory neurotransmitters. Subcellular regulation of Ca²⁺ release 67 68 events in ICC-DMP may be a means by which excitatory neurotransmission 69 organizes intestinal motility patterns.

70 Significance statement:

Interstitial cells of Cajal (ICC) are innervated by enteric motor neurons andthought to transduce neural responses in GI muscles.

73 Ca^{2+} transients, due to Ca^{2+} release from Ca^{2+} intracellular stores, mediate 74 electrophysiological events in ICC by activation of Ca^{2+} -activated Cl⁻ channels.

75 Neural responses in ICC in the deep muscular plexus of the small intestine (ICC-

76 DMP) were studied by confocal imaging of Ca^{2+} transients in these cells.

Excitatory neural input was due to cholinergic and peptidergic neurotransmitters (acetylcholine and neurokinins), as excitatory effects on Ca²⁺ transients were blocked by atropine and neurokinin receptor antagonists. Neurokinins are the dominant excitatory regulators of Ca²⁺ transients in ICC-DMP. ICC-DMP are innervated by enteric motor neurons and mediate significant excitatory responses in intestinal muscles.

83

84

85

86

- 88
- 89
- 90
- 91
- 92

93 Introduction

94 Muscles of the gastrointestinal (GI) tract are innervated by both excitatory 95 and inhibitory enteric motor neurons (Furness, 2012), and motility patterns of the 96 gut depend upon the outputs of the enteric nervous system. Neural inputs are 97 overlaid upon the basal excitability of the smooth muscle cells (SMCs) that line 98 the walls of GI organs. SMC excitability is determined by ionic conductances and 99 Ca²⁺ sensitization mechanisms intrinsic to these cells but also by interstitial cells 100 that are electrically coupled to SMCs. Together SMCs and interstitial cells (i.e. 101 interstitial cells of Cajal (ICC) and platelet derived growth factor receptor α-102 immunopositive (PDGFR α^+) cells (Komuro, 2006; Sanders and Ward, 2006; lino 103 et al., 2009; Blair et al., 2012; Baker et al., 2013) form an electrical syncytium, 104 known as the SIP syncytium (Sanders et al., 2012). It is the integrated output of 105 these cells that determines the basal excitability of GI smooth muscle tissues and 106 ultimately the responses to enteric motor neurons and other higher order 107 regulatory pathways (Sanders et al., 2014a). 108 In the small intestine, a network of ICC in the myenteric region (ICC-MY) 109 serves as the pacemaker cells that generate and actively propagate electrical 110 slow waves and organize contractile activity into a phasic pattern that underlies 111 segmental contractions (Langton et al., 1989; Ward et al., 1994; Ordog et al., 112 1999; Sanders et al., 2014a). Another class of ICC are distributed within smooth 113 muscle bundles in the deep muscular plexus (ICC-DMP; (Rumessen et al., 1992; 114 Zhou and Komuro, 1992)) throughout the smooth muscle organs of the GI tract. 115 ICC-DMP are innervated by motor neurons and transduce part of the input from

116 enteric motor neurons (Wang et al., 2003b; lino et al., 2004; Ward et al., 2006). 117 This conclusion is based on the fact that ICC-DMP are: i) closely apposed to 118 varicosities of enteric motor neurons, forming synaptic-like contacts (i.e. <20 nM; 119 (Rumessen et al., 1992; Zhou and Komuro, 1992); ii) express major receptors for 120 enteric motor neurotransmitters (Sternini et al., 1995; Vannucchi et al., 1997; 121 Chen et al., 2007); and iii) display evidence of receptor binding, receptor 122 internalization, and translocation of signaling molecules upon nerve stimulation 123 (Wang et al., 2003b; lino et al., 2004). iv) electrically coupled to SMCs via gap 124 junctions (Daniel et al., 1998; Daniel and Wang, 1999; Seki and Komuro, 2001). 125 Experiments in other regions of the GI tract, where ICC-IM are lost in mutant 126 animals have shown distinct changes in motor neurotransmission in the absence 127 of ICC (Daniel and Posey-Daniel, 1984; Burns et al., 1996; Komuro et al., 1999; 128 Ward et al., 2000; Klein et al., 2013). Nevertheless, there is controversy about 129 the importance of ICC in neurotransmission, and some investigators have argued 130 that ICC are not important elements in enteric nerve responses (Goyal and 131 Chaudhury, 2010; Goyal, 2016).

A fundamental mechanism involved in the activation of ICC (as pacemakers and in regulating the excitability of GI muscles) is Ca^{2+} release from intracellular stores (van Helden and Imtiaz, 2003; Lee et al., 2007; Baker et al., 2016; Drumm et al., 2017). Ca^{2+} release is important because it activates Ca^{2+} activated Cl⁻ channels (CaCC), encoded by *Ano1*, that are strongly expressed in ICC (Chen et al., 2007; Gomez-Pinilla et al., 2009; Zhu et al., 2015). We have used mice expressing Ca^{2+} sensors specifically in ICC to investigate the Ca^{2+}

transients generated by ICC in intact intestinal muscles (Baker et al., 2016;Drumm et al., 2017).

141 Excitatory transmission in the gut is mediated predominantly via 142 cholinergic and neurokinins. Tachykinin (TKs) family of peptides (substance P 143 (SP), neurokinin A (NKA) and B (NKB) are expressed throughout the 144 gastrointestinal tract (Holzer and Holzer-Petsche, 2001; Cipriani et al., 2011; 145 Mitsui, 2011; Steinhoff et al., 2014). SP, NKA and NKB are preferentially 146 mediated through the stimulation of NK1, NK2 and NK3 G-protein-coupled 147 receptors. Both NK1 and NK2 receptors mediate contractile effects in the gut. small intestine, smooth muscle electrical and motor events induced by 148 149 electrical field stimulation (EFS) can involve either or both NK1 and NK2 150 receptors. But functional evidence support the involvement of NK1 subtype in 151 mediating NANC contractions to EFS in the mouse small intestine (lino et al., 152 2004; De Schepper et al., 2005). 153 In the present study we investigated the hypothesis that a major 154 mechanism by which enteric motor neurotransmitters regulate ICC is through modulation of Ca²⁺ release events. To test this hypothesis, we explored whether 155 excitatory neural inputs to ICC-DMP are coupled to Ca2+ release and 156

characterized the nature of the Ca²⁺ responses that constitute this transduction
pathway for post-junctional excitatory transmission.

159

eNeuro Accepted Manuscript

160 Methods

161

162 Animals

GCaMP3-floxed mice (B6.129S-Gt(ROSA)26Sor^{tm38(CAG-GCaMP3)Hze}/J) and 163 164 their wild-type siblings (C57BL/6) were acquired from Jackson Laboratories (Bar Harbor, MN, USA) and crossed with Kit-Cre mice (c-Kit^{+/Cre-ERT2}), provided by Dr. 165 166 Dieter Saur (Technical University Munich, Munich, Germany). Kit-Cre-GCaMP3 167 mice (both sexes) were injected with tamoxifen at 6-8 weeks of age (2 mg for 168 three consecutive days), as previously described (Baker et al., 2016) to activate 169 Cre recombinase and GCaMP3 expression. 15 days after tamoxifen injection, 170 Kit-Cre-GCaMP3 mice were anaesthetized by isoflurane inhalation (Baxter, 171 Deerfield, IL, USA) and killed by cervical dislocation. All animals used for these 172 experiments were handled in compliance with the National Institutes of Health 173 Guide for the Care and Use of Laboratory Animals, and the protocols were 174 approved by the Institutional Animal Use and Care Committee at the University of 175 Nevada, Reno.

176

177 **Tissue preparation**

Segments of jejunum (2 cm in length) were removed from mice and bathed in Krebs-Ringer bicarbonate solution (KRB). Jejunal segments were opened along the mesenteric border and luminal contents were washed away with KRB. The mucosa and sub-mucosa layers were removed by sharp dissection, and the remaining *tunica muscularis* was pinned flat within a Sylgardcoated dish.

184 Drugs and Solutions

Tissues were maintained and perfused with KRB containing (mmol/L): NaCl, 120.35; KCl, 5.9; NaHCO₃, 15.5; NaH₂PO₄, 1.2; MgCl₂, 1.2; CaCl₂, 2.5; and glucose, 11.5. The KRB was bubbled with a mixture of 97% $O_2 - 3 \% CO_2$ and warmed to 37 ± 0.2 °C.

All drugs were purchased from Tocris Bioscience (Ellisville, Missouri, USA) and dissolved in the solvents recommended by the manufacturer to obtain stock solutions. Final concentrations used in experiments were obtained by dilution into KRB.

193

194 Fluorescence Activated Cell Sorting (FACS), RNA extraction and

195 quantitative PCR

Jejunal ICC were dispersed from Kit^{+/copGFP} mice as previously described
(Zhu et al., 2009; Zhu et al., 2011). ICC were sorted and purified by FACS
(FACSAria II; Becton-Dickinson) using an excitation laser (488 nm) and emission
filter (530/30 nm). Sorting was performed using a 130-µm nozzle and a sheath
pressure of 12 psi.

201 RNA was prepared from sorted ICC and dispersed jejunal cells of the 202 *tunica muscularis* before sorting using an illustra RNAspin Mini RNA Isolation Kit 203 (GE Healthcare). The PCR primers used and their GenBank accession numbers 204 are provided in Table 1. Quantitative PCR (qPCR) was performed using SYBR green chemistry on the 7500 HT Real-time PCR System (Applied Biosystems)
and analyzed, as previously described (Baker et al., 2016). All data sets were
normalized to the housekeeping gene *Gapdh*.

208

209 Calcium imaging

210 Jejunal muscle sheets (5.0 x 10.0 mm) were pinned to the base of a 5ml, 211 60 mm diameter Sylgard-coated dish. The muscles were perfused with warmed 212 KRB solution at 37°C for an equilibration period of 1 hour. Fluorescence imaging 213 was performed with a spinning-disk confocal microscope (CSU-W1 spinning disk; 214 Yokogawa Electric Corporation) mounted to an upright Nikon Eclipse FN1 215 microscope equipped with a 60x 1.0 NA CFI Fluor lens (Nikon instruments INC, 216 NY, USA). GCaMP3, expressed solely in ICC, was excited at 488 nm using a 217 laser coupled to a Borealis system (ANDOR Technology, Belfast, UK). Emitted 218 fluorescence (>515 nm) was captured using a high-speed EMCCD Camera 219 (Andor iXon Ultra; ANDOR Technology, Belfast, UK). Image sequences were 220 collected at 33 fps using MetaMorph software (Molecular Devices INC, CA, USA). Additional Ca²⁺ imaging data was acquired with an Eclipse E600FN microscope 221 222 (Nikon Inc., Melville, NY, USA) equipped with a 60x 1.0 CFI Fluor lens (Nikon 223 instruments INC, NY, USA). In this system, GCaMP3 was excited at 488 nm 224 (T.I.L.L. Polychrome IV, Grafelfing, Germany), as previously described (Baker et al., 2013). All Ca²⁺ imaging experiments were performed in the presence of 225 226 nicardipine (100 nM) to minimize contractile movements.

229 Calcium event analysis

Analysis of Ca2+ activity in ICC-DMP was performed, as described 230 previously (Baker et al., 2016). Briefly, movies of Ca²⁺ activity in ICC-DMP were 231 232 converted to a stack of TIFF (tagged image file format) images and imported into 233 custom software (Volumetry G8c, GW Hennig) for analysis. Tissue movement was stabilized to ensure accurate measurement of Ca2+ transients from ICC-234 DMP. Whole cell ROIs were used to generate spatio-temporal (ST) maps of Ca²⁺ 235 236 activity in individual ICC-DMP. ST maps were then imported as TIFF files into 237 J (version1.40, National Institutes of Health, MD, USA. Image http://rsbweb.nih.gov/ij) for post hoc quantification analysis of Ca²⁺ events. 238

239

240 Experimental design and statistical analysis

Ca²⁺ event frequency in ICC-DMP was expressed as the number of 241 events fired per cell per second (sec⁻¹). Ca²⁺ event amplitude was expressed as 242 $\Delta F/F_0$, the duration of Ca²⁺ events was expressed as full duration at half 243 maximum amplitude (FDHM), and Ca²⁺ event spatial spread was expressed as 244 μ m of cell propagated per Ca²⁺ event. Unless otherwise stated, data is 245 246 represented as mean ± standard error (S.E.M.). Statistical analysis was 247 performed using either a student's t-test or with an ANOVA with a Dunnett post 248 hoc test where appropriate. In all statistical analyses, P<0.05 was taken as 249 significant. P values <0.05 are represented by a single asterisk (*), P values 250 <0.01 are represented by two asterisks (**) and P values <0.001 are represented

- by three asterisks (***). When describing data throughout the text, n refers to the
 number of animals used in that dataset while c refers to the numbers of cells
 used in that same data set.

257 Results

Post-junctional modulation of Ca²⁺ signaling in ICC-DMP by enteric nerve stimulation

ICC-DMP displayed intracellular Ca²⁺ transients that fired in a stochastic 260 manner (Figure 1), as reported previously (Baker et al., 2016). Ca²⁺ transients 261 262 were generated at multiple sites along the length of individual ICC-DMP and 263 were typically localized, demonstrating no mechanism for active or regenerative 264 propagation of these events within individual cells or between cells and no 265 extrinsic mechanism of entrainment, as has been previously suggested (Huizinga et al., 2014). Ca²⁺ transients in ICC-DMP exhibit a range of frequencies. 266 267 amplitudes, durations and spatial spread (Baker et al., 2016). ICC are thought to 268 be intermediaries in enteric neurotransmission, relaying signals from enteric 269 neurons to smooth muscle cells, that are electrically coupled to ICC (Daniel et al., 1998: Daniel and Wang, 1999). Therefore, we investigated how Ca²⁺ transients 270 271 are modulated by enteric neurons activated by electric field stimulation (EFS). EFS (10 Hz, 0.5ms for 5 sec trains) caused two distinct Ca²⁺ responses: i) 272 273 an initial inhibitory phase; ii) an excitatory response that occurred largely after 274 cessation of EFS (movie 1). The initial inhibitory response at the onset of EFS lasted about ~ 2 sec. During this phase Ca^{2+} transients in ICC-DMP ceased 275 (Figure 1 A-C). In the final 3 sec of EFS Ca²⁺ transients escaped from inhibition 276 277 leading to an excitatory response that persisted into the period after cessation of the stimulus (Figure 1 A). These effects are illustrated by an ST map and Ca²⁺ 278 279 activity traces in Figure 1 B&C. This example demonstrates that in the final 3 sec

280	of EFS and particularly in the 5 sec after cessation of EFS, Ca ²⁺ transients were			
281	increased relative to the control period, and firing sites within ICC-DMP increased			
282	their firing frequency. We also found that the initiation sites for Ca ²⁺ transients			
283	varied temporally in response to EFS (Figure 1B). These responses were			
284	mediated by neuronal inputs, as they were blocked by tetrodotoxin (TTX, 1 $\mu\text{M},$			
285	data not shown). As above, after the onset of EFS, an inhibitory response phase			
286	occurred, but in subsequent experiments we concentrated on the excitatory			
287	aspects of the neural responses.			
288	The excitatory Ca ²⁺ response to EFS was quantified during the final 3 sec			
289	of EFS (Figure 2 A, blue dashed box) and in the 5 sec immediately following EFS			
290	(Post EFS, Figure 2 A, green dashed box). In the pre EFS period, the control			
291	frequency of Ca^{2+} transients was 1.04 ± 0.08 events sec ⁻¹ , and this was			
292	increased significantly during the final 3 sec period of EFS to 1.8 \pm 0.15 events			
293	sec ⁻¹ (Figure 2 B, P<0.0001, n=23, c=56). The frequency of Ca ²⁺ transients in the			
294	post EFS period was also significantly increased from control, firing on average			
295	at 2.1 \pm 0.1 events sec ⁻¹ (Figure 2 B, P<0.0001, n=23, c=56). There was a			
296	significant increase in Ca ²⁺ transient amplitude in the final 3 sec of EFS from 0.8			
297	\pm 0.06 to 1.1 \pm 0.05 $\Delta\text{F/F}_0$ (Figure 2 C, P<0.05, n=23, c=56), although there was			
298	no significant increase in amplitude in the post EFS period compared to control			
299	(Figure 2 C, P>0.05, n=23, c=56). Ca ²⁺ transient duration increased in the final 3			
300	sec of EFS from 193 ± 3.7 to 219.6 ± 7.9 ms (Figure 2 D, P<0.01, n=23, c=56)			
301	and was also significantly increased in the post EFS period, increasing to 222 \pm			
302	6.5 ms (Figure 2 D, P<0.001, n=23, c=56). Ca ²⁺ transient propagation spread			

303	was also increased in the final 3 sec of EFS from 11 \pm 0.6 to 15.4 \pm 0.9 μm
304	(Figure 2 E, P<0.001, n=23, c=56) and was also significantly increased, as
305	compared to control, in the post EFS period, with Ca ²⁺ transients propagating an
306	average of 12.9 \pm 0.6 μm (Figure 2 E, P<0.05, n=23, c=56). The number of Ca $^{2+}$
307	firing sites in ICC-DMP was decreased significantly during the final 3 sec of EFS
308	(P<0.001) and during the post-EFS period (P<0.001) (Figure 2 F, n=23, c=56).
309	This is likely a result of the increased propagation spread of Ca ²⁺ transients
310	during these periods, as shown in Figure 2 E. As the frequency of Ca ²⁺ transients
311	increased and they propagated over longer distances, individual firing sites may
312	summate to create the increase in propagation distances observed during the
313	final seconds of EFS and post EFS. This could lead to an apparent reduction in
314	firing sites, as the underlying sites were masked by propagating Ca^{2+} waves. A
315	small increase in Ca ²⁺ transient propagation velocity, that did not reach
316	significance, was also observed during the final 3 sec of EFS and during the
317	post-EFS period (P<0.05, Figure 2 G, n=23, c=56).
318	
319	EFS evoked frequency-dependent excitatory Ca ²⁺ responses in ICC-DMP
320	We examined whether the Ca ²⁺ responses in ICC-DMP were dependent

upon the frequency of EFS. EFS was applied to muscles from 1-20 Hz (0.5ms, 5
 sec trains). No changes in Ca²⁺ transient parameters were resolved during 1Hz

323 stimulation (Figure 3 A, n=5, c=16), although a significant increase in the

324 frequency of Ca²⁺ transients occurred in the post-EFS period (Figure 3 A, P<0.05,

325 n=5, c=16). Higher EFS frequencies (5, 10 and 20 Hz) increased Ca²⁺ transients

326	significantly during EFS (final 3 sec) and during the post stimulus period (Figure
327	3 B&C). For example, 5 Hz EFS increased the firing frequency (final 3 sec) to 2.5
328	\pm 0.6 events sec ⁻¹ , which was significantly greater than control values of 1.6 \pm 0.4
329	events sec ⁻¹ (P<0.05, n=5, c=16). EFS 5 Hz also increased Ca^{2+} transient
330	frequency during the post- EFS period to 2.5 ± 0.4 events sec ⁻¹ , as compared to
331	1.6 ± 0.4 events sec ⁻¹ in control (P<0.01, n=5, c=16). During EFS, the amplitude
332	and duration of Ca ²⁺ transients were not significantly changed at all frequencies
333	tested (P>0.05). However, Ca ²⁺ transient duration increased during the post-
334	EFS period at 5 Hz from 198 \pm 10 ms to 228 \pm 13.1 ms (P<0.05, n=5, c=16). The
335	spread of Ca ²⁺ transients was not significantly affected by 1 Hz EFS, but
336	increased significantly at 5 Hz during EFS (final 3 sec; increased from 10.1 \pm 0.9
337	to 18.6 \pm 2.6 μm (P<0.05, n=5, c=16). At 20 Hz the spatial spread increased
338	from 8.5 \pm 0.6 to 11.9 \pm 1.2 μm during EFS (P<0.05, n=5, c=14). The change in
339	firing frequency (% change) for each stimulus 1, 5 10 and 20 Hz was calculated
340	and plotted in Figure 3 D&E during EFS (final 3 sec, Figure 3 D) and after the
341	stimulus period (Figure 3 E). The firing of Ca ²⁺ transients was dependent upon
342	the stimulus frequency during both periods (Figure 3 D&E).
343	
344	Expression of excitatory cholinergic and neurokinin receptors in ICC
345	Excitatory neurotransmitters mediate responses by binding to specific post
346	junctional receptors. In the case of excitatory enteric neurotransmission,

- 347 responses have been attributed to muscarinic (M2 and M3) receptors and
- 348 neurokinin (NK1 and NK2) receptors expressed in small intestinal muscles (Lavin

349	et al., 1998; Stadelmann et al., 1998; lino et al., 2004; Faussone-Pellegrini and
350	Vannucchi, 2006). In this study we sorted ICC (CopGFP-Kit ⁺ cells) from small
351	intestinal muscles of $Kit^{+/copGFP}$ mice by FACS from, as previously described
352	(Baker et al., 2016), and characterized the expression of Chrm2 and Chrm3
353	transcripts and Tacr1 and Tacr2 transcripts. We noted higher expression of
354	Chrm3 in ICC in comparison to Chrm2 normalized to the housekeeping gene
355	Gapdh (Chrm3: 0.043 ± 0.001; Chrm2: 0.029 ± 0.002, P= 0.001, n=4). Chrm3
356	transcripts were also higher in ICC relative to unsorted cells (total cell population).
357	Tacr1 was also highly expressed in ICC (Tacr1: 0.06 \pm 0.01, n=4), and
358	expression of Tacr2 was not resolved in ICC. Thus, the dominant receptor
359	transcripts in ICC were Chrm3 and Tacr1.
360	
361	Cholinergic regulation of Ca ²⁺ transients in ICC-DMP
362	Atropine (1 μM) decreased the frequency of basal Ca^{2+} transients from 1.9
363	\pm 0.31 events sec ⁻¹ to 1.2 \pm 0.2 events sec ⁻¹ (Figure 4 A&B, P=0.0005, n=5,
364	c=13). No significant effects on the other parameters of Ca ²⁺ transients were
365	noted: amplitude (P=0.39), duration (P=0.83) or spatial spread (P=0.53; Figure 4
366	B-E; n=5, c=13). When cholinergic stimulation was initiated by exogenous
367	acetylcholine (ACh, 10 $\mu\text{M};$ in the presence of TTX, 1 $\mu\text{M}),$ Ca^{2+} transients
368	increased markedly. ACh increased the frequency of Ca^{2+} transients from 0.85 \pm
369	0.2 events sec ⁻¹ to 1.85 \pm 0.4 events sec ⁻¹ (Figure 4 F&G, P=0.003, n=5, c=9),
270	$\sim 10^{-21}$ transient emplitude increased from 0.2 \times 0.04 to 0.0 \times 0.4 to Γ/Γ (Figure

and Ca²⁺ transient amplitude increased from 0.3 \pm 0.04 to 0.6 \pm 0.1 $\Delta F/F_0$ (Figure

371 4 H, P=0.042, n=5, c=9). ACh increased the duration of Ca²⁺ transients from 240

372 ± 16.1 ms to 296 ± 15.3 ms (Figure 4 I, P=0.008, n=5, c=9). The spatial spread of Ca²⁺ transients also increased in response to ACh, sometimes leading to 373 propagating Ca²⁺ waves in contrast to more spatially limited events. Spatial 374 375 spread increased from 7.1 \pm 0.7 to 11 \pm 1.3 μ m (Figure 4 F&J, P=0.017, n=5, 376 c=9). 377

The effects of atropine on EFS evoked excitatory Ca²⁺ response in ICC-DMP 378

- 379 Next we investigated the extent of regulation exerted by cholinergic
- neurotransmission on Ca²⁺ transients in ICC-DMP. EFS (10Hz, for 5 sec) in the 380
- presence of atropine (1 μ M) resulted in a decrease in the frequency of Ca²⁺ 381
- transients during stimulation (final 3 sec), from 1.7 ± 0.4 to 0.9 ± 0.2 events sec⁻¹ 382
- (Figure 5 A-C, P=0.042, n=5, c=21). Atropine also decreased the Ca²⁺ transient 383
- frequency during the post stimulus period, from 2.4 \pm 0.3 to 1.6 \pm 0.2 events sec⁻¹ 384
- 385 (Figure 5 A-C, P=0.037, n=5, c=21). This suggests that cholinergic
- neurotransmission can also affect the post-stimulus excitatory period in ICC-DMP. 386
- There were no significant changes in Ca^{2+} transient amplitude (Figure 5 D. 387
- 388 P=0.46, P=0.19), duration (Figure 5 E, P=0.63, P=0.42) or spatial spread (Figure

389 5 F, P=0.44, P=0.56) during either the final 3 sec of EFS or during the post-

- 390 stimulus period in the presence of atropine (n=5, c=21).
- 391

Neurokinins control over basal Ca²⁺ signaling in ICC-DMP 392

- 393 NK1 receptors are the major neurokinin receptors expressed in ICC, and
- 394 results from this study confirmed previous reports (Sternini et al., 1995; lino et al.,

395	2004). Therefore, contributions of neurokinins to EFS responses in ICC-DMP
396	were first evaluated with neurokinin 1 (NK1) receptor antagonists. RP 67580 (1
397	$\mu M)$ dramatically reduced basal Ca^{2+} transients in ICC-DMP from 1.2 \pm 0.2 to 0.5
398	\pm 0.1 events sec ⁻¹ (Figure 6 A&B, P=0.0003, n=11, c=27). The amplitude
399	(P=0.0039), duration (P=0.002) and spatial spread (P=0.005) of Ca^{2+} transients
400	were also significantly depressed by RP 67580 (Figure 6 C-E n=11, c=27). SR
401	140333 (1 $\mu\text{M}),$ another NK1 receptor antagonist, also inhibited basal Ca^{2+}
402	transients in ICC-DMP, reducing frequency from 0.9 \pm 0.1 to 0.4 \pm 0.06 events
403	sec ⁻¹ (Figure 6 F-J, P=0.006, n=4, c=14). Amplitudes (P=0.042) and spatial
404	spread (P=0.003) of Ca ²⁺ transients were also significantly decreased by SR
405	140333 (Figure 6 H&J, n=4, c=14). A selective NK2 receptor antagonist, MEN
406	10376 (1 μM), had no effect on Ca $^{2+}$ transients in ICC-DMP (i.e. frequency
407	(P=0.081), amplitude (P=0.67), duration (P=0.24) or spatial spread (P=0.21),
408	(n=5, c=9, data not shown).
409	After inhibition of Ca ²⁺ transients with RP 67580 (Figure 7 A&B), carbachol
410	(CCh; 10 μM) persisted in enhancing Ca $^{2+}$ transient firing frequency from 0.6 \pm
411	0.2 to 2.4 \pm 0.5 events sec ⁻¹ (Figure 7 C&D, P=0.018, n=3, c=6). The duration of
412	Ca^{2+} transients was increased by CCh from 183.4 ± 37.4 to 308.3 ± 18.9 ms
413	(Figure 7 F, P=0.035, n=3, c=6) and the spatial spread of Ca^{2+} transients was
414	also increased from 6.2 \pm 1.3 to 12.1 \pm 1.3 μm (Figure 7 G, P=0.016, n=3, c=6).
415	CCh also increased Ca ²⁺ transients after treatment with SR 140333 (data not
416	shown). These results show that the effects of the NK1 antagonists were not due

417 to off-target effects, such as inhibition of IP_3 -dependent signaling or Ca^{2+} release 418 from intracellular stores.

419	The observations above suggest that Ca ²⁺ signaling in ICC-DMP can be
420	modulated by neurokinins via NK1, but not NK2 receptors. Regulation by
421	neurokinins was further tested by application of NK1 agonists. Substance P (1
422	$\mu M,$ in the presence of TTX) increased Ca^{2+} transients significantly (Figure 8 A-
423	E); frequency increased from 1.2 \pm 0.3 to 2 \pm 0.3 events sec ⁻¹ (Figure 8 B,
424	P=0.042, n=4, c=10), duration increased from 207 \pm 15.9 to 342 \pm 21.8 ms
425	(Figure 8 D, P<0.0001, n=4, c=10) and spatial spread increased from 7 \pm 0.6 to
426	10.9 ± 1.2 μ m (Figure 8 E, P=0.0199, n=4, c=10). A more selective NK1 agonist,
427	GR 73632 (1 μM , in the presence of TTX) also increased the frequency of Ca^{2+}
428	transients from 0.3 \pm 0.03 to 1.2 \pm 0.2 events sec ⁻¹ (Figure 8 F&G, P=0.0014, n=4,
429	c=9), but effects on amplitude (P=0.92), duration (P=0.78) or spatial spread
430	(P=0.42) were not changed significantly (Figure 8 H-J, n=4, c=9). These data
431	suggest that neurokinins are released tonically in small intestinal muscles, and
432	responses of ICC-DMP to neurokinins are mediated largely by NK1 receptors.
433	
434	The effects of RP 67580 on Ca ²⁺ responses evoked by EFS in ICC-DMP
435	We also tested whether NK1 receptors mediate Ca ²⁺ responses in ICC-
436	DMP evoked by EFS. RP 67580 (1 $\mu\text{M};$ Figure 9 A&B) caused a dramatic
437	decrease in the Ca^{2+} responses to EFS (Figure 9 C-F). The frequency of Ca^{2+}
438	transients during the final 3 sec of EFS period was reduced from 1.5 \pm 0.3 to 0.2
439	\pm 0.17 events sec ⁻¹ (Figure 9 C, P=0.0015, n=4, c=11). During the post EFS

440	period, the frequency of Ca^{2+} transients was also significantly reduced from 1.8 \pm
441	0.3 to 0.1 \pm 0.05 events sec ⁻¹ (Figure 9 C, P=0.002, n=4, c=11). Ca ²⁺ transient
442	amplitude, duration and spatial spread during the final 3 sec EFS and post EFS
443	periods were also inhibited (Figure 9 D-F, n=4, c=11).
444	When cholinergic and NK1 receptors were both antagonized by adding
445	both atropine (1 μM) and RP 67580 (1 μM), pronounced inhibition of Ca^{2+}
446	transients persisted during the final 3 sec of EFS and during the post stimulus
447	period, as shown in Figure 10 A-F (n= 4, c=20).
448	
449	Cholinergic and neurokinin mediated excitatory responses after blocking
450	nitrergic and purinergic transmission
451	Nitrergic and purinergic antagonists N-omega-nitro-L-arginine (L-NNA,
452	100 $\mu M)$ and MRS 2500 (1 $\mu M)$ were used to examine excitatory neural
453	regulation of Ca ²⁺ transients in ICC-DMP after blocking major inhibitory pathway
454	of neurotransmission. In the presence of L-NNA, MRS 2500 and atropine (1 $\mu\text{M})$
455	Ca ²⁺ transient frequency (Figure 11 C, P=0.29, n=7, c=26), amplitude (Figure 11
456	D, P=0.57, n=7, c=26) and spatial spread (Figure 11 F, P=0.3, n=7, c=26) in the
457	final 3 sec period were not significantly affected. Ca ²⁺ transient duration
458	decreased significantly from 266 \pm 14.15 to 199 \pm 18.9 ms (Figure 11 E, P=0.007,
459	n=7, c=26) in the final 3 sec period. In the presence of L-NNA, MRS 2500 and
460	atropine, Ca ²⁺ transients in the post-stimulus period were not reduced in
461	amplitude (Figure 11 D, P=0.64, n=7, c=26) or spatial spread (Figure 11 F,
462	P=0.088, n=7, c=26). However, the frequency of Ca^{2+} transients was reduced

463	during the post-stimulus period from 2.6 \pm 0.25 to 1.9 \pm 0.2 events sec ⁻¹ (Figure
464	11 C, P=0.03, n=7, c=26) and duration decreased from 237 \pm 11.6 to 177 \pm 11.9
465	ms (Figure 11 E, P=0.0008, n=7, c=26).
466	We next examined the neurokinin input into EFS-mediated excitatory
467	responses in ICC-DMP in the presence of blockers of nitrergic and purinergic
468	neurotransmission. With L-NNA, MRS 2500 and RP 67580 present, responses to
469	EFS were significantly reduced in amplitude, duration and spatial spread of Ca ²⁺
470	transients during the final 3 sec of EFS (Figure 12 D-F, n=4, c=13). The
471	amplitude decreased from 1.4 \pm 0.2 to 0.42 \pm 0.8 $\Delta F/F_0$ (P=0.002, Figure 12 D,
472	n=4, c=13), the duration decreased from 214.4 \pm 16.9 to 122 \pm 22 ms (P=0.004,
473	Figure 12 E, n=4, c=13) and the spatial spread decreased from 15.4 \pm 3.2 to 5.8
474	\pm 1 μm (P=0.029, Figure 12 F, n=4, c=13). Overall the frequency of Ca $^{2+}$
475	transients in the final 3 sec of the EFS period was not significantly affected
476	(Figure 12 A-C, P=0.21, n=4, c=13). In the presence of L-NNA, MRS 2500 and
477	RP 67580, the frequency of Ca ²⁺ transients in the post-EFS period was
478	significantly reduced from 1.8 \pm 0.3 to 0.4 \pm 0.1 events sec ⁻¹ (Figure 12 C,
479	P=0.006, n=4, c=13). The amplitude of Ca^{2+} transients during this period was not
480	significantly affected (Figure 12 D, P=0.059, n=4, c=13), but the duration of Ca^{2+}
481	transients was reduced from 237 \pm 23.9 to 121 \pm 19.7 ms (Figure 12 E, P=0.0029,
482	n=4, c=13), and spatial spread decreased from 12.61 \pm 1.6 to 6.8 $\pm1.2~\mu m$
483	(Figure 12 F, P=0.014, n=4, c=13).
484	Next we inhibited cholinergic and neurokinin transmission with atropine
105	

and RP 67580 in the presence of L-NNA and MRS 2500. Under these conditions

- 486 all Ca²⁺ transients were significantly diminished across all parameters tabulated,
- 487 as shown in (Fig.13 A-F n=5, c=32).

490 Discussion

491 Innervation of GI muscles by enteric motor nerves and the integrated firing 492 of these neurons is essential for generating archetypal motility patterns (Spencer 493 et al., 2016). ICC are innervated by enteric motor neurons, and their responses 494 to neurotransmitters contribute to complex post-junctional responses of the SIP 495 syncytium (Ward et al., 2000; lino et al., 2004). In the case of the small intestine 496 ICC-DMP are an intramuscular type of ICC that are closely associated with and 497 innervated by motor neurons (Rumessen et al., 1992; Zhou & Komuro, 1992; 498 Wang et al., 2003b; lino et al., 2004; Ward et al., 2006). We recently described the properties of spontaneous Ca²⁺ transients that occur in the absence of 499 500 extrinsic stimuli in these cells (Baker et al., 2016). In the present study we investigated the effects of excitatory enteric motor neurotransmission on Ca2+ 501 502 transients in ICC-DMP, because these events mediate activation of CaCC, the 503 ion channels responsible for the electrophysiological post-junctional excitatory 504 responses to nerve stimulation in small intestinal muscles (Zhu et al., 2011). EFS of intrinsic neurons resulted in three-component effects on Ca²⁺ transients: a 505 506 brief inhibitory period (about 2s), a period of escape from inhibition during 507 sustained EFS, and a period of strong excitation after cessation of the stimuli 508 (post-stimulus or 'rebound' excitation). The complexity of these responses is 509 likely due to the fact that the enteric nervous system contains both inhibitory and 510 excitatory motor neurons (Furness, 2012), and EFS can be expected to activate 511 both classes of neurons.

	512	In the mouse small intestine, the neurokinin component of the excitatory
	513	neural inputs to ICC-DMP was dominant. Our experiments also suggest that
	514	tonic release of neurokinins and binding to NK1 receptors is responsible for
<u> </u>	515	significant drive in generating the Ca ²⁺ transients observed under basal
d	516	conditions in ICC-DMP (Baker et al., 2016). Thus, the Ca ²⁺ transients observed
Ļ	517	in the absence of applied stimuli are not 'spontaneous' and do not appear to be
U U	518	driven intrinsically within ICC-DMP. Excitatory neurotransmitters greatly
o Accepted Manuscript	519	increased Ca ²⁺ transients in ICC-DMP, and this mechanism likely underlies a
IJ	520	portion of the post-junctional electrophysiological response to excitatory neural
g	521	regulation (Zhu et al., 2011; Zhu et al., 2015).
\geq	522	ICC-DMP are plentiful and in close contact with varicosities of enteric
	523	motor neurons in the deep muscular plexus region of the small intestine
O	524	(Rumessen et al., 1992; Zhou and Komuro, 1992). We confirmed that ICC
t	525	express receptors required for excitatory motor neurotransmission (e.g.
Q	526	muscarinic and neurokinin receptors), and transcripts for M3 (Chrm3) and NK1
U U	527	(Tacr1) were enriched in ICC-DMP vs. unsorted cells. However, transcripts of
CC	528	Chrm2 were also present, suggesting these receptors and coupling to effectors
A	529	via Gi/Go may also have a role in transduction or modulation of excitatory
0	530	neurotransmission. Our findings are consistent with previous studies showing
1	531	muscarinic receptors and NK1 receptor expression in ICC with
n	532	immunohistochemical techniques (Sternini et al., 1995; Vannucchi et al., 1997;
l E	533	Stadelmann et al., 1998; lino et al., 2004; lino and Nojyo, 2006; Ward et al.,
eNeur	534	2006; Sanders et al., 2014b).

- , 1998; lino et al., 2004; lino and Nojyo, 2006; Ward et al.,
- al., 2014b).

535	This study demonstrates that ICC-DMP receive and transduce excitatory
536	neural inputs in the small bowel. Previous studies predicted this finding from
537	morphological observations (Rumessen et al., 1992; Zhou and Komuro, 1992;
538	Wang et al., 2003a; lino et al., 2004; Faussone-Pellegrini, 2006; Shimizu et al.,
539	2008) and by showing that cholinergic excitatory neural responses develop in
540	phase with the development of ICC-DMP and blocking Kit receptors causes
541	parallel loss of ICC and cholinergic neural responses (Ward et al., 2006).
542	Excitatory neurotransmission caused PKC ϵ translocation in ICC-DMP that was
543	blocked by atropine (Wang et al., 2003b), demonstrating functional cholinergic
544	innervation and muscarinic responses in these cells. ACh binding to M3
545	receptors can enhance Ca ²⁺ release in ICC-DMP via generation of inositol 1,4,5-
546	trisphosphate (IP ₃) which activates Ca^{2+} release from the endoplasmic reticulum
547	(ER). All of the molecular components of this pathway are expressed in ICC, as
548	shown by transcriptome analyses (Chen et al., 2007; Lee et al., 2017). Previous
549	direct observation of ICC-DMP in situ has shown that Ca ²⁺ transients are due to
550	Ca^{2+} release from intracellular stores (e.g. ER), mediated, in part, by IP ₃ R (Baker
551	et al., 2016). Increasing Ca^{2+} release in ICC leads to activation of CaCC, and the
552	inward current generated by thousands of ICC-DMP in whole muscles would
553	provide a net depolarizing influence that would summate with slow wave
554	depolarizations, increase the likelihood of action potentials being generated
555	during the plateau phase of slow waves (i.e. period of peak depolarization), and
556	enhance the amplitude of phasic contractions (Zhu et al., 2011).

	557	V
	558	choliner
	559	that neu
ىب	560	transien
<u>O</u>	561	associa
<u>с</u>	562	recepto
C C C	563	which is
\square	564	was me
	565	exposur
ש	566	neurons
\geq	567	al., 2004
77	568	attenua
a)	569	The stro
Ļ	570	be due
	571	non-spe
U U	572	Ca ²⁺ tra
Ŭ	573	Taken te
\triangleleft	574	shaping
0	575	Т
<u> </u>	576	antagor
	577	suggest
7	578	the tonio
۵	579	Lyster e

57	While our observations suggest innervation and contributions from
58	cholinergic nerves to post-junctional excitatory responses, our data also suggest
59	that neurokinins are the dominant excitatory neurotransmitters affecting Ca ²⁺
60	transients in ICC-DMP in the mouse small intestine. ICC-DMP are closely
61	associated with substance P containing nerve fibers, and ICC-DMP express NK1
62	receptors (lino et al., 2004; Faussone-Pellegrini, 2006; Shimizu et al., 2008)
63	which is consistent with our observation that excitatory transmission to ICC-DMP
64	was mediated through NK1 receptors. Previous studies have shown that
65	exposure of small intestinal muscles to substance P or stimulation of motor
66	neurons causes internalization of NK1 receptors in ICC (Lavin et al., 1998; lino et
67	al., 2004). Our experiments showed that two NK1 receptor antagonists greatly
68	attenuated basal Ca ²⁺ transients and suppressed responses of ICC-DMP to EFS.
69	The strong inhibitory effects of NK1 antagonists on Ca ²⁺ transients could possibly
70	be due to off-target effects on Ca ²⁺ stores or Ca ²⁺ release mechanisms, however
71	non-specific effects do not appear to be significant because responses to CCh on
72	Ca ²⁺ transients were intact in the presence of the NK1 antagonist, RP 67580.
73	Taken together these findings support the importance of neurokinin signaling in
74	shaping motility patterns in the small intestine.
75	The degree to which basal Ca ²⁺ transients were affected by NK1
76	antagonists in the present study was somewhat surprising. These results
77	suggest ongoing release of neurokinins (i.e. tonic excitation), similar in concept to
78	the tonic inhibition phenomena observed in many GI muscles (Wood, 1972;

579 Lyster et al., 1995). Although this phenomenon has not been described

580	previously in the small intestine, tonic activation of NK1 receptors has been
581	proposed in other systems (Henry et al., 1999; Jasmin et al., 2002). In the
582	present study attenuation of Ca ²⁺ transients by the NK1 receptor antagonists may
583	be caused by continuous release of neurokinins or persistence of the ligand in
584	the spaces between motor nerve varicosities and ICC-DMP.

585 The enhanced relative reliance on neurokinins for excitatory effects may 586 be due, in part, to the high expression of NK1 receptors by ICC-DMP which does 587 not appear to be true for intramuscular ICC in the colon (Lee et al., 2017). NK1 588 receptors also couple to cellular responses through activation of phospholipase C 589 and generation of IP₃ (Steinhoff et al., 2014). Thus, there is a signaling pathway available for the enhancement of Ca²⁺ transients in ICC-DMP. However, it 590 591 should also be noted that transfection of neurokinin receptors in model cells has 592 also been associated with activation of adenylate cyclase and production of 593 cAMP (Steinhoff et al., 2014), a pathway not typically linked to enhanced release of Ca²⁺. Generation of cAMP and stimulation of cAMP-dependent protein kinase 594 is known to enhance Ca²⁺ sequestration into stores by phosphorylation of 595 phospholamban (highly expressed in ICC; (Lee et al., 2017) and stimulation of 596 SERCA (Stammers et al., 2015). Perhaps increased loading of Ca²⁺ stores 597 contributes to augmentation of Ca²⁺ transient amplitude and spatial spread by 598 neurokinins, and enhancing the rate of recovery of Ca²⁺ into stores after a 599 600 release event reduces the time required for a given store to generate another 601 Ca²⁺ transient.

	602	In summary, this study supports the idea that significant neural regulation
	603	occurs in the intramuscular class of ICC in the small intestine (ICC-DMP). As
	604	discussed above, much of the excitatory response was mediated through NK1
4	605	receptors that are expressed largely by ICC-DMP (Sternini et al., 1995;
Q	606	Vannucchi et al., 1997; lino et al., 2004). Responses to EFS were attenuated by
Ľ.	607	NK1 antagonists. Previous studies have shown that electrophysiological
U U U	608	responses in ICC-DMP are linked to Ca ²⁺ release events (Zhu et al., 2011; Zhu et
n	609	al., 2015), suggesting that Ca ²⁺ transients in ICC-DMP couple to generation of
	610	inward currents and depolarizing effects on the SIP syncytium. NK2 receptors,
g	611	expressed largely by SMCs (Cipriani et al., 2011), were apparently not involved
\geq	612	in responses of ICC-DMP to neurokinins released from nerve terminals, because
	613	an NK2 antagonist had no effect on responses. The effectiveness of neurokinins
	614	as neurotransmitters in the tunica muscularis of the small intestine may be
t.	615	spatially confined by concentrations achieved in post-junctional spaces to a
Q	616	subset of neurokinin receptors expressed by ICC-DMP.
U U U U	617	
Ŭ	618	
\triangleleft	619	
Veuro Accepted Manuscript		
<u> </u>		

620 References

622	Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM (2013)
623	Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the
624	murine gastric fundus. J Physiol 591:6193-6208.
625	Baker SA, Drumm BT, Saur D, Hennig GW, Ward SM, Sanders KM (2016)
626	Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the
627	deep muscular plexus of the murine small intestine. J Physiol 594:3317-3338.
628	Blair PJ, Bayguinov Y, Sanders KM, Ward SM (2012) Interstitial cells in the primate
629	gastrointestinal tract. Cell Tissue Res 350:199-213.
630	Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM (1996) Interstitial cells of
631	Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad
632	Sci U S A 93:12008-12013.
633	Chen H, Ordog T, Chen J, Young DL, Bardsley MR, Redelman D, Ward SM, Sanders KM
634	(2007) Differential gene expression in functional classes of interstitial cells of
635	Cajal in murine small intestine. Physiol Genomics 31:492-509.
636	Cipriani G, Serboiu CS, Gherghiceanu M, Faussone-Pellegrini MS, Vannucchi MG
637	(2011) NK receptors, Substance P, Ano1 expression and ultrastructural
638	features of the muscle coat in Cav-1(-/-) mouse ileum. J Cell Mol Med
639	15:2411-2420.
640	Daniel EE, Posey-Daniel V (1984) Neuromuscular structures in opossum esophagus:
641	role of interstitial cells of Cajal. Am J Physiol 246:G305-315.
642	Daniel EE, Wang YF (1999) Gap junctions in intestinal smooth muscle and
643	interstitial cells of Cajal. Microsc Res Tech 47:309-320.
644	Daniel EE, Wang YF, Cayabyab FS (1998) Role of gap junctions in structural
645	arrangements of interstitial cells of Cajal and canine ileal smooth muscle. Am
646	J Physiol 274:G1125-1141.
647	De Schepper HU, De Winter BY, Seerden TC, Herman AG, Pelckmans PA, De Man JG
648	(2005) Functional characterisation of tachykinin receptors in the circular
649	muscle layer of the mouse ileum. Regul Pept 130:105-115.
650	Drumm BT, Hennig GW, Battersby MJ, Cunningham EK, Sung TS, Ward SM, Sanders
651	KM, Baker SA (2017) Clustering of Ca2+ transients in interstitial cells of Cajal
652	defines slow wave duration. J Gen Physiol 149:703-725.
653	Faussone-Pellegrini MS (2006) Relationships between neurokinin receptor-
654	expressing interstitial cells of Cajal and tachykininergic nerves in the gut. J
655	Cell Mol Med 10:20-32.
656	Faussone-Pellegrini MS, Vannucchi MG (2006) Substance P and Neurokinin 1
657	receptor - expression is affected in the ileum of mice with mutation in the W
658	locus. J Cell Mol Med 10:511-518.
659	Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev
660	Gastroenterol Hepatol 9:286-294.
661	Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de
662	Rijn M, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW,
663	Ordog T, Farrugia G (2009) Ano1 is a selective marker of interstitial cells of

664	Cajal in the human and mouse gastrointestinal tract. Am J Physiol
665	Gastrointest Liver Physiol 296:G1370-1381.
666	Goyal RK (2016) CrossTalk opposing view: Interstitial cells are not involved and
667	physiologically important in neuromuscular transmission in the gut. J Physiol
668	594:1511-1513.
669	Goyal RK, Chaudhury A (2010) Mounting evidence against the role of ICC in
670	neurotransmission to smooth muscle in the gut. Am J Physiol Gastrointest
671	Liver Physiol 298:G10-13.
672	Henry JL, Yashpal K, Pitcher GM, Chabot J, Coderre TJ (1999) Evidence for tonic
673	activation of NK-1 receptors during the second phase of the formalin test in
674	the Rat. J Neurosci 19:6588-6598.
675	Holzer P, Holzer-Petsche U (2001) Tachykinin receptors in the gut: physiological
676	and pathological implications. Curr Opin Pharmacol 1:583-590.
677	Huizinga JD et al. (2014) The origin of segmentation motor activity in the intestine.
678	Nat Commun 5:3326.
679	Iino S, Nojyo Y (2006) Muscarinic M(2) acetylcholine receptor distribution in the
680	guinea-pig gastrointestinal tract. Neuroscience 138:549-559.
681	Iino S, Ward SM, Sanders KM (2004) Interstitial cells of Cajal are functionally
682	innervated by excitatory motor neurones in the murine intestine. J Physiol
683	556:521-530.
684	lino S, Horiguchi K, Horiguchi S, Nojyo Y (2009) c-Kit-negative fibroblast-like cells
685	express platelet-derived growth factor receptor alpha in the murine
686	gastrointestinal musculature. Histochem Cell Biol 131:691-702.
687	Jasmin L, Tien D, Weinshenker D, Palmiter RD, Green PG, Janni G, Ohara PT (2002)
688	The NK1 receptor mediates both the hyperalgesia and the resistance to
689	morphine in mice lacking noradrenaline. Proc Natl Acad Sci U S A 99:1029-
690	
691	Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD,
692	Vanderwinden JM, Hofmann F, Schemann M, Rad R, Storr MA, Schmid RM,
693	Schneider G, Saur D (2013) Interstitial cells of Cajal integrate excitatory and
694	inhibitory neurotransmission with intestinal slow-wave activity. Nat
695	Commun 4:1630.
696	Komuro T (2006) Structure and organization of interstitial cells of Cajal in the
697	gastrointestinal tract. J Physiol 576:653-658.
698	Komuro T, Seki K, Horiguchi K (1999) Ultrastructural characterization of the
699	interstitial cells of Cajal. Arch Histol Cytol 62:295-316.
700	Langton P, Ward SM, Carl A, Norell MA, Sanders KM (1989) Spontaneous electrical
701	activity of interstitial cells of Cajal isolated from canine proximal colon. Proc
702	Natl Acad Sci U S A 86:7280-7284.
703	Lavin ST, Southwell BR, Murphy R, Jenkinson KM, Furness JB (1998) Activation of
704	neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small
705	intestine by substance P. Histochem Cell Biol 110:263-271.
706	Lee HT, Hennig GW, Fleming NW, Keef KD, Spencer NJ, Ward SM, Sanders KM, Smith
707	TK (2007) The mechanism and spread of pacemaker activity through
708	myenteric interstitial cells of Cajal in human small intestine.
709	Gastroenterology 132:1852-1865.

710	Lee MY, Ha SE, Park C, Park PJ, Fuchs R, Wei L, Jorgensen BG, Redelman D, Ward SM,
711	Sanders KM, Ro S (2017) Transcriptome of interstitial cells of Cajal reveals
712	unique and selective gene signatures. PLoS One 12:e0176031.
713	Lyster DJ, Bywater RA, Taylor GS (1995) Neurogenic control of myoelectric
714	complexes in the mouse isolated colon. Gastroenterology 108:1371-1378.
715	Mitsui R (2011) Immunohistochemical analysis of substance P-containing neurons
716	in rat small intestine. Cell Tissue Res 343:331-341.
717 718	Ordog T, Ward SM, Sanders KM (1999) Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol 518 (Pt 1):257-269.
719	Rumessen JJ, Mikkelsen HB, Thuneberg L (1992) Ultrastructure of interstitial cells of
720	Cajal associated with deep muscular plexus of human small intestine.
721	Gastroenterology 102:56-68.
722	Sanders KM, Ward SM (2006) Interstitial cells of Cajal: a new perspective on smooth
723	muscle function. J Physiol 576:721-726.
724	Sanders KM, Ward SM, Koh SD (2014a) Interstitial cells: regulators of smooth
725	muscle function. Physiol Rev 94:859-907.
726	Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility
727	insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633-
728	645.
729	Sanders KM, Salter AK, Hennig GW, Koh SD, Perrino BA, Ward SM, Baker SA (2014b)
730	Responses to enteric motor neurons in the gastric fundus of mice with
731	reduced intramuscular interstitial cells of cajal. J Neurogastroenterol Motil
732	20:171-184.
733	Seki K, Komuro T (2001) Immunocytochemical demonstration of the gap junction
734	proteins connexin 43 and connexin 45 in the musculature of the rat small
735	intestine. Cell Tissue Res 306:417-422.
736	Shimizu Y, Matsuyama H, Shiina T, Takewaki T, Furness JB (2008) Tachykinins and
737	their functions in the gastrointestinal tract. Cell Mol Life Sci 65:295-311.
738	Spencer NJ, Dinning PG, Brookes SJ, Costa M (2016) Insights into the mechanisms
739	underlying colonic motor patterns. J Physiol 594:4099-4116.
740	Stadelmann AM, Walgenbach-Telford S, Telford GL, Koch TR (1998) Distribution of
741	muscarinic receptor subtypes in rat small intestine. J Surg Res 80:320-325.
742	Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel
743	TA (2015) The regulation of sarco(endo)plasmic reticulum calcium-ATPases
744	(SERCA). Can J Physiol Pharmacol 93:843-854.
745	Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014)
746	Tachykinins and their receptors: contributions to physiological control and
747	the mechanisms of disease. Physiol Rev 94:265-301.
748	Sternini C, Su D, Gamp PD, Bunnett NW (1995) Cellular sites of expression of the
749	neurokinin-1 receptor in the rat gastrointestinal tract. J Comp Neurol
750	358:531-540.
751	van Helden DF, Imtiaz MS (2003) Ca2+ phase waves: a basis for cellular pacemaking
752	and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol
753	548:271-296.

54	Vannucchi MG, De Giorgio R, Faussone-Pellegrini MS (1997) NK1 receptor
55	expression in the interstitial cells of Cajal and neurons and tachykinins
56	distribution in rat ileum during development. J Comp Neurol 383:153-162.
57	Wang XY, Paterson C, Huizinga JD (2003a) Cholinergic and nitrergic innervation of
58	ICC-DMP and ICC-IM in the human small intestine. Neurogastroenterol Motil
59	15:531-543.
60	Wang XY, Ward SM, Gerthoffer WT, Sanders KM (2003b) PKC-epsilon translocation
61	in enteric neurons and interstitial cells of Cajal in response to muscarinic
62	stimulation. Am J Physiol Gastrointest Liver Physiol 285:G593-601.
63	Ward SM, McLaren GJ, Sanders KM (2006) Interstitial cells of Cajal in the deep
64	muscular plexus mediate enteric motor neurotransmission in the mouse
65	small intestine. J Physiol 573:147-159.
66	Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene
67	c-kit blocks development of interstitial cells and electrical rhythmicity in
68	murine intestine. J Physiol 480 (Pt 1):91-97.
69	Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM (2000) Interstitial cells
70	of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J
71	Neurosci 20:1393-1403.
72	Wood JD (1972) Excitation of intestinal muscle by atropine, tetrodotoxin, and
73	xylocaine. Am J Physiol 222:118-125.
74	Zhou DS, Komuro T (1992) Interstitial cells associated with the deep muscular
75	plexus of the guinea-pig small intestine, with special reference to the
76	interstitial cells of Cajal. Cell Tissue Res 268:205-216.
77	Zhu MH, Sung TS, O'Driscoll K, Koh SD, Sanders KM (2015) Intracellular Ca(2+)
78	release from endoplasmic reticulum regulates slow wave currents and
79	pacemaker activity of interstitial cells of Cajal. Am J Physiol Cell Physiol
80	308:C608-620.
81	Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM (2009) A Ca(2+)-
82	activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave
83	currents and pacemaker activity. J Physiol 587:4905-4918.
84	Zhu MH, Sung IK, Zheng H, Sung TS, Britton FC, O'Driscoll K, Koh SD, Sanders KM
85	(2011) Muscarinic activation of Ca2+-activated Cl- current in interstitial cells
86	of Cajal. J Physiol 589:4565-4582.
87	
88	
89	
07	
90	
'91	

794 Figure 1. ICC-DMP Ca²⁺ transient responses to nerve stimulation.

A Time-lapse montage showing post-junctional Ca²⁺ responses to EFS (10 Hz; 795 796 0.5 ms duration; 5 sec) on an ICC-DMP in situ. An image of the GCaMP3 signal 797 in the cell is shown in the leftmost panel. Scale bar is 25 µm and pertains to all 798 panels. A color-coded overlay and calibration scale was imported to depict fluorescence intensity (F/F_0) and enhance visualization of Ca²⁺ sites. Low 799 800 fluorescence areas are indicated in dark blue or black. High intensity 801 fluorescence areas are indicated in red and orange. The 'pre stimulation' panel shows a summed image of Ca²⁺ activity within the cell for 5 seconds before the 802 onset of EFS, Ca²⁺ firing sites are marked with red asterisks. Panels showing the 803 summed Ca²⁺ activity for the initial 2 seconds of EFS, the final 3 seconds of EFS 804 and 5 seconds post EFS are also shown. **B** Representative ST map of Ca²⁺ 805 806 transients in ICC-DMP shown in panel A. EFS duration is indicated by the 807 dashed white box. The firing activities of 3 sites highlighted on the ST map are 808 plotted in panel **C**, and the timing of EFS is indicated by the dashed red box.

809

810 Figure 2. Effects of nerve stimulation (EFS) on Ca²⁺ transients in ICC-DMP.

811 **A** Representative traces representing Ca²⁺ transients in ICC-DMP in response to 812 EFS (10Hz; 5 sec). The period of EFS is indicated by the red arrowed line). 813 Excitatory responses during the final 3 sec of EFS, indicated by the dashed blue 814 box, and during the post EFS period (5 sec), highlighted by the green box. *B* – *G* Summary data quantifying the effects of EFS on ICC-DMP: Ca^{2+} transient frequency (*E*), amplitude (*F*), duration (*G*), spatial spread (*H*), number of Ca^{2+} firing sites (*I*) and Ca^{2+} transient velocity (*J*) were analyzed and shown; n = 23, c = 56. All statistical analyses shown are compared to control values. ns = P > 0.05, * = P < 0.05, ** = P < 0.01, *** = P < 0.001, *** = P < 0.0001.

820

821 Figure 3. Frequency dependence of Ca²⁺ transient responses to EFS.

A Summary data showing the excitatory effects of EFS (1Hz for 5 sec) on Ca²⁺ 822 823 transients in ICC-DMP during the final 3s of EFS and during the post-stimulus period (5s following termination of EFS). Ca²⁺ transient parameters shown 824 include: frequency (sec⁻¹), amplitude ($\Delta F/F_0$), duration (FDHM) and spatial spread 825 (μ m) of Ca²⁺ transients. **B** Summary data showing the effects of EFS (5Hz; 5 826 sec) on Ca²⁺ transient parameters. **C** Summary data showing the effects of EFS 827 (20Hz; 5 sec) on Ca²⁺ transient parameters. **D** Percentage (%) change of Ca²⁺ 828 829 transient firing frequency at all frequencies of EFS tested (1-20 Hz; net 830 percentage change normalized to control) during the final 3 sec of EFS and 831 during the post-stimulus period *E*. Note the frequency dependent effects of EFS on Ca²⁺ transient responses. Summary data in all panels shows the include 5 832 833 secs before EFS, the final 3 secs during EFS and 5 seconds post-EFS. ns = P >0.05, * = P < 0.05, ** = P < 0.01. 834

835

836

838

839 Figure 4. Modulation of basal Ca²⁺ transients by cholinergic input.

A Representative ST maps showing the effects of atropine (1 µM) on basal Ca²⁺ 840 841 transient activity in ICC-DMP. B - E Summary graphs showing the effect of 842 atropine on the frequency (B), amplitude (C), duration (D) and spatial spread (E) of basal Ca²⁺ transients in ICC-DMP (n=5, c=13). F Representative ST maps 843 showing the effects of ACh (10 μ M; in the presence of TTX) on Ca²⁺ transients in 844 ICC-DMP. **G** – **J** Summary graphs showing the effect of ACh (in the presence of 845 846 TTX) on the frequency (G), amplitude (H), duration (I) and spatial spread (J) of Ca^{2+} transients in ICC-DMP (n=5, c=9). ns = P > 0.05, * = P < 0.05, ** = P < 0.01, 847 *** = P < 0.001. 848

849

850 Figure 5. Effects of atropine on Ca²⁺ transient responses to EFS.

A - **B** Representative ST maps showing the effects of atropine (1 μ M) on Ca²⁺ transients in ICC-DMP in response to nerve stimulation (EFS; 10 Hz; 5 sec; indicated by the red line and dotted white box in ST maps). **C** – **F** Summary data showing the effects of atropine (1 μ M) on Ca²⁺ transients during EFS: frequency (*C*), amplitude (*D*), duration (*E*) and spatial spread (*F*) in ICC-DMP during control conditions, during the excitatory period of EFS (final 3 sec), and during the post EFS period (5 sec), n=5, c=21. ns = P > 0.05, * = P < 0.05, ** = P < 0.01.

858

Figure 6. Effects of neurokinin receptor (NK1) antagonists on basal Ca²⁺ transients.

A Representative ST maps showing the inhibitory effects of the NK1 receptor 861 862 antagonist, RP 67580 (1 µM), on Ca²⁺ transients in ICC-DMP. **B** – **E** Summary 863 graphs showing the effects of RP 67580 on the frequency (B), amplitude (C), duration (D) and spatial spread (E) of Ca^{2+} transients in ICC-DMP (n=11, c=27). 864 865 F Representative ST maps showing the inhibitory effects of the NK1 receptor antagonist, SR 140333 (1 μ M), on Ca²⁺ transients in ICC-DMP. *G* – *J* Summary 866 graphs showing the effects of 1 μ M SR 140333 on the frequency (G), amplitude 867 868 (H), duration (I) and spatial spread (J) of Ca^{2+} transients in ICC-DMP (n=4, c=14). ns = P > 0.05, * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 869

870

871 Figure 7. NK1 antagonist does not interfere with Ca²⁺ release mechanisms.

A - **B** Representative ST maps showing the effect of the NK1 antagonist RP 67580 (1 μM) on Ca²⁺ transients in ICC-DMP. **C** ST map showing that in the presence of RP 67580, CCh (10 μM) strongly activates Ca²⁺ transients. **D** – **G** Summary graphs showing the effects of CCh on Ca²⁺ transient parameters: frequency (*D*), amplitude (*E*), duration (*F*) and spatial spread (*G*) in ICC-DMP in the presence of RP 67580 (n=3, c=6). * = P < 0.05.

878

879 Figure 8. Neurokinin receptor (NK1) agonists activate Ca²⁺ transients.

A Representative ST maps showing the excitatory effects of substance P (1 μ M; in the presence of TTX) on Ca²⁺ transients in ICC-DMP. *B* – *E* Summary graphs showing the effects of substance P (in the presence of TTX) on the frequency (*B*), amplitude (*C*), duration (*D*) and spatial spread (*E*) of Ca²⁺ transients in ICC-DMP. *F* Representative ST maps showing the excitatory effects of the NK1 receptor agonist GR 73632 (1 μ M; in the presence of TTX) on Ca²⁺ transients in ICC-DMP (n=4, c=10). *G* – *J* Summary graphs quantifying the effect of GR 73632 on the frequency (*G*), amplitude (*H*), duration (*I*) and spatial spread (*J*) of basal Ca²⁺ transient activity in ICC-DMP (n=4, c=9). ns = P > 0.05, * = P < 0.05, ** = P < 0.01, **** = P < 0.0001.

890

Figure 9. Effects of NK1 receptor antagonist on Ca²⁺ transient responses to EFS.

893 A - B Representative ST maps showing the inhibitory effects of NK1 antagonist, RP 67580 (1 μ M), on Ca²⁺ transients in response to nerve stimulation (EFS at 10 894 895 Hz for 5 sec; indicated by the red line and dotted white box in ST maps). C - FSummary data showing the inhibitory effects of RP 67580 (1 µM) on Ca2+ 896 897 transient frequency (C), amplitude (D), duration (E) and spatial spread (F) in ICC-DMP during the control period, during the final 3 sec of EFS, and during the post-898 EFS period (5 sec), n=4, c=11. Note: RP 67580 reduced all Ca2+ transient 899 900 parameters significantly. ns = P > 0.05, * = P < 0.05, ** = P < 0.01.

901

Figure 10. Cholinergic and NK1 receptor antagonists inhibit Ca²⁺ transients elicited by EFS in ICC-DMP.

904 **A** - **B** Representative ST maps showing the inhibitory effects of combining 905 cholinergic and neurokinin antagonists (atropine and RP 67580; both 1 μ M) on 906 Ca²⁺ transients in ICC-DMP during EFS (10 Hz; 5 sec). **C** – **F** Summary data of 907 Ca^{2+} transient parameters showing the inhibitory effects of atropine and RP 908 67580 on Ca^{2+} transient frequency (*C*), amplitude (*D*), duration (*E*) and spatial 909 spread (*F*) in ICC-DMP during the control period, during the final 3 sec of EFS, 910 and during the post-EFS period (5 sec), n=4, c=20. Note: combination of atropine 911 and RP 67580 abolished all Ca^{2+} transient parameters significantly. ns = P > 912 0.05, ** = P < 0.01, *** = P < 0.001, **** = P < 0.0001.

913

914 Figure 11. Excitatory responses are modestly reduced by atropine

915 **A** - **B** Representative ST maps showing the inhibitory effects of atropine (1 μ M) 916 on responses to EFS (10 Hz; 5 sec; indicated by the red line and dotted white 917 box in ST maps). In this experiment L-NNA (100 μ M) and the P2Y1 receptor antagonist, MRS 2500 (1 μ M), were present. **C** – **F** Summary data showing the 918 919 effects of a combination of L-NNA (100 μ M), MRS 2500 (1 μ M) and atropine (1 μ M) on Ca²⁺ transient frequency (C), amplitude (D), duration (E) and spatial 920 921 spread (F) in ICC-DMP during the control period, during the final 3 sec of EFS, and during the post-EFS period (5 sec), n=7, c=26. ns = P > 0.05, ** = P < 0.01, 922 923 *** = P < 0.001.

924

925 Figure 12. Excitatory responses are strongly attenuated by NK1 antagonist

926 **A** - **B** Representative ST maps showing the inhibitory effects of RP 67580 (1 μ M), 927 in the presence of nitric oxide synthase inhibitor L-NNA (100 μ M) and purinergic 928 P2Y1 receptor antagonist (MRS 2500; 1 μ M) on Ca²⁺ transients in response to 929 nerve stimulation (EFS at 10 Hz 5 sec; indicated by the red line and dotted white box in ST maps). C - F Summary data showing the effects of a combination of L-NNA, MRS 2500 and RP 67580 on Ca²⁺ transient frequency (*C*), amplitude (*D*), duration (*E*) and spatial spread (*F*) in ICC-DMP during the control period, during the final 3 sec of EFS, and during the post-EFS period (5 sec), n=4, c=13. ns = P > 0.05, ** = P < 0.01.

935

Figure 13. Excitatory responses to EFS are abolished by atropine and NK1 receptor antagonist

A - **B** Representative ST maps showing inhibition of Ca^{2+} transients by atropine 938 939 (1 μ M) and RP 67580 (1 μ M). These experiments were conducted in the 940 presence of L-NNA (100 μ M) in the presence of MRS 2500 (1 μ M) during and 941 post nerve stimulation periods (EFS at 10 Hz 5 sec; indicated by the red line and dotted white box in ST maps). C - F Summary data showing the effects of a 942 combination of L-NNA, MRS 2500 and atropine and RP 67580 on Ca²⁺ transient 943 944 frequency (C), amplitude (D), duration (E) and spatial spread (F) in ICC-DMP 945 during control conditions, Excitatory periods during EFS (final 3 sec) and in the 946 post EFS period, n=5, c=32. ns = P > 0.05, ** = P < 0.01, *** = P < 0.001.

947

948

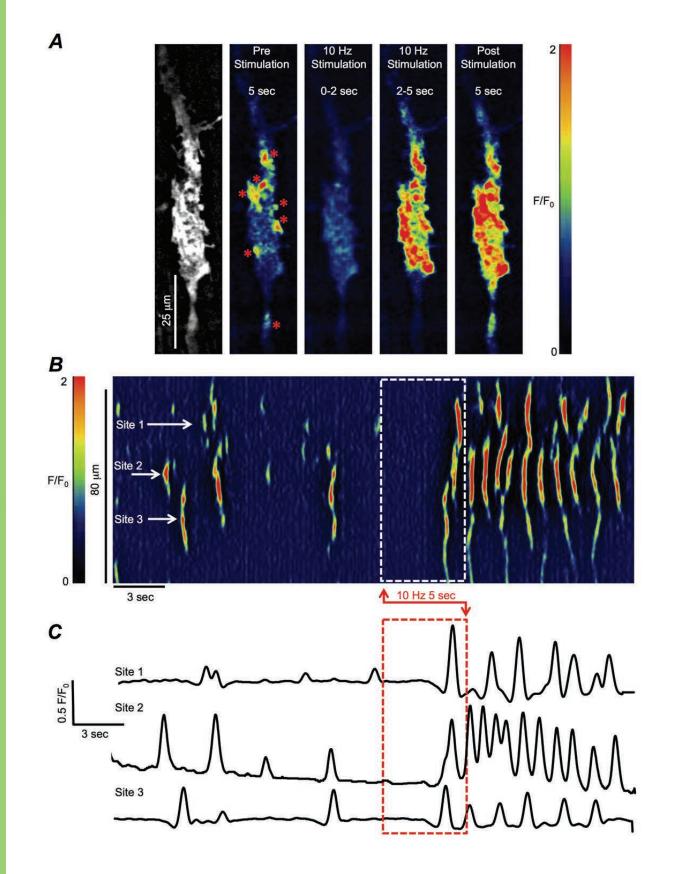
949 Movie 1: ICC-DMP Ca²⁺ transient responses to enteric neuronal stimulation

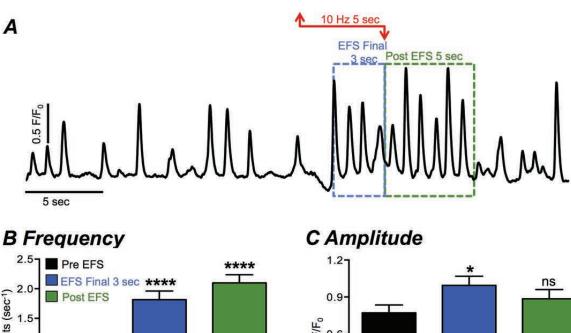
Movie of intracellular Ca²⁺ transients in ICC-DMP labeled with the genetically encoded Ca²⁺ indicator GCaMP3 in response to electrical field stimulation (EFS 10Hz, for 5 sec; real-time playback). The top left FOV shows typical elongated 953 ICC-DMP using a 60x objective (original recordings). Note that Ca²⁺ transients 954 fired in stochastic fashion the blue bit-masked cell. The right window shows Ca²⁺ 955 transient particles thresholded (SNR >= 25 dB, to facilitate visualization of active 956 signals) after differentiation (Δ t= 0.5s) and smoothing (Gaussian 1.0sd, box size 957 = 3.3µm) as shown in the middle window. Scale bar in top left window is 15 µm 958 and pertains to all windows.

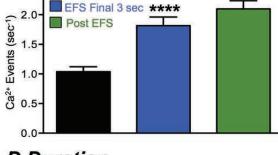
959 The blue overlay of ICC-DMP in the FOV (blue bit-masked cell) was used to construct an ST map of Ca²⁺-induced fluorescence intensity across the diameter 960 of the cell, which better displays the firing and propagation of Ca²⁺ transients 961 962 along the length of the cell in response to EFS (lower panel; EFS duration is indicated with the yellow box). The bottom panel shows active area of Ca2+ 963 transients across the FOV (area of active particles). Note the caseation of Ca²⁺ 964 transients in response to EFS and enhanced Ca²⁺ firing during post stimulus 965 966 period. Scale bar in the lower ST map and bottom active area map is 50 μ m.

- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975

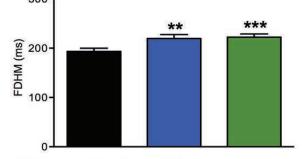
976 Tables

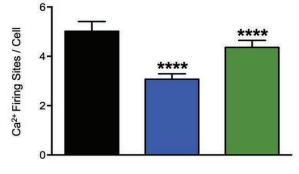

977 Table 1: Summary table of cholinergic and neurokinin receptors primer978 sequences.

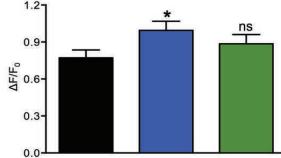

Table lists muscarinic (M2, M3) and neurokinin (NK1, NK2) receptor gene
transcripts that were measured in this study including their name, primer
sequences and gene bank accession numbers.


982

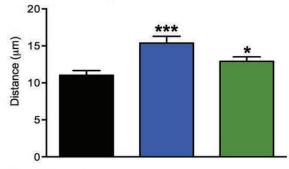
		GenBank
Gene	Sequence	accession number
mGapdh-F	AGACGGCCGCATCTTCTT	NM_008084
mGapdh-R	TTCACACCGACCTTCACCAT	
mChrm2-F	GGTGTCTCCCAGTCTAGTGCAAGG	NM_203491
mChrm2-R	ATGTCTGCCTAGAGTTGTCATCTTTGGA	
mChrm3-F	TGTGGCCAGCAATGCTTCTGTCATGA	NM_033269
mChrm3-R	CCACAGGACAAAGGAGATGACCCAAG	
mTacr1-F	GTGGTGAACTTCACCTACGCAGTC	NM_009313
mTacr1-R	GCCATGTATGCTTCAAAGGCCACAG	
mTacr2-F	CCATCGCCGCTGACAGGTACA	NM_009314
mTacr2-R	GGCCCCCTGGTCCACAGTGA	

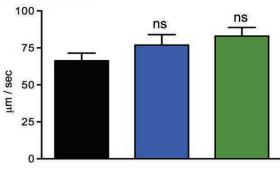

983		
984		
985		
986		

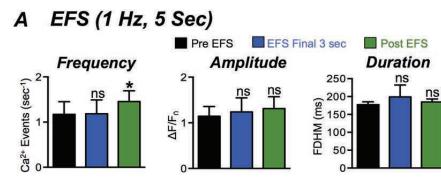


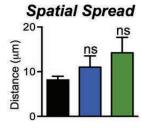


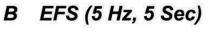
D Duration 300-

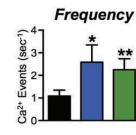


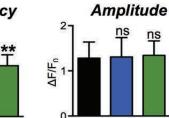


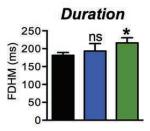


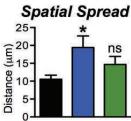

E Spatial Spread

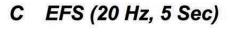


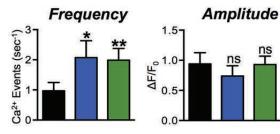

G Velocitv

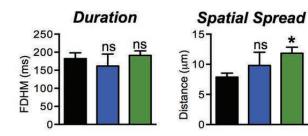


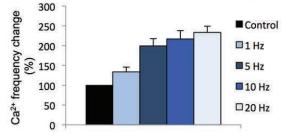


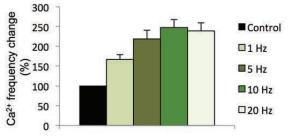


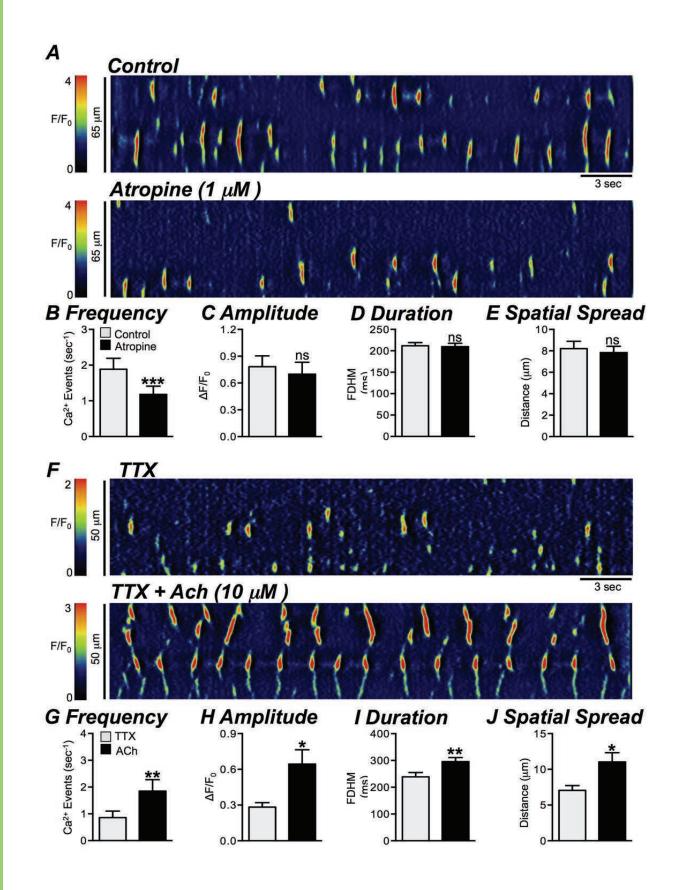




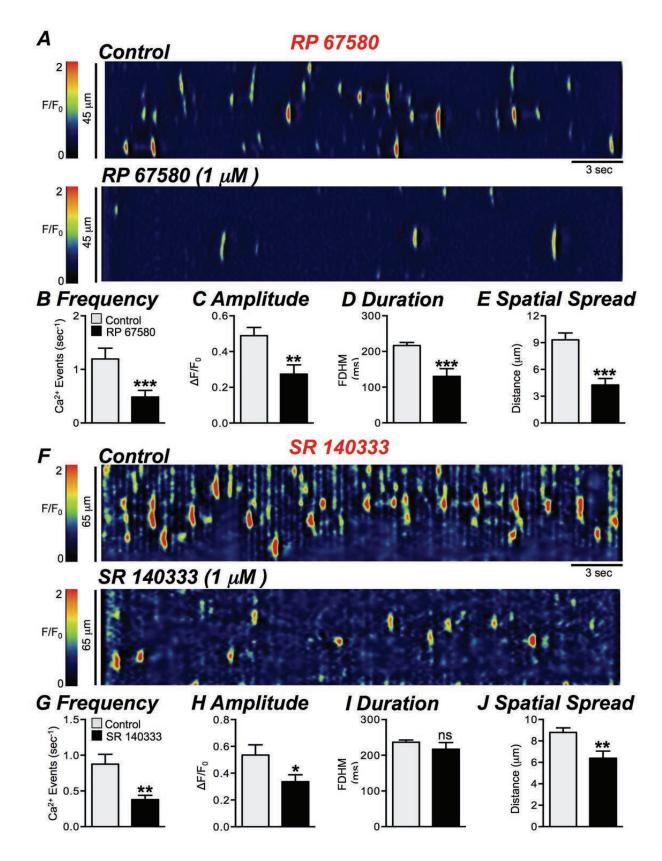


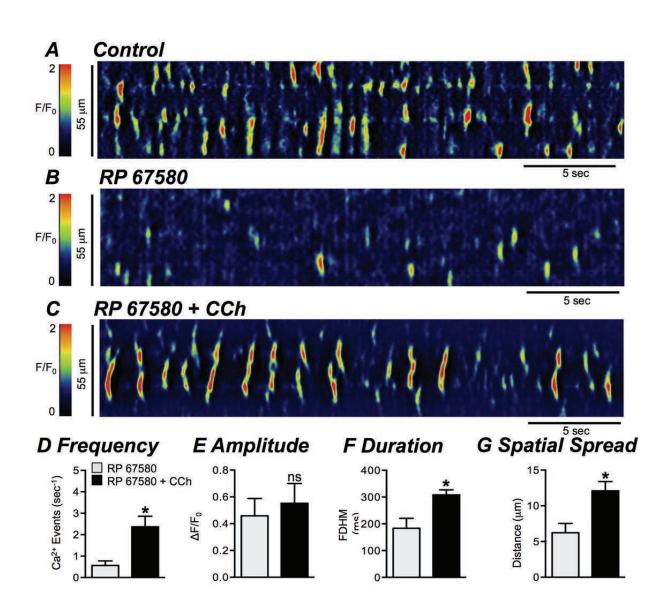






Frequency change D during EFS (final 3 sec)




E Frequency change Post stimulus

