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Study of the size and shape of synapses in the juvenile 42 

rat somatosensory cortex with 3D electron microscopy 43 

 44 

Abstract 45 

Changes in the size of the synaptic junction are thought to have significant functional 46 

consequences. We used focused ion beam milling and scanning electron microscopy (FIB/SEM) 47 

to obtain stacks of serial sections from the six layers of the rat somatosensory cortex. We have 48 

segmented in three-dimensions a large number of synapses (n=6891) to analyze the size and 49 

shape of excitatory (asymmetric) and inhibitory (symmetric) synapses, using dedicated 50 

software. This study provided three main findings. Firstly, the mean synaptic sizes were smaller 51 

for asymmetric than for symmetric synapses in all cortical layers. In all cases, synaptic junction 52 

sizes followed a log-normal distribution. Secondly, most cortical synapses had disc-shaped 53 

postsynaptic densities (93%). A few were perforated (4.5%), while a smaller proportion (2.5%) 54 

showed a tortuous horseshoe-shaped perimeter. Thirdly, the curvature was larger for 55 

symmetric than for asymmetric synapses in all layers. However, there was no correlation 56 

between synaptic area and curvature. 57 

 58 

Significance Statement 59 

The size of synapses correlates with functional aspects such as the probability of 60 

neurotransmitter release or the number of postsynaptic receptors. The data obtained in the 61 

present study is based on the analysis of thousands synaptic junctions, that have been imaged 62 

and segmented in 3D with semi automated electron microcopy and image analysis methods, 63 

providing a robust set of morphological data.  Since currently-available 3D quantitative data 64 

are scarce and mainly based on individual cases, the present results in conjunction with other 65 

crucial microanatomical data —such as the number and distribution of different types of 66 

synapses and the identification of postsynaptic targets in different cortical layers— will help to 67 

better understand the structure of microcircuits and to build realistic cortical models. 68 

 69 

  70 



 

4 
 

Introduction 71 

There are two main types of chemical synapses in the cerebral cortex that can be identified at 72 

the electron microscope level based on morphological criteria: asymmetric synapses (AS), that 73 

have a thickened postsynaptic density (PSD) and are generally excitatory (glutamatergic), and 74 

symmetric synapses (SS), that have a thinner PSD and are inhibitory (GABAergic) (Houser et al., 75 

1984; Peters et al., 1991; Ascoli et al., 2008). In the cerebral cortex, the vast majority of 76 

synapses are established in the neuropil which represents 90 98% of the volume of the gray 77 

matter (Alonso-Nanclares et al., 2008). In the neuropil, which is composed of dendrites, axons 78 

and glial processes, most cortical synapses are excitatory (80 90%) and originate from spiny 79 

neurons and extrinsic cortical afferents. Inhibitory synapses are less numerous (about 10 20%) 80 

and mainly originate from local interneurons (Feldman, 1984; Beaulieu and Colonnier, 1985; 81 

Schüz and Palm, 1989; White and Keller, 1989; DeFelipe and Fariñas, 1992; DeFelipe et al., 82 

2002; White, 2007; Silberberg, 2008).  83 

Synapses are dynamic structures than can undergo modifications due to variations in their 84 

activity patterns; they are continuously remodeled and replaced as part of the normal 85 

maintenance of the brain (Fauth and Tetzlaff, 2016; Lisman, 2017). This is important because 86 

the size of the active zone (AZ) is proportional to the number of docked synaptic vesicles and 87 

to the probability of neurotransmitter release (Schikorski and Stevens, 1997; Branco et al., 88 

2010; Matz et al., 2010; Holderith et al., 2012), and the PSD area is proportional to the number 89 

of postsynaptic receptors (Nusser et al., 1998; Kharazia and Weinberg, 1999; Takumi et al., 90 

1999; Ganeshina et al., 2004a, b; Tarusawa et al., 2009). Thus, changes in the surface areas of 91 

the AZ and PSD have significant functional consequences. However, measuring the size of a 92 

synapse is not an easy task and different approaches have been used to overcome this 93 

difficulty. The cross-sectional length of the PSDs in single photomicrographs obtained by 94 

transmission electron microscopy (TEM) gives a rough estimate of synaptic sizes (DeFelipe et 95 
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al., 1999). Better estimates can be obtained from TEM serial sections, measuring the maximum 96 

width of the PSDs (Tarusawa et al., 2009) or the PSD surface area (Toni et al., 2001). However, 97 

serial sectioning is a time-consuming and technically demanding task. Consequently, data on 98 

synaptic sizes are either relatively inaccurate or based on relatively scant data. Recently, new 99 

electron microscopy techniques have been developed that allow us to obtain long series of 100 

sections in an automated way (Denk and Horstmann, 2004; Smith, 2007; Knott et al., 2008; 101 

Merchan-Perez et al., 2009; Helmstaedter, 2013; Morgan and Lichtman, 2013). For example, 102 

using focused ion beam milling and scanning electron microscopy (FIB/SEM), large numbers of 103 

synaptic junctions can be three-dimensionally segmented from serial sections (Morales et al., 104 

2011). Simple measurements, such as the Feret’s diameter (the diameter of the smallest 105 

sphere circumscribing the three-dimensional object) can be obtained (Anton-Sanchez et al., 106 

2014; Merchan-Perez et al., 2014). The main advantage of Feret’s diameter is its simplicity, 107 

although it provides no information about shape. A more accurate method has been 108 

developed to estimate the size and shape of synapses. Since the AZ and the PSD are located 109 

face to face and their surface areas are very similar (Schikorski and Stevens, 1997, 1999) they 110 

can be represented by a single surface, the synaptic apposition surface (SAS), that can be 111 

automatically extracted with dedicated software (Morales et al., 2013). The SAS provides not 112 

only quantitative information, but also qualitative visual information about the shape of the 113 

synaptic junction, such as curvature, perimeter tortuosity or the presence of perforations. 114 

In this work, we have studied the size and shape of AS and SS on spines and dendritic shafts in 115 

the neuropil of all cortical layers of the somatosensory cortex. We used a large database of 116 

synaptic junctions that were fully segmented in 3D (n= 6891) from Wistar rats at postnatal day 117 

14. We extracted and measured the SAS of these synapses using the method developed by 118 

Morales et al (2013). This experimental animal —at this age—was selected since we intended 119 

to integrate these data with other anatomical, molecular, and physiological data that have 120 

already been collected from the same cortical region. The final goal is to obtain accurate 121 
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quantitative data that help to create a detailed, biologically accurate model of circuitry for all 122 

layers in the primary somatosensory cortex, within the framework of the Blue Brain Project 123 

(Markram et al., 2015).  124 

Materials and methods 125 

Animals and Tissue Preparation  126 

 127 

Three male Wistar rats sacrificed on postnatal day 14 were used for this study. Animals were 128 

administered a lethal intraperitoneal injection of sodium pentobarbital (40 mg/kg) and were 129 

intracardially perfused with 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M 130 

phosphate buffer (PB). The brain was then extracted from the skull and processed for electron 131 

microscopy according to a previously described protocol (Merchan-Perez et al., 2009). Briefly, 132 

the brains were extracted from the skull and post-fixed at 4°C overnight in the same solution. 133 

Vibratome sections were obtained (150 μm thick). Sections containing the primary 134 

somatosensory cortex (hindlimb representation) were selected with the help of an atlas 135 

(Paxinos and Watson, 2007). The sections were then osmicated for 1 h at room temperature in 136 

PB with 1% OsO4, 7% glucose and 0.02 M CaCl2. After washing in PB, the sections were stained 137 

en bloc for 30 min with 1% uranyl acetate in 50% ethanol at 37°C, and were then flat-138 

embedded in Araldite. These tissue samples have been used previously to describe the 139 

proportions and densities of AS and SS synapses on spines and dendritic shafts across all 140 

cortical layers, as well as the occurrence of single or multiple synapses on the same spine 141 

(Santuy et al., 2017).  142 

All animals were handled in accordance with the guidelines for animal research set out in the 143 

European Community Directive 2010/63/EU, and all procedures were approved by the local 144 

ethics committee of the Spanish National Research Council (CSIC). 145 

 146 
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Three-Dimensional Electron Microscopy  147 

 148 

Three-dimensional brain tissue samples of the somatosensory cortex (hindlimb representation) 149 

were obtained using combined focused ion beam milling and scanning electron microscopy 150 

(FIB/SEM). We used a Crossbeam® Neon40 EsB electron microscope with a field emission SEM 151 

column and a Gallium FIB (Carl Zeiss NTS GmbH, Oberkochen, Germany). To select the exact 152 

location to be imaged and to identify the cortical layers, we obtained semithin sections (2 μm 153 

thick) from the block surface and stained them with toluidine blue. These sections were then 154 

photographed with a light microscope. The last of these light microscope images 155 

(corresponding to the section immediately adjacent to the block face) was then collated with 156 

SEM photographs of the block face. A gallium ion beam was used to mill the sample, removing 157 

thin layers of material on a nanometer scale. After removing each slice (20 nm thick), the 158 

milling process was paused, and the freshly exposed surface was imaged with a 1.8-kV 159 

acceleration potential using an in-column energy selective backscattered electron detector. 160 

The milling and imaging processes were sequentially repeated in a fully automated way, and 161 

long series of images were acquired, thus obtaining a stack of images that represented a 3-162 

dimensional sample of the tissue (Merchan-Perez et al., 2009). Twenty-nine different stacks of 163 

images of the neuropil in the six layers of the somatosensory cortex were obtained (three 164 

samples from layer I, four from layer II, ten from layer III, five from layer IV, three from layer V 165 

and four from layer VI).  All these stacks were used previously for the study of the density and 166 

three-dimensional distribution of synapses (Anton-Sanchez et al., 2014; Merchan-Perez et al., 167 

2014), as well as for the quantitative estimation of the subcellular location of synapses on 168 

spines and dendritic shafts (Santuy et al., 2017). This study was performed in the neuropil, so 169 

we used stacks of images that did not contain cell somata or blood vessels. Image resolution in 170 

the xy plane ranged from 3.7 to 4.5 nm/pixel. Resolution in the z axis (section thickness) was 171 

20 nm. With these resolution parameters, we obtained images of 2048 x 1536 pixels, so the 172 
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field of view was 7.56 x 5.68 μm at 3.7 nm/pixel. Noise reduction was performed by line 173 

averaging, and the acquisition time per image was approximately four minutes. Although the 174 

resolution of FIB/SEM images can be increased, we chose these parameters as a compromise 175 

solution to obtain a large enough field of view where synaptic junctions could still be clearly 176 

identified, in a period of time that allowed us to acquire between 189 and 363 serial sections 177 

per stack (mean: 254.66; total: 7385 sections). 178 

 179 

Extraction of the Synaptic Apposition Surface 180 

 181 

Synaptic junctions within these volumes were visualized and automatically segmented in three 182 

dimensions with Espina software (Morales et al., 2011). The segmentation algorithm makes 183 

use of the fact that presynaptic and postsynaptic densities appear as dark, electron-dense 184 

structures under the electron microscope. It requires a Gaussian blur filter preprocessing step 185 

to eliminate noisy pixels, followed by a gray-level threshold to extract all the voxels that fit the 186 

gray levels of the synaptic junction. In this way, the resulting 3D segmentation includes both 187 

the pre- and postsynaptic densities. Since the pre- and postsynaptic densities are located face 188 

to face, their surface areas are very similar (correlation coefficients over 0.97; see (Schikorski 189 

and Stevens, 1997, 1999). Thus, they can be simplified to a single surface and represented as 190 

the surface of apposition between the pre- and postsynaptic densities. This surface can be 191 

extracted from the three-dimensionally segmented synaptic junction (Morales et al., 2013). For 192 

the sake of clarity, we will refer to this surface as the synaptic apposition surface (SAS). EspINA 193 

was used to visualize the SAS in 3D and the possible presence of perforations or deep 194 

indentations in the perimeter were recorded. EspINA was also used to measure SAS areas and 195 

perimeters. Since the SAS adapts to the curvature of the synaptic junction, we have also 196 

measured its curvature as one minus the ratio between the projected area of the SAS and the 197 

area of the SAS. This measure would equal 0 in a totally flat SAS, and the value would increase 198 
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up to a maximum of 1 as the SAS curvature increases. All measurements have been corrected 199 

for tissue shrinkage due to processing for electron microscopy (Merchan-Perez et al., 2009). 200 

Correction factors for volume, surface and linear measurements were 0.73, 0.81 and 0.90, 201 

respectively. 202 

 203 

Statistical analysis 204 

To study whether there were significant differences we performed multiple mean comparison 205 

tests on the 29 samples of the six cortical layers. Since the necessary assumptions for ANOVA 206 

were not satisfied (the normality and homoscedasticity criteria were not met), we used the 207 

Mann-Whitney test for pair-wise comparisons. Chi-square tests were used for contingency 208 

tables. Linear regression was used to find correlations. SPSS 22.0 (IBM Corp.) and Easyfit 209 

Professional 5.5 (MathWave Technologies) were used.  210 
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Results 211 

 212 

Synaptic junction areas and perimeters 213 

In our samples, we found 7569 synaptic junctions. We discarded 678 (8.96%) because they 214 

were truncated by the edges of the field of view. Thus, we finally analyzed 6891 synapses 215 

whose synaptic junctions were complete, so their SAS could be extracted (Figure 1). Of these, 216 

6259 (90.83%) were AS and 632 were SS (9.17%).  217 

SAS areas ranged from 909.23 to 556393.19 nm2 for AS, and from 3388.21 to 631774.04 nm2 218 

for SS. Mean SAS areas were smaller for AS than for SS in all cortical layers (Table 1, Figure 2A) 219 

and these differences were statistically significant in all cases (MW tests, p<0.001 in layers I to 220 

V and p = 0.026 in layer VI). For AS, the largest mean SAS areas were found in layer III (mean = 221 

72729.58 nm2) and the differences between this layer and all other layers were statistically 222 

significant (MW, p ≤ 0.023). The smallest mean SAS areas of AS were found in layer IV (mean = 223 

54770.81 nm2) and the differences between this layer and layers I, III and V were statistically 224 

significant (MW, p ≤ 0.001). For SS, the largest mean SAS areas were also found in layer III 225 

(mean = 116703.43 nm2; differences were statistically significant between this layer and layers 226 

II, IV and VI; MW, p ≤ 0.002). The smallest mean SAS areas of SS were found in layer IV (mean = 227 

68355.35 nm2) and the differences were statistically significant between this layer and all other 228 

layers except layer VI (MW, p ≤ 0.031).  229 

We also measured the perimeters of the SAS (Table 2, Figure 2B). For each individual layer, 230 

mean perimeters were always larger for SS than for AS (Figure 2B; Table 2). As expected, there 231 

was a strong correlation between SAS area and perimeter (R2=0.75 for all synapses; R2=0.75 for 232 

AS; R2=0.72 for SS) (Figure 2C). It is also interesting to note that the larger the SAS area, the 233 

more tortuous its perimeter. This can be seen in Figure 2C, which shows that the SAS 234 

perimeter tends to grow faster than the perimeter of a circle.  235 
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To further characterize the size distribution of SAS, we plotted the frequency histograms of 236 

SAS areas for each individual layer and for all layers as a whole. For AS, frequency histograms 237 

had similar shapes in all layers, with a tail to the right, and they overlapped greatly (Figure 3A). 238 

For SS, more irregular-shaped histograms were obtained for individual layers, probably due to 239 

the smaller number of synaptic junctions that were analyzed per layer (Figure 3B) (see also 240 

Table 1). We then performed goodness-of-fit tests to find the theoretical probability density 241 

functions that best fitted the empirical distributions of SAS areas in each layer and in all layers 242 

pooled together. We found that the best fit corresponded to log-normal distributions in all 243 

cases (Table 1 and Figure 3). These log-normal distributions, with some variations in the 244 

location (μ) and scale (σ) parameters (Table 1), were found in all layers for both AS and SS, 245 

although the fit was better for AS than for SS, probably due to the smaller number of SS 246 

analyzed (Figure 3). The best-fit probability density functions for SAS perimeters were also log-247 

normal distributions (Table 2). 248 

 249 

Size of synaptic junctions on dendritic spines and shafts 250 

We also determined whether the postsynaptic element where the synapses were established 251 

(dendritic spines or shafts) was associated with differences in the size of PSDs. Unambiguous 252 

identification of spines required the dendritic spine to be visually traced to the parent dendrite 253 

within the 3D stack of serial sections. Similarly, dendritic shafts needed to be followed inside 254 

the stack until they could be clearly identified. For this analysis, we studied 6000 synapses 255 

whose postsynaptic targets were successfully identified. We found that the mean SAS area of 256 

synapses located on dendritic shafts (88795.98 nm2 ± sem = 2210.16) was larger than the 257 

mean SAS area of those located on necks (57879.38 nm2 ± sem= 3998.65) and spine heads 258 

(65164.05 nm2 ± sem= 797.26) (MW tests, p<0.001). This difference could be due to the fact 259 

that SS, which are larger than AS, were predominantly located on dendritic shafts (in this 260 
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sample, 73.39% of SS were located on shafts, while only 14.61% of AS were located on shafts). 261 

To rule out this possibility, we analyzed AS and SS independently. We found that the mean SAS 262 

area of AS located on shafts (78255.07 nm2 ± sem = 2413.73) was larger than those located on 263 

dendritic spines heads (65196.81 nm2 ± sem= 811.93) (MW test, p<0.001) and the ones on 264 

spines heads were larger than those on necks (52326.09 nm2 ± sem = 4394.36) (MW test, 265 

p=0.04). Similarly, the mean SAS areas of SS were larger on shafts (109798.76 nm2 ± sem= 266 

4358.62) compared to dendritic spine heads (63808.43 nm2 ± sem = 3592.90) and necks 267 

(74697.93 nm2 ± sem= 8576.53) (MW tests, p<0.001), although the difference between SS on 268 

spine heads and necks was not statistically significant (MW tests, p=0.33). Therefore, synapses 269 

located on dendritic shafts were larger than those located on dendritic spines, both for AS and 270 

SS. When single cortical layers were analyzed, we also found that the mean SAS area of 271 

synapses established on dendritic shafts was always larger than SAS areas of synapses on 272 

dendritic spines. In spite of the differences in the mean SAS areas mentioned above, the 273 

frequency histograms of SAS areas of AS and SS on dendritic shafts and spines greatly 274 

overlapped, as shown in Figure 4.  275 

 276 

The shape of synaptic junctions 277 

The shape of synaptic junctions was very variable (Figure 5) but can be categorized into three 278 

main types. Most cortical synapses had disc-shaped, macular PSDs (93%). A small percentage 279 

had perforations, with one or more holes in the PSD (4.5%), while an even smaller proportion 280 

(2.5%) had a tortuous horseshoe-shaped perimeter with an indentation. Macular and 281 

perforated synapses followed the previously described 9:1 proportion between AS and SS, but 282 

in the case of horseshoe-shaped PSDs, this proportion was 8:2, indicating that horseshoe-283 

shaped synaptic junctions were relatively more frequent among SS than among AS (Chi 284 

squared, p< 0.001). 285 
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The mean SAS area of macular synapses was smaller (mean ± sem = 61737.72 nm2 ± 606.10) 286 

than horseshoe-shaped synapses (148469.66 nm2 ± 6321.63) (MW test, p<0.001) and the 287 

mean SAS area of horseshoe-shaped synaptic junctions was smaller than that of perforated 288 

synapses (176710.07 nm2 ± 5875.00) (MW test, p=0.005) (Table 3). Despite the differences in 289 

the mean SAS areas, perforated and horseshoe-shaped synaptic junctions were intermingled 290 

with the predominant macular synaptic junctions (Figures 5 and 6). The perimeter of macular 291 

synapses was shorter (1423.96 nm ± 10.22) than horseshoe-shaped synapses (3124.70 nm ± 292 

107.62) (MW test, p<0.001) and perforated synapses (3106.10 nm ± 87.94) (MW test, 293 

p<0.001), while horseshoe-shaped and perforated synapses had similar perimeters (MW test, 294 

p=0.59) (Table 3).  295 

For all three categories (macular, perforated and horseshoe-shaped), SS had a larger area and 296 

perimeter than AS (Table 3), although these differences were only statistically significant for 297 

macular synapses (MW test; p<0.001). 298 

The proportions of macular, horseshoe and perforated synaptic junctions were similar in layers 299 

II to VI. However, we found that horseshoe-shaped and perforated synapses were more 300 

common in layer I (Chi squared, p<0.001) (Figure 6A). No preference was found in the location 301 

of macular, perforated or horseshoe-shaped synapses on spines or dendritic shafts — and this 302 

was the case for both AS (Chi squared, p=0.22) and SS (Chi squared, p=0.66). 303 

We also measured SAS curvature by calculating one minus the ratio between the projected 304 

area of the SAS and the area of the SAS. This value would equal 0 for a totally flat SAS and it 305 

would increase as the SAS becomes more curved or wrinkled (see Methods). Our results 306 

indicate that SAS curvature was higher for SS than for AS in all layers (MW tests, p≤0.028) 307 

(Figure 7A). We made pair comparisons of AS curvature between each cortical layer and all the 308 

others and we found statistically significant differences between all layers (MW tests, p<0.05) 309 

except between layers I and II (MW test, p=0.325), and layers III and V (MW test, p=0.14). For 310 
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SS, statistically significant differences were found between layers IV and VI (the ones with 311 

flattest synapses) and all the other layers (MW tests, p<0.001). Macular synapses were flatter 312 

(mean ± sem, 0.07 ± 0.001) than horseshoe-shaped (0.11 ± 0.005) (MW test, p<0.001) and 313 

perforated synapses (0.10 ± 0.003) (MW test p<0.001). Horseshoe-shaped and perforated 314 

synapses had similar curvature (MW test, p=0.58) (Table 3). We found no correlation between 315 

SAS area and curvature (R2 = 0.08 for AS; R2 = 0.03 for SS) (Figure 7B). 316 

 317 

Discussion 318 

In the present study, we used a new method to estimate the size and shape of synapses that 319 

involved extracting the SAS from synaptic junctions segmented in three dimensions, using 320 

combined focused ion beam milling and scanning electron microscopy.  This study provided 321 

three main findings. Firstly, the mean SAS areas were smaller for AS than for SS in all cortical 322 

layers and these differences were statistically significant in all cases. For both AS and SS, the 323 

largest mean SAS areas were found in layer III and the smallest mean SAS areas were found in 324 

layer IV. In all cases (AS and SS, in all layers), the distributions of synaptic junction size followed 325 

a skewed curve with a long tail to the right, corresponding to a log-normal distribution. 326 

Secondly, most cortical synapses had disc-shaped, macular PSDs (93%). A few were perforated, 327 

with one or more holes in the PSD (4.5%), while an even smaller proportion (2.5%) showed a 328 

tortuous horseshoe-shaped perimeter with a deep indentation. Thirdly, the SAS curvature was 329 

larger for SS than for AS in all layers. However, there was no correlation between SAS area and 330 

curvature for AS or SS.  331 

 332 

  333 
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Methods to estimate the size of synaptic junctions 334 

Several methods have traditionally been used to estimate the size of synaptic junctions.  The 335 

simplest of these methods is to measure the cross-sectional length of synaptic junctions in 336 

TEM micrographs. This method has obvious limitations since it is based on individual 2D 337 

images where a portion of synapses cannot be fully characterized (for example, see DeFelipe et 338 

al. (1999)), and it also reduces size estimation to a one-dimensional measurement that is not 339 

equivalent to any easily interpretable geometrical measure such as the mean diameter, for 340 

example. Methods that use serial sections can yield more reliable measurements, even if only 341 

simple measurements such as the maximum width of the PSD are used (Tarusawa et al., 2009). 342 

The cross-sectional length of the PSD can also be measured in each section of the series and 343 

multiplied by section thickness and by number of sections (Arellano et al., 2007; Bopp et al., 344 

2017; Hsu et al., 2017). Alternatively, the PSD can be reconstructed from the series of sections 345 

and its contour can be measured in 3D (Bosch et al., 2015; Dufour et al., 2015; Rollenhagen et 346 

al., 2015; Bosch et al., 2016; Rodriguez-Moreno et al., 2017). Another measurement that has 347 

been used to estimate the size of synaptic junctions in 3D is the diameter of Feret, which is 348 

equivalent to the diameter of the smallest sphere circumscribing the reconstructed object 349 

(Merchan-Perez et al., 2014). The Feret’s diameter is a simple and reliable measurement that 350 

can be automatically obtained at a low computational cost, and it has been shown to be useful 351 

to build models that reproduce the distribution of synapses in three-dimensional space 352 

(Anton-Sanchez et al., 2014). However, it does not accurately describe the morphology of 353 

synapses, since it obviously oversimplifies the geometric characteristics of the measured 354 

object, and it is clear that objects with very different morphologies can have similar Feret’s 355 

diameters. Another indirect measurement of the size of the synaptic junction is the axon-spine 356 

interface (ASI), which represents the total apposition surface between the membrane of the 357 

axonal bouton and the membrane of the dendritic spine (de Vivo et al., 2017). We have used 358 

the synaptic apposition surface (SAS), which is equivalent to the interface between the active 359 



 

16 
 

zone and the PSD. Therefore, although the area of the ASI and the PSD are correlated 360 

(Cheetham et al., 2014), data from de Vivo et al. (2017) are not comparable with ours, except 361 

for the fact that our measurements of the SAS are smaller than their measurements of the ASI. 362 

This is because the SAS is always inside the ASI and thus it is smaller than the ASI. Moreover, 363 

our methodology provides information on the shape of the PSD, as well as information about 364 

synapses established on dendritic shafts, that cannot be obtained from ASI measurements.   365 

Synaptic apposition surface  366 

In the present study, we used the synaptic apposition surface (SAS) because it has three main 367 

advantages over the methods outlined above. First, it is extracted automatically from the 368 

previously segmented synaptic junction with no user intervention, thus avoiding any manual 369 

tracing of contours and possible associated user bias (Alonso-Nanclares et al., 2013; Morales et 370 

al., 2013). Second, despite being a surface, the SAS is also a 3D object that adapts to, and 371 

reproduces the shape and curvature of the PSD. Therefore, the SAS can be visualized in 3D to 372 

obtain qualitative information such as the presence of perforations or indentations (see Figure 373 

5). Third, quantitative information on the surface area, perimeter and curvature can also be 374 

extracted from the SAS, so size and shape can easily be correlated. Given that the initial 375 

segmentation of synaptic junctions has been performed within 3D tissue samples using a semi-376 

automatic method (Morales et al., 2011), and the SAS have been extracted in a fully 377 

automated way, we have been able to obtain 6,891 synaptic junctions whose shape and size 378 

have been analyzed in the six cortical layers. Additionally, the postsynaptic target (dendritic 379 

spines or shafts) has been unambiguously identified in 6,000 of these synaptic junctions.  380 

Size of synaptic junctions 381 

The size of both types of synaptic junctions (asymmetric and symmetric) follows log-normal 382 

distributions. Despite the fact that the mean SAS area is larger for SS than for AS, their 383 

respective distributions greatly overlap (Figure 3), so it would be impossible to distinguish AS 384 
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from SS on the basis of synaptic junction size alone. It is tempting to correlate the log-normal 385 

distribution of synaptic sizes with other parameters such as synaptic strength and spike 386 

transmission probability, which also follow log-normal distributions (reviewed by Buzsaki and 387 

Mizuseki (2014)). For example, the distribution of the size of unitary excitatory postsynaptic 388 

potentials (EPSP) is very similar to the distribution of the size of SAS reported here, with a 389 

skewed envelope and a long tail to the right (Song et al., 2005; Lefort et al., 2009). Moreover, 390 

the EPSP amplitude strongly correlates with the number of postsynaptic AMPA receptors and 391 

with spine head volume (Matsuzaki et al., 2001; Kasai et al., 2003; Araya, 2014), which in turn 392 

strongly correlates with PSD size (Arellano et al., 2007). Model experiments also suggest that 393 

PSD size has a strong influence on the activation of postsynaptic receptors (Montes et al., 394 

2015). It is also interesting to note that the event-to-event variability of synaptic strength for 395 

individual synapses is largest for weaker synapses and decreases for stronger synapses (Lefort 396 

et al., 2009; Ikegaya et al., 2013). This may also be related to synaptic junction size, since the 397 

same phenomenon —a decrease in variability as synaptic size increases— has been described 398 

in model experiments (Franks et al., 2002; Montes et al., 2015). This suggests that large 399 

synapses have a higher number of receptors and are not only stronger, but also have a more 400 

homogeneous and reliable response. However, it is important to note that the amplitude of 401 

the EPSP also depends on the geometry of postsynaptic dendrites (Major et al., 2013; Eyal et 402 

al., 2014), as well as on the morphology of dendritic spines (Gulledge et al., 2012; Araya, 2014). 403 

Another important source of variability is the number of postsynaptic receptor molecules in 404 

individual synapses. For example, it has been shown in the hippocampus that the number of 405 

AMPA receptors as a function of synaptic size has different slopes in the synapses established 406 

between Shaffer collaterals and CA1 dendritic spines and in the synapses between mossy 407 

fibers and CA3 spines (Nusser et al., 1998). In the somatosensory cortex of the rat, AMPA 408 

receptor concentration is similar in synapses of different sizes; thus, the larger the synapse the 409 

higher the actual number of AMPA receptors (Kharazia and Weinberg, 1999), while NMDA 410 
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receptors are found at a higher concentration in smaller synapses. In any case, it is obvious 411 

that the distribution of different types of receptors among different types of synapses is a 412 

complex issue (Hadzic et al., 2017), so the relationship between synaptic size and receptor 413 

number is not simple and requires further research. 414 

Different synaptic sizes have been associated with different functions. For example, it has been 415 

proposed that small dendritic spines are preferential sites for long-term potentiation 416 

induction, whereas large spines might represent physical traces of long-term memory 417 

(Matsuzaki et al., 2004; Kasai et al., 2010). Our data show that synaptic size follows a log-418 

normal distribution, which is unimodal and continuous, so neither AS nor SS can be divided 419 

into two groups on the basis of synaptic junction size. Therefore, if the function of “learning or 420 

memory” synapse depends on synaptic size, there would not be a clear-cut transition between 421 

the two types of synapse. Additionally, It has been proposed that the functional role of 422 

synapses may also depend on the sharp decrease of event-to-event variability as synaptic size 423 

grows, so the functional transition between “learning and memory” synapses would be faster 424 

than if it depended on synaptic size alone (Montes et al., 2015). In any case, if synapses of 425 

different sizes serve different functions, synapses on dendritic shafts must also be taken into 426 

account. Although such synapses are not the predominant type (about 15% of AS and 73% of 427 

SS; see also (Santuy et al., 2017), their mean sizes are larger than axospinous synapses, both 428 

for AS and SS.  429 

Horseshoe-shaped and perforated synapses 430 

Synaptic junctions with deep indentations (horseshoe synapses) and perforated synapses were 431 

scarce in our sample; even if we pool together horseshoe-shaped and perforated synapses, 432 

they only accounted for about 7% of the whole population. The question arises about whether 433 

they are a separate population of synapses, with different morpho-functional features from 434 

the predominant macular synapses. These types of synapses are mainly located in the right tail 435 
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of the synaptic size distributions, so their mean area is larger than the mean area of macular 436 

synapses, in line with numerous studies (Calverley and Jones, 1987; Geinisman et al., 1987; 437 

Jones and Calverley, 1991; Harris et al., 1992). Nevertheless, the sizes of horseshoe-shaped 438 

and perforated synapses also greatly overlap with the sizes of macular synapses, so there is 439 

not a boundary separating them from macular synapses (Fig. 6). Regarding the perimeter of 440 

horseshoe and perforated synapses, again we did not find any boundary, since the perimeter 441 

tends to be more complex as the PSD gets larger, regardless of the presence of perforations.  442 

If we interpret perforations and deep indentations as dynamic, non-permanent, features that 443 

may only depend on the molecular turnover of the constituents of the PSD, then perforated 444 

and horseshoe PSDs would belong to the same pathway as macular PSDs. The smallest 445 

synapses would have a macular shape whose perimeter would get progressively more tortuous 446 

as they grow. Deep indentations and perforations would appear (and eventually disappear) as 447 

the PSD becomes larger. The incorporation of receptors into the PSD depends on lateral 448 

diffusion from the surrounding plasma membrane (Choquet and Triller, 2013; Li and Blanpied, 449 

2016) and on processes of endocytosis and exocytosis from the endosomal compartment 450 

(Choquet and Triller, 2013; Kneussel and Hausrat, 2016). In this scenario, we can hypothesize 451 

that indentations and perforations could be the morphological correlate of a more active —or 452 

just more apparent— turnover of receptors in larger PSDs. In fact, it has been shown in the 453 

hippocampus that the relative proportions of horseshoe, perforated and fragmented or 454 

partitioned synapses (synapses that have several irregular small disc-shaped PSDs, with no 455 

connection between them) do change after the induction of long-term potentiation 456 

(Geinisman et al., 1993; Toni et al., 2001). This phenomenon may or may not take place in the 457 

neocortex, where we have found horseshoe and perforated PSDs but not partitioned synapses. 458 

The fact that very different types of synapses such as AS and SS have perforations also 459 

suggests that these perforations are the result of a general, non-specific mechanism, related to 460 

synaptic growth and remodeling.  461 
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Alternatively, perforated and probably also horseshoe-shaped synaptic junctions may belong 462 

to different populations of synapses. The main argument favoring this hypothesis is that in 463 

certain terminals, specifically in thalamocortical boutons in layer IV, perforated synapses are 464 

frequent (Bopp et al., 2017; Rodriguez-Moreno et al., 2017), while they are scarce if we 465 

consider the whole synaptic population. Our data seems to contradict this hypothesis mainly 466 

because the proportion of perforated synapses is very similar in layers II to VI. However, 467 

thalamocortical synapses represent only a minor proportion of layer IV synapses (less than 468 

10%; e.g., see da Costa and Martin (2009)) and, therefore, their number may not be high 469 

enough to contribute to a significant difference with other layers. Species and age differences 470 

must also be taken into consideration, since the proportion of perforated synapses in layer 471 

II/III of the visual and frontal cortices of the adult mouse seem to be larger than those 472 

reported here (Hsu et al., 2017). 473 

Curvature of the synaptic apposition surfaces.  474 

The relevance of the curvature of the synapse has been discussed since the seventies when 475 

Jones and Devon (1978) described changes in the curvature when administering anesthetics. 476 

Diverse studies led to the conclusion that positively curved synapses represented functional 477 

synapses, while negatively curved synapses were non-functional. Later studies revoked this 478 

view, as they showed that many other factors could influence the curvature of synapses (for 479 

example, the region studied; positively curved synapses predominated in the cortex while 480 

negatively curved synapses predominated in the hippocampus) (Calverley and Jones, 1990). 481 

Nevertheless, more recent studies suggest that changes in the synaptic curvature may 482 

influence synaptic efficacy (Medvedev et al., 2010). In the present study, we found that SAS 483 

curvature was larger for SS than for AS in all layers. Furthermore, for AS, statistically significant 484 

differences were found between all layers except between layers III and V. Curvature 485 

differences between SS were found between layer IV and all the other layers, and this was also 486 
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the case for layer VI. Therefore, if synaptic curvature has an influence on synaptic efficacy, our 487 

results would indicate that this characteristic is layer and synaptic-type dependent. However, 488 

there was no correlation between SAS area and curvature for AS or SS. Since the area of the 489 

SAS seems to be related to the strength of synapses, the significance of the differences in 490 

synaptic curvature found between different layers and types of synapses observed in the 491 

present study remains to be determined.  492 

Concluding remarks 493 

Collectively, the results indicate that there are laminar-specific similarities and differences 494 

regarding the size and shape of synaptic junctions. The functional implication of these 495 

variations is unknown but they may be related to synaptic attributes of particular synaptic 496 

circuits which are characteristic of each layer. The data obtained in the present study is based 497 

on the analysis of thousands of 3D-segmented synaptic junctions, providing a robust set of 498 

morphological data.  Since currently-available 3D quantitative data are rather scarce and 499 

mainly based on individual cases, the present results in conjunction with other crucial 500 

microanatomical data —such as the number and distribution of different types of synapses 501 

and the identification of postsynaptic targets in different cortical layers— will help to better 502 

understand the structure of microcircuits and to build realistic cortical models. 503 

 504 

  505 
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Figures 708 

 709 

Figure 1. Identification, segmentation and extraction of the synaptic apposition surface (SAS) 710 
of a synaptic junction from serial images obtained with combined Focused Ion Beam milling 711 
and Scanning Electron Microcopy (FIB/SEM). (A-D) Sections 91, 94, 98 and 101 from a stack of 712 
serial sections obtained with FIB/SEM from the rat somatosensory cortex. Identification of an 713 
asymmetric synapse whose prominent postsynaptic density is clearly visible (arrow). Note that 714 
the identification was not based on single images but on the examination of the full sequence 715 
of images where the synapse was visible (numbers in the top-right corner of each frame 716 
correspond to section number; each individual section was 20 nm thick). (E-H) Segmentation of 717 
the synaptic junction (green) with Espina software. (I, J) The resulting 3D object representing 718 
the synaptic junction (green) visualized from two different angles. (K, L) The SAS (yellow) that 719 
has been extracted from the 3D synaptic junction shown in (I) and (J). (M) Panoramic view of 720 
all the SAS extracted from a whole stack of images. Scale bar in (H): 1μm for (A-H). 721 
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 722 

Figure 2. Size and perimeter of synaptic junctions (mean ± sem). (A) Surface area of synaptic 723 
apposition surfaces (SAS) of asymmetric synapses (AS, green bars) and symmetric synapses (SS, 724 
red bars) in the six cortical layers. AS were smaller than SS in all layers (MW tests, p<0.001 in 725 
layers I to V; p=0.026 in layer VI). For both AS and SS, the largest SAS were found in layer III and 726 
the smallest were found in layer IV. (B) Perimeters of SAS of AS (green bars) and SS (red bars) 727 
in the six cortical layers. Perimeters of SAS showed similar differences to SAS areas. (C) Scatter 728 
plot showing the relationship between SAS areas and perimeters. AS are represented as green 729 
dots and SS as red dots. The blue trace indicates the perimeter/area relation of a circle, as a 730 
reference. There is a strong correlation between SAS area and perimeter (R2=0.75 for AS and 731 
SS pooled together, black trace). If we compare the perimeter/area relation of a circle (blue 732 
trace) with the SAS perimeter/area plot of SAS, it is clear that SAS perimeters grow faster than 733 
the perimeter of a circle, indicating that SAS perimeters tend to be more tortuous as SAS area 734 
increases. 735 
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 736 

Figure 3. Frequency histograms of SAS areas and their corresponding best-fit probability 737 
density functions. Frequency histograms of SAS areas in the six cortical layers are represented 738 
for AS and SS in (A) and (B), respectively. Histograms for AS from different layers had similar 739 
shapes and overlapped greatly, while histograms for SS were more irregular. AS and SS from all 740 
layers have been pooled together to build the frequency histograms (blue bars) represented in 741 
(C) and (D). The best-fit distributions representing the theoretical probability density functions 742 
(red traces) have been represented with their corresponding frequency histograms. As an 743 
example for an individual layer, histograms and best-fit distributions for AS and SS from layer 744 
III have been represented in (E) and (F). The best-fit probability function was a log normal 745 
distribution in all cases. Curve fitting was always better for AS (C and E) than for SS (D and F), 746 
probably because of the smaller sample size of SS (see Table 1). The parameters μ and σ of the 747 
log-normal curves are shown in Table 1.  748 
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 749 

Figure 4. SAS areas of synapses on dendritic spines and shafts. (A) Proportions of asymmetric 750 
and symmetric synapses on dendritic spines and shafts. (B) Frequency histograms of SAS areas 751 
of asymmetric synapses on dendritic spines (light green) and on dendritic shafts (dark green). 752 
(C) Frequency histograms of SAS areas of symmetric synapses on dendritic spines (orange) and 753 
on dendritic shafts (dark orange). Frequencies in (B) and (C) have been normalized for each 754 
individual category. 755 
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 756 

 757 

Figure 5. Representative sample of synaptic apposition surfaces of asymmetric and 758 
symmetric synapses. (A) Synaptic apposition surfaces of asymmetric synapses (green) were 759 
distributed into 20 bins of equal size. An example within each bin has been represented here. 760 
(B) Synaptic apposition surfaces of symmetric synapses (red) that were distributed and 761 
selected as in (A). Calibration bar = 1μm.  762 
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 763 

Figure 6. Distribution of synapses of different shapes. (A) Proportion of macular (blue), 764 
perforated (purple) and horseshoe-shaped (orange) synapses in the six layers of the cortex. 765 
Layer I shows a higher proportion of perforated and horseshoe synapses when compared to 766 
layers II-VI (Chi squared, p<0.001). (B) Frequency histograms of the SAS area of macular, 767 
perforated and horseshoe-shaped asymmetric synapses. (C) Frequency histograms of the SAS 768 
area of macular, perforated and horseshoe-shaped symmetric synapses. Frequencies in (B) and 769 
(C) have been normalized for each individual category. 770 
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 771 

Figure 7. Curvature of the synaptic apposition surfaces (SAS). (A) SAS curvature of AS and SS 772 
in the six cortical layers (mean ± sem). SAS curvature was larger for SS (red bars) than for AS 773 
(green bars) in all layers. For AS, statistically significant differences were found between all 774 
layers (MW tests <0.05) except between layers I and II (MW test, p=0.325) and layers III and V 775 
(MW test, p=0.14). Curvature differences between SS were found between layers IV and VI and 776 
all the other layers (MW tests, p<0.001). (B) Scatter plot representing the relationship between 777 
SAS curvature and area of AS (green dots) and SS (red dots). There was no correlation between 778 
SAS area and curvature for AS or SS (R2 = 0.08 for AS; R2 = 0.03 for SS).  779 

  780 
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Tables 781 

 782 

  AS SS 

  
Mean SAS area ± 

sem (nm2) 
n μ σ 

Mean SAS area ± 

sem (nm2) 
n μ σ 

Layer I 70834.87 ± 594 10.81 0.88 104309.94 ± 77 11.29 0.78 

Layer II 58987.37 ± 992 10.72 0.83 87757.53 ± 64 11.14 0.72 

Layer III 72729.58 ± 2212 10.93 0.74 116703.42 ± 185 11.42 0.72 

Layer IV 54770.81 ± 1200 10.65 0.73 68355.35 ± 172 10.88 0.73 

Layer V 69682.16 ± 684 10.85 0.81 113353.40± 62 11.41 0.69 

Layer VI 58668.28 ± 577 10.73 0.70 69382.12 ± 72 10.90 0.76 

Layers I-VI 65299.31± 6259 10.84 0.79 93384.53 ± 632 11.17 0.78 

 783 

Table 1. Mean synaptic apposition surface (SAS) area (nm2 ± sem), number of synaptic SAS 784 

analyzed (n), and the location (μ) and scale (σ) of the best-fit log-normal distributions in the six 785 

cortical layers. Unweighted means for layers I to VI are also given. AS: asymmetric synapses; 786 

SS: symmetric synapses.   787 
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 788 

 789 

 790 

Table 2. Mean SAS perimeter (nm ± sem), number of synapses analyzed (n), and the location 791 

(μ) and scale (σ) of the log-normal distributions of SAS perimeters in the six cortical layers. 792 

Unweighted means for layers I to VI are also shown. AS: asymmetric synapses; SS: symmetric 793 

synapses.  794 

  AS SS 

  

Mean SAS 

perimeter ± sem 

(nm) 

n μ σ 

Mean SAS 

perimeter ± sem 

(nm) 

n μ σ 

Layer I 1538.03 ± 42.13 594 7.16 0.60 2405.01 ± 142.87 77 7.65 0.55 

Layer II 1365.80 ± 29.46 992 7.06 0.55 2141.62 ± 130.11 64 7.55 0.52 

Layer III 1638.51 ± 19.64 2212 7.27 0.59 2838.22 ± 118.19 185 7.81 0.54 

Layer IV 1221.79 ± 18.70 1200 6.99 0.47 1704.83 ± 77.28 172 7.29 0.54 
Layer V 1602.44 ± 38.50 684 7.22 0.56 2736.41 ± 186.46 62 7.77 0.50 

Layer VI 1191.59 ± 25.83 577 6.97 0.45 1697.00 ± 112.65 72 7.29 0.55 

Layers I-VI 1460.71 ± 11.29 6259 7.14 0.54 2266.44 ± 54.61 632 7.56 0.59 
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 795 

 796 

Shape of 

synaptic 

junction 

Type of 

synapse 

Area of SAS (nm2) 

mean ± sem 

Perimeter (nm) 

mean ± sem 

Curvature 

 mean ± sem 

Macular 

AS 59271.15 ± 595.95 1353.95 ± 9.55 0.07 ± 0.001 

SS 86903.65 ± 2816.34 2138.30 ± 51.47 0.09 ± 0.003 

AS+SS 61737.72 ± 606.10 1423.96 ± 10.22 0.07 ± 0.001 

Perforated 

AS 175955.57 ± 5842.02 3056.56 ± 85.68 0.10 ± 0.004 

SS 185606.8 ± 30594.69 3690.38 ± 488.31 0.08 ± 0.010 

AS+SS 176710.07 ± 5875.00 3106.10 ± 87.94 0.10 ± 0.003 

Horseshoe-

shaped 

AS 146689.44 ± 6756.57 3015.70 ± 109.07 0.11 ± 0.006 

SS 155387.11 ± 16435.88 3548.22 ± 304.55 0.08 ± 0.009 

AS+SS 148469.66 ± 6321.63 3124.70 ± 107.62 0.11 ± 0.005 

 797 

Table 3. Area (nm2), perimeter (nm) and curvature (mean ± sem) of the SAS of macular, 798 

perforated and horseshoe-shaped synaptic junctions. AS: asymmetrical synapses; SS: 799 

symmetrical synapses. All data are given as mean ± sem. 800 
















