Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
Next
New Research, Cognition and Behavior

Early-Age Running Enhances Activity of Adult-Born Dentate Granule Neurons following Learning in Rats

Olga Shevtsova, Yao-Fang Tan, Christina M. Merkley, Gordon Winocur and J. Martin Wojtowicz
eNeuro 14 August 2017, ENEURO.0237-17.2017; https://doi.org/10.1523/ENEURO.0237-17.2017
Olga Shevtsova
1Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Olga Shevtsova
Yao-Fang Tan
1Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christina M. Merkley
1Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon Winocur
2Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6E2E1, Canada
3Department of Psychology, Trent University, Peterborough, K9J7B8, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gordon Winocur
J. Martin Wojtowicz
1Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cognitive reserve, the brain's capacity to draw on enriching experiences during youth, is believed to protect against memory loss associated with a decline in hippocampal function, as seen in normal aging and neurodegenerative disease. Adult neurogenesis has been suggested as a specific mechanism involved in cognitive (or neurogenic) reserve. The first objective of this study was to compare learning–related neuronal activity in adult-born vs. developmentally-born hippocampal neurons in juvenile male rats that had engaged in extensive running activity during early development or reared in a standard laboratory environment. The second objective was to investigate the long-term effect of exercise in rats on learning and memory of a contextual fear response later in adulthood. These aims address the important question as to whether exercise in early life is sufficient to build a reserve that protects against the process of cognitive aging. The results reveal a long-term effect of early running on adult-born dentate granule neurons and a special role for adult-born neurons in contextual memory, in a manner that is consistent with the neurogenic reserve hypothesis.

Significance Statement The role of adult neurogenesis in learning and memory is under active investigation, but the underlying mechanisms remain unclear. The present study found that early-age running led to enhanced associative learning and memory in adult rats and increased activity of adult-born granule neurons in the dentate gyrus during memory retrieval. This study demonstrates the long-term effect of early-age physical activity on learning and memory much later in life. The findings emphasize the involvement of adult-born hippocampal neurons in neurogenic and functional cognitive reserve and show that physical activity contributes to memory improvement.

  • adult Neurogenesis
  • Dentate Gyrus
  • Hippocampus
  • Learning and Memory
  • Plasticity

Footnotes

  • Authors do not declare any conflict of interest.

  • This research was supported by grants from the Canadian Institutes of Health Research to J.M.W and G.W. (MOP: 11927), and the Natural Sciences and Engineering Research Council of Canada to J.M.W. (RGPIN: 194616-11) and GW (RGP8181). We thank Jeremy Audia for help with behavioural studies.

  • Preliminary report of this work was presented at the SFN conference in 2016, San Diego, USA.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Back to top
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Early-Age Running Enhances Activity of Adult-Born Dentate Granule Neurons following Learning in Rats
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Early-Age Running Enhances Activity of Adult-Born Dentate Granule Neurons following Learning in Rats
Olga Shevtsova, Yao-Fang Tan, Christina M. Merkley, Gordon Winocur, J. Martin Wojtowicz
eNeuro 14 August 2017, ENEURO.0237-17.2017; DOI: 10.1523/ENEURO.0237-17.2017

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Early-Age Running Enhances Activity of Adult-Born Dentate Granule Neurons following Learning in Rats
Olga Shevtsova, Yao-Fang Tan, Christina M. Merkley, Gordon Winocur, J. Martin Wojtowicz
eNeuro 14 August 2017, ENEURO.0237-17.2017; DOI: 10.1523/ENEURO.0237-17.2017
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • adult neurogenesis
  • dentate gyrus
  • hippocampus
  • learning and memory
  • plasticity

Responses to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching
  • TrkB Signaling Influences Gene Expression in Cortistatin-Expressing Interneurons
  • Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity
Show more New Research

Cognition and Behavior

  • Disrupted neuronal dynamics of reward encoding in the medial prefrontal cortex and the ventral tegmental area after episodic social stress
  • EEG Signatures of Auditory Distraction: Neural Responses to Spectral Novelty in Real-World Soundscapes
  • Excess neonatal testosterone causes male-specific social and fear memory deficits in wild-type mice
Show more Cognition and Behavior

Subjects

  • Cognition and Behavior
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.