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Abstract

Temporal lobe epilepsy is a common form of adult epilepsy and shows high resistance to
treatment. Increasing evidence has suggested that metabolic dysfunction contributes to the
development of seizures, with previous studies indicating impairments in brain glucose
metabolism. Here we aim to elucidate which pathways involved in glucose metabolism are
impaired by tracing the hippocampal metabolism of injected [U-""C]-glucose (i.p.) during the
chronic stage of the pilocarpine-status epilepticus mouse model of epilepsy. The enrichment
of °C in the intermediates of glycolysis and the TCA cycle were quantified in hippocampal
extracts using liquid chromatography tandem mass spectroscopy, along with the
measurement of the activities of enzymes in each pathway. We show that there is reduced
incorporation of *C in the intermediates of glycolysis, with the percent enrichment of all
downstream intermediates highly correlated to those of glucose 6-phosphate. Furthermore,
the activities of all enzymes in this pathway including hexokinase and phosphofructokinase
were unaltered, suggesting that glucose uptake is reduced in this model without further
impairments in glycolysis itself. The key finding was a 33% and 55% loss in the activities of
pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, respectively, along with reduced
C enrichment in TCA cycle intermediates. This lower "*C enrichment is best explained in
part due to the reduced enrichment in glycolytic intermediates, while the reduction of key
TCA cycle enzyme activity indicates that the TCA cycling is also impaired in the
hippocampal formation. Together this study suggests that multi-target approaches may be
necessary to restore metabolism in the epileptic brain.

Key words: epilepsy, glucose metabolism, glycolysis, mitochondria, seizure, tricarboxylic

acid cycle
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Significance statement

The specific metabolic impairments that occur in the epileptic brain and can play a role in the
development of seizures are mostly unknown. Glucose uptake has been shown to be reduced
in epileptic brain areas in patients and models. By following "*C-glucose metabolism, we
show that during the chronic epileptic stage in a murine model, there are further impairments
to oxidative glucose metabolism along with reduced maximal activities of pyruvate
dehydrogenase and 2-oxoglutarate dehydrogenase, key enzymes of the TCA cycle in the
hippocampus. Together with diminished glucose uptake, this will decrease the ability to
produce ATP in epileptogenic areas, which may contribute to seizure development. This

research identified new targets for new therapies to inhibit seizures in the “epileptic” brain.

Introduction

Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy in adults with
approximately one-third of patients being multi-drug resistant. Many of the
pathophysiological characteristics and the chronic spontaneous seizures of TLE are reflected
in rodents after pilocarpine-induced status epilepticus (SE) (Borges et al., 2003b). Epileptic
disorders are often associated with genetic mutations (Mulley et al., 2005; Escayg and
Goldin, 2010), inflammation (Vezzani et al., 2011), and an imbalance between excitatory and
inhibitory neurotransmission (Avoli et al., 2016). In addition there is growing evidence that
dysfunction in metabolic pathways within brain tissue such as glycolysis, the TCA cycle and
electron transport chain contribute to the initiation and progression of seizures (Alvestad et

al., 2011; Tan et al., 2015).
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In patients with TLE, numerous positron emission tomography (PET) studies using '*F-
labelled fluorodeoxyglucose ("*FDG) have shown that during a seizure event glucose uptake
is increased, whereas less glucose is taken up interictally in the epileptogenic zone (Kuhl et
al., 1980; Chugani and Chugani, 1999; Vielhaber et al., 2003). In the chronic rat lithium-
pilocarpine model of epilepsy, local cerebral glucose utilization rates (LCMRgcs) were
reduced in several brain regions in between seizures, including the hippocampal CA1 and
CA3 areas as determined by the use of *C-2-deoxyglucose (**C-2DG) (Dube et al., 2001).
The limitations of these studies are that after metabolism via hexokinase the 6-phosphates of
BEDG and '*C-2DG are not substrates for subsequent glycolytic reactions. Thus, these
studies cannot provide any indication relating to further changes in glucose metabolism.

The metabolism of glucose has previously been studied in both the pilocarpine- and lithium
pilocarpine-induced SE rodent models. Elevated hippocampal glucose concentrations were
observed in the chronic stage of the lithium pilocarpine rat model, however no change was
found in the concentrations of [1-"*CJ-glucose (Melo et al., 2005). Despite this lack of change
in [1-"*C]-glucose amounts, the concentrations of glutamate and GABA, resulting from [1-
PC]-glucose metabolism were lower in the SE mice during the chronic phase. Similarly, in
the mouse pilocarpine model we found a lower percent enrichment of *C derived from [1,2-
13C]-glucose metabolism in citrate, malate and the amino acids GABA and aspartate without
a change in glucose concentrations or the percent enrichment of [1,2-*C]-glucose (Smeland
et al., 2013). Together these results suggest that glucose metabolism is perturbed in chronic
epileptic rodent models, which may be a result of recurrent seizures but also may contribute

to seizure development.

Although previous studies have indicated a disturbance in glucose metabolism in the chronic

epileptic brain, it is unclear where the perturbation in glucose metabolism occurs. Here, we
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performed a comprehensive study of glucose metabolism, using the mouse pilocarpine SE
model to determine the changes that occur in hippocampal glucose metabolism during the

chronic “epileptic” stage with the use of [U-""C]-glucose.

Materials and Methods

Animals

Male CD1 mice (Australian Research Council, WA, Australia) were individually caged under
a 12-hour light-dark cycle with standard diet as used in previous studies (SF11-027, Specialty
feeds, Western Australia, Australia) (Hadera et al., 2013; McDonald et al., 2013) and water
given ad libitum. The animals were adapted to conditions for at least 1 week, and were
between 7-8 weeks old when used in experiments. All efforts were made to minimise the
suffering and number of animals used. All experiments were approved by the University of
Queensland’s Animal Ethics Committee and followed the guidelines of the Queensland
Animal Care and Protection Act 2001. This work was performed according to the ARRIVE

guidelines (https://www.nc3rs.org.uk/arrive-guidelines).

Pilocarpine status epilepticus model

As described previously (Smeland et al., 2013), mice were injected with methylscopolamine
(2 mg/kg intraperitoneally in 0.9% NaCl; Sigma Aldrich, St Louis, MO, USA) 15 minutes
prior to pilocarpine (345 mg/kg subcutaneously in 0.9% saline; Sigma Aldrich). After a 90
minute observation period mice were injected with pentobarbital (22.5 mg/kg
intraperitoneally in 0.9% NaCl; Provet, Northgate, QLD, Australia) to stop SE. Mice were
defined as developing SE if they were observed to have continuous seizure activity mainly
consisting of whole-body clonic seizures. Those that did not display this behaviour were

classified as No SE.
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[U-"C]-glucose Injections and Tissue Extraction

Three weeks after SE, 10 SE mice and 11 No SE mice were injected with [U-">C]-glucose
(0.3 mol/L intraperitoneally, 558 mg/kg; 99% "*C; Cambridge Isotope Laboratories, Wobum,
MA, USA). To denature brain enzymes and other proteins immediately, mice were sacrificed
by focal microwave fixation to the head at 5 kW for 0.79 to 0.83 seconds (Model MMW-05,
Muromachi, Tokyo, Japan) 15 minutes after [U-">C]-glucose injections. Mice were then
decapitated and hippocampal formations dissected out and stored at -80°C until extracted.
Samples were sonicated in 1 mL of methanol using a Vibra Cell sonicator (Model VCX 750,
Sonics and Materials, Newton, CT, USA) with 4 uL of a | mM azidothymidine (AZT)
solution added as an internal standard. Polar metabolites were extracted from samples using a
modified Bligh-Dyer water/methanol/chloroform extraction procedure at a 2/2/3 ratio as
previously described (Le Belle et al., 2002). Samples were lyophilized, reconstituted and

stored at -80°C until analysed.

Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

Intermediates of [U-""C]-glucose were analysed following the method described in Medina-
Torres et al (2015) with modifications and additions to scheduled multiple reaction
monitoring (SMRM) transitions to account for variable carbon labelling patterns (Medina-
Torres et al., 2015). These SMRM transitions for all the unlabelled metabolites and their

associated instrument parameters are detailed in Table 1.

Analysis of incorporation of BCin glycolytic and TCA cycle intermediates
[U-"C]-glucose can enter both neurons and astrocytes via the glucose transporters GLUT3

and GLUT] respectively. Once inside the cell [U-"*C]-glucose is phosphorylated to [U-"*C]-
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glucose 6-phosphate which can continue through the glycolytic pathway producing glycolytic
intermediates that are all uniformly labelled as shown in Figure 1. These glycolytic
intermediates can be measured using LC-MS/MS by first isolating the precursor ion (Q1
mass, Da) that is uniformly labelled with '>C. The masses isolated are glucose 6-phosphate
(G6P), 265; fructose 6-phosphate (F6P), 265; fructose 1,6-phosphate (F16BP), 345;
dihydroxyacetone phosphate (DHAP), 172; 2 and 3 phosphoglycerate (2+3PG), 188;
phosphoenolpyruvate (PEP), 170; and pyruvate (PYR), 90. Following collision-induced
dissociation (Q2) the product ion detected (Q3 mass) for most glycolytic metabolites was
dihydrogen phosphate ion (97 Da). For phosphoenolpyruvate the product ion detected was a
phosphite ion (79 Da) and pyruvate loses a carboxyl group resulting in a detectable mass of
45 Da.

[U-"C]-pyruvate resulting from glycolysis can produce [U-'">C]-lactate or alternatively enter
the TCA cycle via pyruvate dehydrogenase (PDH, EC 1.2.4.1) to [1,2-">C]-acetyl CoA. This
entry of °C labelled acetyl-CoA results in two *C carbons in all TCA cycle metabolites
(Figure 1). Thus, M+2 isomers are isolated as the precursor ions (Q1, Da), for citrate
(CIT),193; aconitate (ACO), 175; 2-oxoglutarate (20G), 147; succinate (SUC), 119; fumarate
(FUM), 117; and malate (MAL), 135. In the collision cell all TCA cycle intermediates lose
the carboxyl group. As the "*C is within one of the carboxyl groups of all metabolites after
the collision, either one or two '*C-carbons remain on the product ion (Q3). Thus molecular
weight (Da) of the product ions are 112 (lost a "*C in the collision, M+1) and 113 (both "*C
remain, M+2) for citrate; 85 and 86 aconitate; 102 and 103, 2-oxoglutarate; 72 and 73,
fumarate; 72 and 73, malate are produced. The sum of both product ions’ percent enrichment
is representative of the first turn of the TCA cycle.

After the first turn, the resultant [1,2-"*C]- or [3,4-"*C]-oxaloacetate can again condense with

[1,2-"*C]-acetyl CoA (Figure 1). This results in M+4 citrate, which can be detected similar to
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above with the ions 195 (Q1) and then Q3 is either 114 (M+3) or 115 (M+4). Through the
conversion of citrate to 2-oxoglutarate a >C may be lost and thus the precursor ion for 2-
oxoglutarate will be M+3 (148 Da, Q1 ion; 103 or 104 Da, Q3 ions). Alternatively, all four
13C carbons will be retained resulting in an M+4 precursor ion with both carboxyl groups
containing a labelled carbon, one of which will be lost in the collision cell (149 Da, Q1; 104
Da, Q3). The remaining intermediates succinate, fumarate and malate that can be measured
will all contain three labelled carbons, with the possibility of retaining all or losing one "*C
after the collision. Therefore, the molecular weight of the precursor ions isolated are 120,
succinate; 118, fumarate and 136, malate; with then 75 and 76 Da ions detected in Q3, and 73

and 74 Da for both fumarate and malate.

Enzyme activities

Mice were decapitated under light isoflurane anaesthesia. The brain was removed and
hippocampal formations dissected out and stored at -80°C until used. Mitochondria were
isolated as previously described (Tan et al., 2016). Aliquots were stored at -80°C and used to
determine mitochondrial enzyme activities

The activities of all enzymes were measured with the Spectromax 190 Microplate reader
(Molecular Devices, Sunnyvale, CA, USA) via continuous spectrophotometric assays. All
enzymes activities were normalized to protein content, measured via a Pierce Bicinchoninic
acid (BCA) assay (ThermoFisher Scientific, Scoresby, Victoria, Australia).

Hexokinase (HK, EC 2.7.1.1), phosphoglucose isomerase (PGI, EC 5.3.1.9) and glucose 6-
phosphate dehydrogenase (G6PDH, EC 1.1.1.49), phosphofructokinase (PFK, EC 2.7.1.11),
pyruvate kinase (PK, EC 2.7.1.40), lactate dehydrogenase (LDH, EC 1.1.1.27) and citrate
synthase were measure as previously described (Tan et al., 2016). Pyruvate dehydrogenase

(PDH, EC 1.2.4.1) was measured using the MTT-PMS method (Ke et al., 2014).



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Several enzyme activities were measured through the oxidation of reduced B-nicotinamide
adenine dinucleotide (NADH) including glutamate dehydrogenase (GLDH, EC 1.4.1.2),
glutamic pyruvic transaminase (GPT, EC 2.6.1.2) and glutamic oxaloacetic transaminase
(GOT, EC 2.6.1.1).The GDH assay was initiated with 10 mM 2-oxoglutarate (2-OG), added
to a reaction mix containing 100 mM potassium phosphate (pH7.4), 100 mM ammonium
chloride and 0.6 mM B-NADH. GPT was measured in 100 mM triethanolamine buffer (pH
7.4), 0.6 mM B-NADH, 50 mM 2-OG and 10 U/mL LDH (L2500, Sigma Aldrich). GOT
activity was measured in 80 mM Tris HCI (pH 7.8), 0.6 mM B-NADH, 15 mM 2-OG and 5
U/mL malic dehydrogenase (M1567, Sigma Aldrich) and initiated with the addition of 10
mM aspartate.

The activity of 2-oxoglutarate dehydrogenase (2-OGDH) was measured via the reduction of
nicotinamide adenine dinucleotide (B-NAD") in 75 mM Tris HCI (pH 8), 1 mM
ethylenediaminetetraacetic acid, 0.5 mM thiamine pyrophosphate, 1.5 mM Coenzyme A, 4
mM B-NAD", | mM DTT, 2 mM calcium chloride, and initiated with 15 mM 2-OG. Pyruvate
carboxylase (PCX) activity was measured through the production of TNB*" at a wavelength
of 412 nm. The reaction mix contained 50 mM Tris HCI (pH 8), 50 mM sodium bicarbonate,
5 mM MgCl,, 5 mM sodium pyruvate, 5 mM ATP, 0.5mM 5,5’-dithiobis-(2-nitrobenzoic
acid), and 5 U/mL citrate synthase (C3260, Sigma Aldrich) and the reaction initiated with 0.1

mM acetyl CoA.

Mitochondrial coupling assay

Using the extracellular flux XFe96 Analyzer (Seahorse Bioscience, MA, USA), the degree of
coupling between the electron transport chain, the oxidative phosphorylation machinery and
ATP production was evaluated as previously described (Carrasco-Pozo et al., 2015; Tan et

al., 2016).The contribution of the non-mitochondrial respiration to OCR was subtracted from
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every mitochondrial function parameter. Respiration linked to ATP synthesis was calculated
as state 3 ADP minus state 40. All mitochondrial function parameters were normalized to

protein content measured using a Pierce BCA Protein Assay Kit.

Mitochondrial electron flow.

The sequential electron flow through the complexes of the electron transport chain was
studied using the extracellular flux XFe96 Analyzer as previously described (Carrasco-Pozo
et al., 2015). This assay allows the study of the contribution and function of complexes I and
II in the electron transport chain in terms of OCR. From the results, the complex I- (state 3u
minus OCR after rotenone injection) and complex II-driven respiration (OCR after succinate

injection minus OCR after malonate injection) were calculated.

Data Analysis

All statistical analyses were performed using GraphPad Prism version 6.0 (GraphPad
Software, La Jolla, CA, USA). Two way ANOVAs, followed by uncorrected Fisher’s Least
Significant Differences post-tests were used for the total metabolite concentrations and
percent enrichment comparisons. Correlation analysis was performed to assess the correlation
of % "*C enrichment of glucose 6-phosphate to downstream glycolytic intermediates and the
% enrichment of pyruvate relative to TCA cycle intermediates enrichment. Enzyme activities
and functional mitochondrial parameters were analysed using unpaired, two-sided student’s t-

tests. P<0.05 was regarded as significant. All data are represented as mean + S.E.M.

Results
To assess the effects of pilocarpine-induced SE on brain glucose metabolism in mice in the

chronic stage of the model, the total concentrations of glycolytic and TCA cycle

10
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intermediates were measured using LC-MS/MS, along with the percent incorporation of *C
from injected [U-">C]-glucose (i.p.). Furthermore, mitochondrial electron transport functions
were analysed, and the activities of enzymes involved in all pathways were measured using
spectrophotometric assays.

Of the 25 mice that were injected with pilocarpine, 12 (48%) mice developed SE, classified
as continuous whole-body clonic seizures. Eleven (44%) mice did not develop these seizures
and thus were classified as “No SE”, and two (8%) mice died from a seizure during the 90-
minute observation period. From the twelve mice that developed SE, 2 mice were sacrificed
in the following three days as per ethical guidelines, as they did not recover well from SE.
In this study, we injected mice 3 weeks after SE in the chronic stage of the model with [U-
C]-glucose to obtain information of glucose metabolism in the glycolytic and TCA cycle
pathways. At this time point the body weights of SE mice used for the [U-"C]-glucose
analysis were similar to the No SE group (39.9 = 1.3g vs. 39.8 + 0.8g, p=0.97). Therefore,
any changes in the total concentrations or percent of '*C enrichment in brain metabolites are
not due to differing amounts of [U-"*C]-glucose injected. No behavioural seizures were
observed before and during the [U-">C]-glucose injection until sacrifice. The total
concentrations of metabolites in the glycolytic pathway and TCA cycle were similar among

mice that had developed SE compared to those that did not, as shown in Table 2.

Percent enrichment of '*C in hippocampal glycolytic intermediates

As shown in Figure 2A, the chronic stage after SE has an effect on the percent enrichment of
C in the chronic stage of the pilocarpine model (Two-way ANOVA, p<0.001). Specifically,
reductions were found in the ">C enrichment of glucose 6-phosphate (22%), fructose 6-
phosphate (21% reduction), dihydroxyacetone phosphate (17%) and phosphoenolpyruvate

(20%) in the SE mice compared to those that did not develop SE (n=10-11, p<0.05-0.01 for

11
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each metabolite in Fisher’s LSD post test). No other significant differences were found in the
percent enrichment in other glycolytic intermediates, including fructose 1,6- bisphosphate,
pyruvate and the combined metabolites of 2- and 3-phosphoglycerate (p>0.05, n=10-11). The
percent "°C enrichment in all glycolytic intermediates are highly correlated to the %
enrichment of the first metabolite of the pathway, glucose 6-phosphate in No SE mice
(r=0.76-97, p<0.05-0.001, Figure 2C). In contrast no correlation was observed between the
body weight of mice and the incorporation of "*C in glucose 6-phosphate (r=-0.28, p>0.05).
Figure 2C shows that this correlation was also observed in SE mice for all metabolites
(r=0.64-0.91, p<0.05-0.001) apart from 2 and 3-phosphoglycerate (r=0.10, p=0.78).
Similarly, no correlation was observed between body weight and % BC enrichment in
glucose 6-phosphate (r=-0.21, p>0.05). This suggests that after the conversion of glucose to
glucose 6-phosphate there is no alteration in the activity of the glycolytic pathway itself, but
rather that glucose uptake is diminished in SE mice. No significant differences were observed
between the body weight of either No SE or SE mice and the '*C % enrichment of G6P
(Figure 2C, No SE, r=-0.28, p>0.05; Figure 2D, SE, r=-0.21, p>0.05).

The maximal activities of all cytosolic enzymes involved in the glycolytic pathway, namely
phosphoglucose isomerase, phosphofructokinase, pyruvate kinase were unaltered between No
SE and SE mice in the chronic epileptic stage (Figure 2B), which is consistent with the
interpretation of results from the *C analysis. No changes were found between the two
groups regarding the activities of the other cytosolic enzymes lactate dehydrogenase, and
glucose 6-phosphate dehydrogenase, responsible for the conversion of pyruvate to lactate and
entry into the pentose phosphate pathway, respectively. It should be noted here that these
enzymes, except glucose 6-phosphate dehydrogenase and phosphofructokinase, are not rate

limiting.

12
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% enrichment of *C in TCA cycle intermediates in the hippocampus

The percentage enrichment of *C in TCA cycle intermediates derived from [U-">C]-glucose
entering via pyruvate dehydrogenation were determined. We found a reduction in the % *C
enrichment in the TCA cycle intermediates citrate (17%), aconitate (17%), succinate (34%),
fumarate (24%) and malate (17%) in SE mice compared to No SE mice (all p<0.05-0.01,
Figure 3A). 2-oxoglutarate was the only metabolite where no significant change in *C
enrichment was observed between SE and No SE groups (p=0.22).

The "C labelled oxaloacetate produced when [1,2-"*C]-acetyl-CoA enters the TCA cycle for
the first time can be traced through the second cycle of the TCA cycle, if it condenses with
BC-labelled acetyl-CoA (Figure 3B). Decreases in the percentage enrichment of *C in the
second turn of the TCA cycle were observed for 2-oxoglutarate (47%), succinate (54%),
fumarate (25%) and malate (29%) in chronic SE mice (all p<0.05-0.01). No change in *C %
enrichment was found in citrate (p>0.05).

Correlations were observed between the '>C enrichments in pyruvate and those in first turn
TCA cycle metabolites resulting from pyruvate metabolism via PDH in No SE mice (r=0.70-
0.31, p<0.01-0.001; Figure 3D). This correlation was lost in SE mice (r=0.34-0.54, p>0.1-
0.3), suggesting that there is another factor that determines entry of pyruvate into the TCA

cycle in the chronic epileptic stage (Figure 3E).

The maximal activity of the mitochondrial enzyme PDH, responsible for the entry of
pyruvate into the TCA cycle was reduced by 33% in chronic SE mice compared to No SE
mice (Figure 3C, p<0.05). The maximal specific activity of OGDH, the rate-limiting enzyme
of TCA cycling was reduced by 55% in the SE mice (p<0.05). Similar activities were
observed in the other mitochondrial enzymes pyruvate carboxylase, glutamate

dehydrogenase, glutamic pyruvic transaminase and glutamic oxaloacetic transaminase (p>

13
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0.05 for all enzymes), suggesting that the changes in PDH and OGDH activities were not due
to loss of mitochondria. A strong correlation of the % enrichments within 2-oxoglutarate to
those of succinate is observed in individual No SE mice (Figure 3F, r=0.95, p<0.001),
indicating that '*C enrichments of these two metabolites are highly dependent on each other.
This correlation is lost in the SE mice, indicating that another factor such as the found altered

OGDH activity plays a role (r=0.29, p=0.42).

Mitochondrial coupling assays using the extracellular flux

Various functional parameters of the mitochondria isolated from the hippocampal formation
were measured using the extracellular XF96 Analyzer. Similar results were observed in all
functional parameters regarding the coupling assay (Figure 4A) and the electron transport
chain (Figure 4B). This includes state 2, state 3 ADP, state 3u and oxygen consumption
linked to ATP synthesis (Figure 4C-F). In addition, similar results were found in the complex
I- and complex II-driven respirations of No SE and SE mice (Figure 4G, H). Thus, there is no
indication of general, mitochondrial dysfunction in the chronic “epileptic” brain in this mouse

model.

Discussion

Here we show direct evidence that glucose metabolism is lower in a chronic epilepsy mouse
model due to the decrease in the "*C incorporation into intermediates of both glycolysis
(Figure 2A) and the TCA cycle (Figure 3A and B). Moreover, there was loss of activity in
two rate limiting enzymes of the TCA cycle, PDH and OGDH. No changes were found in the
maximal activity of any enzymes involved in glycolysis. Lastly, similar rates of oxygen
consumption were measured in hippocampal mitochondria from No SE and SE mice,

indicating that the electron transport chain and ATP synthase are not affected in this model.
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Please note, we have previously shown using video—electroencephalography recordings that
during the chronic phase of this model mice experience 1-2 spontaneous seizures a day
(Benson et al., 2015). Mice were not experiencing behavioural seizures before and while
sacrificed, thus these findings reflect changes in interictal glucose metabolism.

Following the injection of [U-">C]-glucose, the incorporation of *C into several glycolytic
intermediates was reduced in the hippocampal formation, including glucose 6-phosphate,
fructose 6-phosphate, dihydroxyacetone phosphate and phosphoenolpyruvate. To our
knowledge no previous study has investigated the changes in glucose metabolism in chronic
epilepsy via the quantification of glycolytic intermediates. Earlier studies have assessed
lactate or alanine concentrations as indicators for changes in glycolysis with mixed results. In
our earlier study in the same mouse model, there was no change in the '*C enrichment in
either lactate or alanine after injection of [1,2-">C]-glucose (Smeland et al., 2013). Similarly,
no alterations in the amounts of these intermediates were observed 24 hours after kainate
induced SE in rats (Qu et al., 2003). However, reduced [3-">C]-alanine from [1-"*C]-glucose
metabolism was observed in the chronic lithium pilocarpine rat SE model, without a change
in [3-"*C]-lactate concentrations (Melo et al., 2005). This was interpreted as defects in
mitochondrial metabolism as alanine can be metabolized in both mitochondria and the
cytosol, whereas lactate is purely produced in the cytosol. Both lactate and alanine are
products of pyruvate metabolism in the cytosol, while pyruvate also enters the mitochondria
to produce products of the TCA cycle via PDH, pyruvate carboxylase or glutamic pyruvic
transaminase. Therefore, a change in the concentrations of either alanine or lactate can be
reflective of an alteration of glycolytic or the TCA cycle activity that leads to an imbalance
of the activities of these two pathways (Greene et al., 2003). Our current data of lowered
enrichment of "*C in glycolytic intermediates in SE mice together with our earlier result of

unchanged [3-13 C]-lactate and [3—13C]—alanine concentrations indicate that less [U—13C]-
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pyruvate must be metabolized to acetyl-CoA to maintain similar incorporation of the label
into lactate and alanine compared to No SE mice. This is also corroborated by our finding of
decreased PDH activity.

A limitation of this study was the inability to measure both the total concentration and the
enrichment of *C in glucose. Thus, we do not have any direct indications for potential
alterations of glucose uptake by the epileptic brain, although previous studies showed
reduced glucose uptake in adult rats in the chronic stage (see below). Because no changes
were found in the activities of any regulatory enzymes in the glycolytic pathway, including
hexokinase, phosphofructokinase and pyruvate kinase, it is unlikely that glycolytic activity
itself is impaired. Moreover, correlation analysis (Figure 2C and D) of the "*C enrichment
shows that in both No SE and SE mice there was a strong correlation between the enrichment
of *C in glucose 6-phosphate and most downstream metabolites. Furthermore, a lack of
correlation was evident between the body weight of mice, which determined the amount of
[U-"*C]-glucose injected and the "*C enrichment of glucose 6-phosphate. Together this
suggests that chronic epilepsy does not alter glycolysis, and thus the lower incorporation of
C in SE mice is due to reduced uptake of glucose in the hippocampus, but not the activity of
this pathway itself. This indicates that if glucose uptake was restored in this chronic epileptic

state no impairment would be observed in the glycolytic pathway.

Several studies using '*FDG-PET have shown that interictal glucose uptake in patients is
reduced (Henry et al., 1990; Henry et al., 1993; Arnold et al., 1996). Similarly, in the rodent
lithium-pilocarpine model of epilepsy, glucose uptake is also reduced during the chronic
phase (Dubé et al., 2001; Lee et al., 2012). Both these studies also provided evidence of
neuronal loss in regions of reduced glucose uptake, which may at least in part be responsible

for reduced glucose uptake. Previously hippocampal neuronal loss has been characterized in
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the mouse pilocarpine model (Borges et al., 2003a) and may also contribute to the results of
our study. However, several studies have failed to correlate neuronal loss with glucose
metabolism (O'Brien et al., 1997; Dubé et al., 2001), suggesting that changes in interictal
glucose metabolism are not wholly due to neuronal loss. Our study now provides the first
evidence that although glucose uptake is reduced within the hippocampus of the chronic
epileptic brain and less glucose overall seems to be metabolized, the glycolytic pathway itself

is unimpaired.

The other key finding of this study is a reduction of the "*C enrichment in the TCA cycle
intermediates following entry of [1,2-"*C]-acetyl CoA via PDH (Figure 3A, B), as well as in
the second turn of the TCA cycle. This can be partially explained by the reduced °C
enrichment in the glycolytic intermediates, and thus there is less [1,2-'*CJ-acetyl CoA
available to form citrate. However, in No SE mice the '>C enrichment of pyruvate is highly
correlated to the "*C enrichment in TCA cycle metabolites from the first turn in the TCA
cycle (Figure 3D). This correlation is lost in the SE mice, which suggests that in the
chronically epileptic mice there are other factors that influence entry of pyruvate into the
TCA cycle (Figure 3E), such as the 33% reduction found in PDH activity (Figure 3C).
Consistent with this, patients with mutations in the PDH complex that lead to deficient
activity are known to present with epileptic phenotypes (Kang et al., 2007; Barnerias et al.,

2010).

In this study, we also observed a loss of 55% of the maximal activity of 2-oxoglutarate
dehydrogenase, the rate limiting enzyme of TCA cycling (Figure 3C). This enzyme shares the
E3 subunit, dihydrolipoamide dehydrogenase with the pyruvate dehydrogenase complex.

This subunit is a flavin-containing protein, which reduces NAD" to NADH through the
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transfer of reducing equivalents from the dihydrolyl moiety (Carothers et al., 1989).
Heterozygous knockout of this protein in mice has shown to reduce activity of both PDH and
OGDH complexes, and the mice are more prone to neurodegenerative disorders (Gibson et
al., 2000). In autopsied patients with Alzheimer’s disease the protein concentrations of all
subunits of OGDH were reduced compared to control patients in the cortex, with the loss of
the E3 subunit protein being restricted to the hippocampus (Mastrogiacomo et al., 1996).
Reduced activity was found in several other neurological disorders as previously summarized
(Kish, 1997). In a separate study the activities of both OGDH and PDH were reduced in
autopsied Alzheimer’s disease patients and were correlated to the severity of the disease
(Bubber et al., 2005). Although the mechanisms behind reduced PDH and OGDH activity
are currently unknown, they may be potential new targets to increase energy metabolism in

chronic epilepsy and neurodegenerative disorders.

The change in PDH and OGDH activities also supports the further reduction found in the *C
enrichment in metabolites that entered the second turn of the TCA cycle produced when *C
oxaloacetate condenses with [1,2-*CJ-acetate (Figure 3B). Together these results
demonstrate that TCA cycling is impaired in the hippocampus in the chronic stage of the
pilocarpine model, which agrees with previous studies in both rat and mice chronic SE
models that show reduced incorporation of "*C from glucose metabolism into the amino acids

glutamate, GABA and aspartate (Qu et al., 2003; Melo et al., 2005; Smeland et al., 2013).

We found similar mitochondrial oxygen consumption rates related to proton leak, ATP
synthesis, coupling efficiency and respiratory control ratio (Figure 4C-F), which indicates
lack of mitochondrial dysfunction in the electron transport chain and its involvement in the

final steps of oxidative phosphorylation in this chronic model of epilepsy. Mitochondrial

18



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

dysfunction has been found acutely following both kainate- and pilocarpine- induced seizures
(Chuang et al., 2004; Carrasco-Pozo et al., 2015). However, we have previously shown that
this dysfunction is transient as no changes were found in any functional parameters 48 hours
after SE (Carrasco-Pozo et al., 2015), which is further supported by our results during the

chronic phase.

It is difficult to assess to which extent the impairments in TCA cycle activity found here are
the result of chronic recurrent seizures. However, together with reduction in glucose uptake
and reduced TCA cycling will result in less ATP production in the hippocampus. This is
highly likely to contribute to the generation of seizures as well as seizure spread within the
brain, as ATP is critical for most cellular functions and the maintenance of membrane
potentials, and a loss of ATP can lead to hyperexcitability. This is evidenced by the
proconvulsant effects of toxins blocking the respiratory chain and ATP production, such as
3-nitropropionic acid (Haberek et al., 2000)as well as by the many patients with epileptic
seizures due to inherited TCA and respiratory chain enzyme deficiencies (Burgeois et al.,

1992; Barnerias et al., 2010; Khurana et al., 2013).

Conclusions

In the chronic epileptic stage, glycolytic enzymatic activities and the metabolism of glucose
6-phosphate were unimpaired in the hippocampal formation. However, glucose uptake is
likely to be reduced in mice in the chronic “epileptic” stage, which reduced the incorporation
of ’C from injected [U-">C]-glucose (i.p.) into glycolytic intermediates. Also, there was
decreased pyruvate entry into the TCA cycle via PDH and reduced TCA cycling, including
decreased activity of OGDH, in this chronic epilepsy model. Together, this will lead to

reduced ATP production despite unaltered activity of the electron transport chain and ATP
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synthase in the hippocampus, which is likely to contribute to seizures. In summary, these data

revealed several potential metabolic targets to inhibit seizure generation in an epileptic brain.
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Figure 1: Schematic of [U-""C]-glucose in the brain. Simplified schematic of '*C-labelling
patterns following the metabolism of [U-">C]-glucose via glycolysis and the TCA cycle.
Empty circles represent '>C and black filled circle represent *C. The grey filled circles
represent °C derived from "*C-labelled oxaloacetate that enters the 2nd turn of the TCA
cycle (grey dotted lines). * Stars indicate the metabolites that were not measured in this
study. Glucose 6-phosphate (G6P); fructose 6-phosphate (F6P); fructose 1,6-bisphosphate
(F16BP); glyceraldehyde 3-phosphate (GA3P); dihydroxyacetone phosphate (DHAP); 1,3-
bisphosphoglycerate (13BPG); 3-phosphoglycerate (3PG); 2-phosphoglycerate (2PG);
phosphoenolpyruvate (PEP); pyruvate (PYR); Acetyl CoA (Ac-CoA); citrate (CIT); aconitate
(ACO); 2-oxoglutarate (20G); succinate (SUC); fumarate (FUM); malate (MAL);

oxaloacetate (OAA).

Figure 2: Metabolism of [U-”C]-glucose via glycolysis in SE mice in the chronic stage of
pilocarpine model. A) Hippocampal "*C enrichment of glycolytic metabolites after i.p.
injection of [U-">C]-glucose was compared between SE and No SE mice. Reduced "*C
enrichment in SE mice was found in glucose 6-phosphate (G6P, 22% reduction, p=0.030),
fructose 6-phosphate (F6P, 21%, p=0.038), dihydroxyacetone phosphate (DHAP, 17%,
p=0.05) and phosphoenolpyruvate (PEP, 20%, p=0.023). No significant differences were
found in fructose 1,6-bisphosphate (F16BP), 2 and 3 phosphoglycerate (2+3PG), and
pyruvate (PYR). Two-way ANOVA, SE status p<0.001, n=9-11 mice. B) The activities of all
cytosolic enzymes, namely hexokinase (HK), phosphoglucose isomerase (PGI),
phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and
glucose 6-phosphate dehydrogenase (G6PDH) were unaltered between control No SE mice
and mice after SE within the chronic stage of the model (p>0.05 for all). n=7-9. C)

Correlation analysis between the % *C enrichment of G6P and the '*C enrichment in
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downstream metabolites in No SE mice. A significant correlation was observed with each
metabolite specifically F6P, r=0.89, p<0.001; F16BP, r=0.97, p<0.001; DHAP r=0.96,
p<0.001; 24+3PG 1=0.76, p<0.01; PEP, r=0.96, p<0.001; PYR, r=0.95, p<0.001). No
significant correlation was found between body weight (g) and % "*C enrichment of G6P, r=-
0.28, p>0.05. D) Correlation analysis between the % "*C enrichment of G6P and the *C
enrichment in downstream metabolites in SE mice. Similar to the No SE group a strong
correlation was observed with each downstream metabolite apart from 2+3PG. F6P, r=0.91,
p<0.001; F16BP, =086, p<0.001; DHAP, r=0.90, p<0.001; 2+3PG, r=0.10, p>0.05; PEP,
r=0.72, p<0.05, PYR, r=0.64, p<0.05). No significant correlation was found between body

weight (g) and % "*C enrichment of G6P, r=-0.21, p>0.05.

Figure 3: Metabolism of [U-""C]-glucose via the TCA cycle is impaired in SE mice in the
chronic stage of pilocarpine model. A) Percent °C enrichment in the TCA cycle
metabolites from the first turn of the TCA cycle were compared between SE and No SE mice.
Reduced "*C enrichment was found in citrate (CIT, 17% reduction, p<0.006), aconitate
(ACO, 17%, p=0.0001), succinate (SUC, 35%, p=0.005), and fumarate (FUM, 23%,
p=0.001) in the hippocampal formation of mice in the chronic epileptic state. No changes
were found in the "*C enrichment of 2-oxoglutarate (20G, p>0.05) or malate (MAL, p>0.05).
Two-way ANOVA, SE status p<0.001, n=9-11 mice. B) The percent "*C enrichment of TCA
cycle metabolites when labelled oxaloacetate condenses with [1,2-13C]-acetyl CoA. A
reduction in "*C enrichment was observed in the intermediates 20G (47%, p=0.03), SUC
(55%, p=0.037), FUM (25%, p=0.044) and MAL (29%, p=0.003). Two-way ANOVA,
Seizure status p<0.001. n=9-11 mice. C) Maximal activities of mitochondrial enzymes were
compared between SE and No SE mice. SE mice had lower activity of both pyruvate

dehydrogenase (PDH, 33%, p=0.045) and 2-oxoglutarate dehydrogenase (OGDH, 55%,
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p=0.027) two key enzymes involved in the entry and rate of TCA cycling compared to No SE
controls. No changes were found in the enzymes pyruvate carboxylase (PC), glutamate
dehydrogenase (GDH), glutamic pyruvic transaminase (GPT), and glutamic oxaloacetic
transaminase (GOT, all p>0.05). N=7-9 mice for all enzymes. D) Correlation analysis
between the percent '*C enrichment in pyruvate to all first turn TCA cycle intermediates in
No SE mice. A significant correlation exists for all metabolites when compared to pyruvate in
this group. CIT, r=0.86, p<0.001; ACO, r=0.80, p<0.01; 20G, r=0.78, p<0.01; SUC, r=0.86,
p<0.01; FUM, r=0.70, p=<0.05; MAL, r=0.91, p<0.001. E) Correlation analysis between "*C
enrichment (%) in SE mice between pyruvate and first turn TCA cycle intermediates. No
significant correlation was found between pyruvate and the TCA cycle metabolites. CIT,
r=0.34, p>0.05; ACO, r=0.54, p>0.05; 20G, r=0.40, p>0.05; SUC, r=0.48, p>0.05; FUM,
1=0.37, p>0.05; MAL, r=0.46, p>0.05. F) Correlation between the % enrichment of "*C from
the first turn of the TCA cycle between 20G and SUC. A strong correlation was observed
between the "*C enrichment in the two metabolites in No SE mice (r=0.95, p<0.001), while
no correlation was found in the '*C enrichment of 20G and SUC in SE mice (r=0.42,

p>0.05).

Figure 4: Mitochondrial functional parameters of isolated hippocampal mitochondria
from SE and no SE mice measured with the extracellular flux analyser. A)
Representation of the stages of the coupling assay to measure mitochondrial functions based
on oxygen consumption rate (OCR). B) An example of the stages of the electron flow assay
to measure electron flow through the electron transport chain base on the OCR. No
differences were found in any of the parameters measured using the coupling assay C) state 2
respiration, D) state 3 respiration following the addition of ADP, E) state 3 uncoupled

respiration, and F) respiration associated with ATP synthesis. Similarly, no significant
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705  differences were observed in the parameters measured using the electron flow assay including
706  G) complex I driven respiration and H) complex II driven respiration between No SE and SE

707  mic (n=6-8 mice).
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Table 1. Analyte-dependent parameters for the transitions used in scheduled multiple
reaction monitoring data acquisition

Q1 (Da) Q3 (Da)

RT DP CE CXP
Analyte 2c e
et (min)  (volts)  (volts)  (volts)
Q Analyte  Analyte
o =m—
S Glucose 6-phosphate ~ 258.89 96.7 8.1 -20 -30 -15
Fructose 6-
V) 25902 9638 9.6 -20 -30 15
3 bisphosphate
s Fructose 1,6-
339.08 96.9 21.9 -20 -30 -15
m bisphosphate
E Dihydroxyacetone
168.84 97 11.9 -50 -14 -5
phosphate
O 2.
QJ 184.91 97 215 -50 -20 -5
phosphoglycerate
ld
Q_ Phosphoenolpyruvate ~ 166.83 79 223 -40 -18 -5
a Pyruvate 87.02 43 11.9 -45 12 -1
U Citrate 190.96 110.9 22.6 -50 -18 -7
< Aconitate 172.94 84.9 22.6 -30 -18 -5
2-oxoglutarate 144.95 100.8 20.5 -40 -12 -5
O Succinate 117 73 18.5 -45 -16 -3
S
3 Fumarate 115.01 70.9 21.1 -45 -12 -1
GJ Malate 133 70.8 19.7 -40 -22 -3




Table 2. Total levels of metabolites

No SE SE
nmol/g tissue
(n=6-9) (n=6-7)
e
Q Glucose 6-phosphate 20.1+1.7 242 +3.4
o =m—
N Fructose 6-phosphate 33.0+22 362+5.9
U Fructose 1,6-bisphosphate 16.5+1.0 178+ 1.4
3 Dihydroxyacetone phosphate 0.70 £ 0.08 0.67 £0.08
C 2+3-phosphoglycerate 11.2+1.0 109+1.2
m Phosphoenolpyruvate 8.93+£1.42 7.50 +£1.33
E Pyruvate 382+2.7 342+6.0
Citrate 109+5 110+17
U Aconitate 1.84+0.12 2.24+£0.28
GJ 2-oxoglutarate 90.8 £ 6.5 83.9+17.4
ld
Q Succinate 10.1+0.8 8.1+1.6
a Fumarate 12.5+0.9 13227
U Malate 459+3.9 46.1 £6.8
S




