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Abstract

Cocaine and Amphetamine-regulated Transcript (CART) is one of the most abundant neuropeptides in
vagal afferents, including those involved in regulating feeding. Recent observations indicate that
metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents.
Here, using confocal microscopy, we re-assessed the distribution and regulation of CART (55-102)
immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including
fasting, high-fat diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using
mice expressing channelrodhopsin-2 (ChR2-YFP) in Na,1.8-Cre-expressing neurons. In these mice,
approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-
YFP-labeled axons could easily be identified in the dorsovagal complex. CART (55-102)
immunoreactivity was observed in 55% of the ChR2-YFP-labeled neurons in the nodose ganglion and
22% of the ChR2-YFP-labeled varicosities within the area postrema of fed, fasted and obese mice. The
distribution of positive profiles was also identical across the full range of CART staining in fed, fasted
and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone
immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose
ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal
afferents are invariably enriched in CART and devoid of MCH.

Significance statement

Recent studies reported that fasting triggers vagal afferents to switch from expressing anorectic to
orexigenic neuropeptides. This study failed to replicate the aforementioned observations using a
combination of confocal microscopy, immunohistochemistry, and in situ hybridization. In particular, we
showed that neither fasting nor diet-induced obesity influence the immunoreactivity for Cocaine and
Amphetamine-regulated Transcript neuropeptide in the mouse vagal afferents. In contrast to previous
studies, we also failed to detect melanin-concentrating hormone expression in the mouse vagal afferents.
Overall, we reached the conclusion that the neuropeptidergic profile of the vagal afferents involved in
feeding is remarkably stable in response to metabolic challenges.
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Introduction

Over 16 years ago, Broberger and colleagues (Broberger et al., 1999) showed that Cocaine and
Amphetamine-regulated Transcript (CART) was expressed in half of vagal afferents, making it one of the
most abundantly expressed neuropeptides in the nodose ganglion. Different CART peptides can be
generated by splicing and enzymatic cleavage of a precursor peptide in a tissue-specific manner (Koylu et
al., 1997; Thim et al., 1999). The long form of CART is highly expressed in the hypothalamus and is
considered to be one of the most biologically active CART peptides with proven anorectic actions
(Stanley et al., 2001). In the past, CART expression in the nodose ganglion was mainly detected using
antibodies raised against the long form of CART (Broberger et al., 1999; Zheng et al., 2002).

Recent pharmacological and RNA interference experiments suggested that vagally-released
CART was implicated in the anorectic actions of cholecystokinin (CCK) (De Lartigue et al., 2010;
Heldsinger et al., 2012). Most CART-containing vagal afferents were shown to co-express CCK receptor
(Broberger et al., 1999), further ascertaining the role of vagally-released CART in feeding. In addition,
one retrograde tracing study showed that many CART-positive vagal afferents project to the rat
duodenum and stomach (Zheng et al., 2002). Inconsistent observations have also been reported regarding
the anorectic actions of CART in the brain (Rogge et al., 2008). In particular, administration of CART in
the 4™ ventricle suppressed feeding (Aja et al., 2002), CART microinjection into areas of the nucleus of
the solitary tract supplied by CART-positive afferents was ineffective at suppressing feeding (Zheng et
al., 2002). Hence, the role of vagally-released CART in feeding is controversial. In addition, CART
regulation in vagal afferents in response to metabolic challenges remains confusing. One initial study
reported that the percentage of rat nodose ganglion cells expressing CART mRNA remains unchanged
after food restriction or diet-induced obesity (Broberger et al., 1999). Arguing against these results,
several studies reported profound alterations in the neuropeptidergic profile of CART-positive afferents
upon fasting. Specifically, fasting and leptin receptor deficiency in vagal neurons were shown to suppress
CART immunoreactivity in the rat and mouse nodose ganglia (de Lartigue et al., 2007; De Lartigue et al.,
2010; de Lartigue et al., 2014; de La Serre et al., 2015). Furthermore, the orexigenic peptide melanin-
concentrating hormone (MCH) was shown to be induced in the vagal afferents of fasted rats and mice that
expressed CART in the fed condition (Burdyga et al., 2006; de Lartigue et al., 2007; de Lartigue et al.,
2014; de La Serre et al., 2015). To our knowledge, such a unique feeding-dependent switch in the
neuropeptidergic profile of vagal afferents had never been reported before.

Given the aforementioned discrepancies and gaps in the literature, the first goal of this study was
to re-examine CART (55-102) immunoreactivity in the cell body and axons of vagal C-fibers in mice
submitted to different metabolic challenges. We utilized transgenic mice in which Na,1.8-expressing
neurons are labeled with channelrhodopsin-2 (ChR2) fused with yellow fluorescent protein (YFP)
(Na,1.8-Cre-ChR2-YFP mice) to identify vagal C-fibers. The second goal of this study was to
characterize Na,1.8-Cre-ChR2-YFP mice as a useful model to label vagal C-fibers. Na,1.8-expressing
peripheral afferents include all of the C-type peripheral afferents, as well as those expressing
neuropeptides (Chiu et al., 2014; Usoskin et al., 2015). ChR2-YFP was chosen as a fluorescent reporter
due to the emerging evidence of its usefulness in neuronal tract tracing studies (Jennings and Stuber,
2014). Unexpectedly, the present study showed that CART (55-102) present in the perikarya and central
terminal of the vagal C-fibers was not regulated by metabolic challenges. In contrast to previous studies,
we showed that CART-positive afferents in the mouse never produced MCH.
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Materials and methods
Generation of animals and the experimental groups

Na,1.8-Cre-ChR2-YFP mice were generated by crossing Na,1.8-Cre mice (Scnl0atm2(cre)Jnw),
which were kindly provided to us by Dr. Wood (Stirling et al., 2005), with Ai32 mice (Ai32(RCL-
ChR2(H134R)/EYFP) expressing ChR2-YFP in a Cre-dependent manner. The Ai32 mice were originally
designed by the Allen Institute (Madisen et al., 2010) and are currently available from the Jackson
Laboratory (stock No 012569). The mice were all adult males (ages varying between 6 and 16 weeks of
age) carrying one copy of Na,1.8-Cre- and one copy of ChR2-YFP. Na,1.8-Cre mice are useful for
selectively inducing the expression of fluorescent proteins in C-fiber neurons, including those in the
vagus nerve. The usefulness of Ai32 mice in optogenetic and tracing experiments is also well-
documented (Daou et al., 2013; Munoz et al., 2014).

The experimental animals were housed in a barrier facility in a temperature-controlled
environment (lights on: 06:00-18:00) with ad libitum access to water and standard chow with 12% of
calories from fat. All animal procedures were performed in accordance with the guidelines of our
Institutional Animal Care and Use Committee at UTSouthwestern Medical Center. For the metabolic
challenges studies, we used a total of 22 Na,1.8-Cre-ChR2-YFP mice, which were divided into three
groups consisting of animals fed chow ad libitum at all times (24.7 = 0.9 grams body weight, n=7),
animals fasted between 16 and 24 hours before sacrifice (21.8 + 1.2 grams body weight, n=7), and
animals fed a high-fat diet (62% calories from fat; Research Diet D12492i) for 4 weeks before sacrifice
(35.0 + 2.4 grams body weight, n=8). A separate group of Na,1.8-Cre-ChR2-YFP mice that were fed on
chow ad libitum was used for the initial characterization of ChR2-YFP expression in the nodose ganglia
and brains (n=4). Another group of 4 Na,1.8-Cre-ChR2-YFP mice was used to map the peripheral organs.

A total of 8 C56/B16 male mice (6 weeks of age) divided into fed and fasted groups were also
used for performing in situ hybridization. These mice were purchased from our institution animal
husbandry and housed in the same barrier facility and environment as the Na,1.8-Cre-ChR2-YFP mice.
Immunostaining was also performed in the nodose ganglia of six Lean Zucker male rats (6 months of age)
that were given to us by another laboratory on our campus. Rats were housed in a conventional facility in
a temperature-controlled environment with ad libitum access to water and standard chow. Three rats were
fed chow ad libitum at all times and three were fasted 16 hours before sacrifice.

Tissue collection and preparation for immunohistochemistry

On the day of sacrifice, between 9 and 11 A.M., the animals received an overdose of chloral
hydrate (500 mg/kg, i.p.) and were then perfused transcardially with 0.9% saline followed by 10%
formalin (Sigma) for 2 minutes. Tissues, including the left nodose ganglion, were rapidly removed with
the help of a dissecting scope and post-fixed for approximately 1 hour. The nodose ganglion, brain,
stomach wall and duodenum were submerged in 20% sucrose overnight at 4°C. The stomach muscularis
was prepared as whole mounts for immediate immunostaining. Cryoprotected brains were sectioned at 25
um using a freezing microtome (1:5 series). The brain sections were collected in 0.1 M PBS (pH 7.4),
then transferred in a cryoprotectant solution (30% sucrose, 30% ethylene glycol), and stored at —20°C.
Other cryoprotected tissues were frozen in TissueTek OCT compound (Sakura) on dry ice before being
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sectioned at 16 um using a cryostat (1:5 series). The sections were collected on SuperFrost slides and
stored at —80°C.

Antibody characterization

Table 1 compiles the primary and secondary antibodies used in this study. A discussion relative
of the specificity of our primary antibodies is listed below. All of them were commercially available.

Polyclonal rabbit antibody against CART (55-102) (RRID:AB_2313614). We used the residue
nomenclature established for rat CART peptides (Rogge et al., 2008). This antiserum was extensively
characterized in the CNS and peripheral ganglia, including the nodose ganglion (Zheng et al., 2002;
Valera et al., 2006; Gonsalvez et al., 2010; Reeber and Sillitoe, 2011). Controls for specificity included
pre-adsorption with a CART (55-102) peptide and omission of the primary antibody (Dun et al., 2000;
Reeber and Sillitoe, 2011). According to the manufacturer, this antibody detects a 5 Kda band on western
blot of rat brain samples. CART staining in both the brain and nodose ganglion samples displayed a
distribution pattern that perfectly agreed with previous reports using this antiserum. The neurons in the
nodose ganglion were not stained when the primary antibody was omitted.

We also tested an antibody against CART (1-39) (Phoenix Pharmaceutical Cat#H-003-63; R&D
Cat#AF163). However, this antibody failed to label the nodose ganglion and thus we have not included
these data in the manuscript. This is not completely surprising since #H-003-063 was raised against a
CART fragment that is not very well studied and not considered as biologically relevant as CART (55—
102).

Chicken anti-GFP polyclonal antiserum. Many laboratories have used this antibody to label the
mouse brain and ganglia of transgenic mice that express GFP and verified the absence of staining when it
was used against wildtype tissue (Volkmann et al., 2010; Marques-Lopes et al., 2014). In addition, GFP-
expressing hippocampal neurons showed endogenous fluorescence that was only enhanced by
immunostaining with the antiserum (Yi et al., 2015).

Peripherin polyclonal antiserum. According to the manufacturer, this antiserum is regularly tested
on PCI12 lysates and detects a major band at 57 kDa. Lysates from cell lines transfected with the
peripherin gene also showed a single band of approximately 58 kDa (Tseng et al., 2008; Xiao et al.,
2008). Moreover, it was shown that the staining obtained with this antibody overlapped perfectly with
that of eGFP-peripherin in PC12 cells (Tseng et al., 2008). As anticipated, this antibody produced
filamentous staining of the neuronal perikarya in the nodose ganglion. Here, we used peripherin as a pan-
neuronal marker for vagal afferents.

Polyclonal goat antiserum against TH (RRID:AB_10710873). The data from the manufacturer
show that this antiserum detects a single 50 kDa band from rat, mouse and human brain lysates. This
antibody has been used to label the mouse striatum and the rat ventral tegmental area (Garcia-Perez et al.,
2013; Biezonski et al., 2015). Omission of the antibody resulted in no staining. Here, we used the TH
antibody to label subsets of postsynaptic neurons in the dorsovagal complex. In our samples, this
antiserum produced a staining pattern that was consistent with the distribution of TH-positive neurons in
the mouse dorsovagal complex (Cork et al., 2015).
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Polyclonal goat anti pro-MCH (RRID:AB 2237276). By western blot (see manufacturer’s sheet),
this antibody detects one band of 45-50 KDa. Although the exact sequence of the immunogenic peptide is
not available, Deurveilher and colleagues (Deurveilher et al., 2006) have discussed the observation that
this antibody certainly detected MCH neurons in the lateral hypothalamus. For instance, they showed
overlapping staining with another antibody (same as below) and a lack staining when the antibody was
preadsorbed with the immunogen peptide (Deurveilher et al., 2006). Moreover, this antiserum did not
label orexin-positive cells. In our laboratory, this antiserum exclusively labeled neurons in the lateral
hypothalamus region, strongly suggesting specificity. The lateral hypothalamus was not stained when the
primary antibody was omitted. Finally, another group showed that this antiserum did not immunolabel
structures in mice lacking MCH neurons (Whiddon and Palmiter, 2013), further exhibiting its specificity.

Polyclonal rabbit antiserum against MCH (RRID:AB_10013632). According to Deurveihler and
colleagues (Deurveilher et al., 2006), this antibody labels exactly the same cells as the pro-MCH antibody
described above. The manufacturer also performed competitive radioimmunoassays to ascertain
specificity. Incubation of the primary antibody with its immunogenic peptide prevented the labeling of the
rat brain (Glavas et al., 2008). In this study, the distribution pattern of the MCH-positive elements
observed in the mouse brain was consistent with that described by other groups using other antibodies
against MCH (Croizier et al., 2010).

Double fluorescent immunohistochemistry

The native fluorescence for ChR2-YFP was directly observed in the nodose ganglion and
brainstem. In peripheral tissues, YFP was indirectly detected using an antiserum against GFP. After
rinsing in phosphate-buffered saline (PBS), free-floating brain sections, whole mounts or histological
slides were incubated with primary antibodies (diluted in 3% normal donkey serum (NDS; Jackson
ImmunoResearch, West Grove, PA cat No, 0.3% Triton X-100 in PBS) at room temperature for 16 to 24
hours. After several PBS washes, the tissues were then incubated with 1:500-1:1,000 dilutions of the
appropriate secondary antibodies for 1 hour. The tissue was then covered with Vectashield hard set
mounting medium with DAPI (H1500) and coverslipped. Table 1 summarizes the combinations of
primary and secondary antibodies used in this study. Immunohistochemistry was performed at room
temperature with gentle horizontal shaking.

In situ hybridization (ISH)

The tissue was processed for chromogenic ISH using the RNAscope 2.5 HD Assay (Brown) from
Advanced Cell Diagnostic (Newark, CA). The hypothalami and left nodose ganglia from fed and fasted
C57B1/6 mice were rapidly removed and directly frozen on a bed of dry ice. Fresh-frozen tissue was
sectioned at 14 um using a cryostat and collected on SuperFrost slides. Following the manufacturer’s
protocol, the tissue was fixed in 10% formalin and was pretreated with a protease-based solution
(pretreatment 4) followed by hybridization at 40°C for 2 h in a humidity oven with the double-Z oligo
probes for prepro-CART and prepro-MCH listed in Table 2. Signal amplification was achieved using
DAB and the tissue was counterstained with hematoxylin. Finally, hybridized slides were dehydrated in
graded alcohols, immerged in xylene, and coverslipped with Permaslip mounting medium (Alban
Scientific, St. Louis, MO).

Confocal imaging and photomicrograph production
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Samples from Na,l.8-Cre-ChR2-YFP mice were scanned using a Leica SP5 confocal
microscope. Oil immersion 40x and 63x objectives were used. The gain and laser intensity were slightly
adjusted for each tissue. However, the same scanning parameters were applied when comparing the same
tissues from different feeding groups. The line average was 8 or 16. The step increase in the z-axis was
usually 0.35 um, and the total number of optical sections in each stack was 10-20. Most of the images in
the manuscript were merged into one color and projected onto a single plane, unless mentioned otherwise
in the legend. Single optical sections were used for the estimates and colocalization studies. Imagel
(http://rsb.info.nih.gov/ij/) was used to convert all our confocal-acquired images (lif format) into TIFF
images (RGB, 300 dpi) and generate scale bars. CART-positive cells were subjectively evaluated by
scaling cell profiles clearly containing immunoreactivity within the outline of the YFP-labeled structures
that conformed well to the shapes of these structures.

Adobe Photoshop CS5.1 (Adobe Systems, San Jose, CA) was used to combine the digital images
into annotated plates. In some instances, several images were stitched together, as indicated in the legend.
The contrast and brightness were uniformly adjusted by adding one adjustment layer. Finally, DAPI-
labeled structures were converted to grey scale for better contrast and red—green fluorescence images
were converted to magenta—green for color-blind readers.

Estimates of double labeled cells and axons. We estimated the percentage of ChR2-YFP-
labeled vagal afferents by counting the cell profiles that were double-labeled for peripherin and ChR2-
YFP. Likewise, we counted the neurons that were double labeled for CART and ChR2-YFP in the nodose
ganglion. A neuron was considered double labeled when the shape of the YFP-positive profile
corresponded to that of the CART or peripherin-stained profiles. The neurons were counted in digital
images obtained with a Zeiss microscope (Imager ZI, 20x objective) equipped with a scanning stage and
attached to the ApoTome system and a digital camera (Axiocam MRm). A desktop computer running
Axiovision 4.7 was used to produce the digital images. The neurons in a 1:5 series of sections across the
nodose ganglion were counted by a blinded observer. To evaluate the relative intensity of fluorescence in
CART-labeled cells, we used a method described in the literature with slight modifications (Fang et al.,
2002). Using Imagel, the mean absorbance of outlined CART-positive profiles was measured using
measurement tools. The average of the mean absorbance of one negative profile in each tissue section of
chow-fed mice was used as our 0% intensity (a). The average of the mean absorbance of one most
intensely stained profile in each tissue section of chow-fed mice was used as 100% intensity (b). The
intensity of the measured profiles was scaled between the minimal and maximal values as follows:

Relative intensity of CART-labeled profile = (measured mean - a)/(b - a)*100.

The measurements were repeated in a large number of individual cell profiles as indicated in our
graph. Data were expressed as the relative intensity (%) of individual CART cells compared to the darkest
stained cells. This method allowed us to easily visualize the full range of immunoreactivity of CART cells
across our different feeding groups. Cell profiles were categorized according to their relative
immunoreactivity as containing low (between 0 and 25%), medium (between 25 and 75%), or high
immunoreactivity (75% and over 100%). Finally, we calculated the frequency of neurons falling into each
category across feeding groups. None of the estimates described above were meant to provide absolute
counts, but relative estimates across different feeding conditions. Thus, we did not correct our data for
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double counting, and did not use the stereological technique use. The graphs were constructed using
GraphPad Prism 7.01.

The estimates described below were performed in a 1:5 series of sections using digital images of
single optical sections acquired with a confocal microscopy (63x, zoom 6). Counting was performed by a
blinded experimenter. The percentage of CART-positive varicosities in the AP was evaluated. Double-
labeled varicosities were considered when CART staining was clearly contained within the boundaries of
each ChR2-YFP-labeled varicosity. Second, the diameters of the ChR2-YFP-labeled axons and
varicosities in the AP were evaluated. The counts and measurements were collected using Imagel
measuring tools.

Immunofluorescence in the rat was captured using a digital camera (Axiocam) attached to a Zeiss
microscope Imager ZI equipped with the Apotome system. Several images of the rat nodose ganglion
taken at 40x were stitched together using the Axiovision 4.7 software. The density of CART-positive cells
in the rat nodose ganglion was evaluated using Axiovision 4.7. A blinder observer manually counted the
number of cell profiles that were immunoreactive for CART. The number of profiles was divided by the
surface of tissue occupied by the nodose ganglion.

ISH signals for prepro-CART mRNA were analyzed on DAB-labeled ganglia counterstained with
hematoxylin. Images were taken using the brightfield optics of the Zeiss Axioskop 2 microscope and the
Axiovision 4.8 software. The percentage of prepro-CART-expressing profiles was estimated by manually
counting clearly identifiable neuronal profiles with or without DAB. The intensity of the hybridization
signals was further evaluated by subjectively scaling neuronal profiles with low (less than 20 DAB-
positive dots per profile), medium (dense accumulation of DAB with large areas of the cytoplasm still
visible), or high signals (dense accumulation of DAB covering almost entirely the cell profile). We then
calculated the frequency of profiles falling into each category across feeding groups.

Results
Tracing the vagal afferents using the Na,1.8-Cre-ChR2-YFP mice.

We first tried to establish the usefulness of Na,1.8-Cre-ChR2-YFP mice in labeling the vagal C-
fibers. In the nodose ganglion, the soma of the vagal afferents and their proximal axons showed robust
endogenous green fluorescence (Figure 1A). ChR2-YFP was clearly visible, without the need for
immunostaining, in the membrane and cytoplasm of many vagal afferents (Figure 1A, B). We estimated
that 82% + 2 (n=4) of the vagal afferents that stained for peripherin, a pan-neuronal marker in the
peripheral nervous system (Gorham et al., 1990), were also positive for ChR2-YFP (Figure 1B-D).

In addition, ChR2-YFP labeled the membranes of the vagal terminals within the dorsovagal
complex (Figure 2A; Figure 3). Although we observed a few isolated ChR2-YFP-labeled neurons in the
forebrain (mainly in the cortex and striatum), no neurons were detected in the hypothalamus or brainstem
(not shown). Thus, the ChR2-YFP-labeled fibers observed in the dorsovagal complex were essentially
derived from the nodose ganglion. The densest innervation was observed in the dorsal and medial parts of
the NTS, as well as the solitary tract itself (Figure 2A). Innervation was less dense in the AP and other
parts of the NTS (Figure 2A). The innervation of the dorsovagal complex was very dense, forming
bundles of intermingled axons circling the putative location of the postsynaptic neurons. For example,
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ChR2-YFP varicosities accumulated in the vicinity of tyrosine hydroxylase (TH)-positive neurons in the
AP and NTS (Figure 2B). Although it was difficult to distinguish individual axons and varicosities at low
magnification, optical sectioning at higher magnification (63x) revealed individual thin axons (average
diameter of 0.3 = 0.0 um; n=3) decorated with boutons and varicosities resembling presynaptic terminals
(average diameter of 0.9 £ 0.0 um; n=3) (Figure 2C). Movie 1 is a file compilation of a Z-stack of ChR2-
YFP-labeled axons (green) around one TH-positive neuron (red).

ChR2-YFP was also transported toward peripheral tissues that were innervated by C-fibers
(Figure 4). However, the native fluorescence for ChR2-YFP was much weaker in the periphery than in
the ganglia or brain. For instance, low to nearly undetectable levels of endogenous YFP fluorescence
were seen in the epidermis (Figure 4A) and intestinal mucosa (Figure 4C). Immunostaining with an anti-
GFP antiserum successfully marked axons and specialized sensory endings in the aforementioned tissues
(Figure 4B, D). Thus, the subsequent experiments depicting ChR2-YFP in the peripheral tissues were
performed using GFP immunofluorescence. Overall, Na,1.8-Cre-ChR2-YFP mice allowed the assessment
of the detailed morphology of C-fibers in many visceral tissues (not shown). Importantly, no cell bodies
were ever labeled in peripheral organs.

Distribution and regulation of CART in vagal afferents of metabolically challenged mice.

In the nodose ganglion of the Na,1.8-Cre-ChR2-YFP mice, immunoreactivity for CART (55-102)
was detected in the soma and proximal axons of many neurons (Figure 5A, C; Figure 6). The nodose
ganglion neurons were not stained when the CART primary antibody was omitted (Figure 5B). In
agreement with previous works (Broberger et al., 1999; Zheng et al., 2002; Scruggs et al., 2003),
immunoreactivity for CART was evident in large puncta around the cell nucleus and within the proximal
axon (Figure 5B). Approximately 55% of ChR2-YFP-labeled neurons were CART-positive (Figure 6;
Figure 7A) and over 99% of the CART-positive cells were labeled with ChR2-YFP. The CART staining
in the nodose ganglion looked identical in fed, fasted and obese animals when observed under blinded
conditions (Figure 6A-F). According to our estimates, the percentage of ChR2-YFP-labeled neurons
containing CART was identical across the feeding groups (Figure 7A). Because CART immunoreactivity
varied in intensity between neurons, we also examined the relative intensity of CART (55-102)
immunoreactivity in a large number of cell profiles (Figure 7C). The percentages of cells with low,
medium, and high immunoreactivity were identical across the feeding groups (Figure 7C).

Most of the studies on the impact of fasting on vagal CART were performed in rats. To rule out
the possibility of species differences, were examined CART in fed and fasted rats (Figure 8). The
distribution and intensity of the CART staining in the nodose ganglion looked identical in fed and fasted
rats when observed under blinded conditions (Figure 8). Moreover, the density of CART-positive profiles
across the ganglion was not significantly different in fed (125 + 18 cells/mm®* n=3) and fasted rats (160

£ 27 cells/mm?, n=3).

We also assessed CART immunoreactivity in the vagal terminals in the dorsovagal complex.
CART (55-102) immunoreactivity was observed throughout the entire dorsovagal complex and included
both neuronal soma and fibers (Figure 9A). Across the feeding groups, the distribution and intensity of
CART immunoreactivity was directly comparable (Figure 9A-C). CART immunoreactivity was observed
in ChR2-YFP axons and varicosities in the area postrema (AP) and commissural part of the nucleus of the
solitary tract (SolC), in agreement with the results of Zheng and colleagues (Zheng et al., 2002). In these
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regions, CART immunoreactivity corresponded well to the shape of the YFP-labeled varicosities (Figure
9G, H). However, not all CART-positive elements corresponded to YFP-labeled structures, and in other
parts of the dorsovagal complex, double-labeled axons were rarely observed (not shown). In the AP,
CART (55-102) was present in approximately 22% of the ChR2-YFP-labeled varicosities (Figure 7B). In
agreement with our results in the nodose ganglion, our estimates showed identical percentages of
varicosities that were co-labeled for CART and ChR2-YFP in the AP of the fed, fasted, and high-fat diet
fed animals (Figure 7B). As a remark, we did not notice obvious differences in the shape, amount, and
distribution of ChR2-YFP-labeled fibers across the feeding groups (Figure 9D-F).

Lastly, we also assessed the expression of prepro-CART mRNA in the nodose ganglia of fed and
fasted wild-type mice. Using chromogenic ISH, prepro-CART mRNA was detected at high levels in
select hypothalamic nuclei known to express CART (Figure 10A). Robust signals for prepro-CART
mRNA were also present in nodose ganglia of the fed and fasted mice (Figure 10B, C). Variable amount
of DAB accumulated in the soma of many vagal sensory neurons, including in the fasted condition
(Figure 10D). The percentage of prepro-CART-expressing cells and the relative intensity of hybridization
signal per cell did not significantly change after fasting (Figure 7D).

Absence of MCH in vagal afferents of metabolically challenged mice.

Because MCH has been reported to be produced in CART afferents in response to fasting, we
sought to evaluate the presence of both pro-MCH and MCH in our mice. First, we used an antiserum
against pro-MCH that preferentially stained the perikarya. We successfully detected immunoreactivity for
prepro-MCH in the perikarya of neurons in the lateral hypothalamus (Figure 11A). The lateral
hypothalamus neurons were not stained when the pro-MCH antibody was omitted (not shown). We were
unable to see any immunoreactivity for pro-MCH in the nodose ganglion of Na,1.8-Cre-ChR2-YFP mice,
even in the fasted mice (Figure 11B). Identical results were obtained in samples incubated with higher
concentrations of antibody (up to 1/100) (data not shown). Second, we used an antiserum against MCH
itself. MCH immunoreactivity was observed in axons across the forebrain. However, the dorsovagal
complex of the fed, fasted and obese animals contained very little MCH (Figure 11C, D). Typically,
isolated MCH-positive varicose axons were observed in the ventral region of the medial part of the
nucleus of the solitary tract (SolM), where the YFP-labeled fibers were relatively sparse (Figure 11C, D).
These MCH-positive axons never colocalized with YFP-labeled axons, further confirming that vagal
afferents do not produce MCH. To rule out the possibility of species differences, we also examined pro-
MCH in the nodose ganglion of fed and fasted rats. Consistent with our mouse data, we were not able to
detect immunoreactivity (data not shown).

To rule out the possibility of a false-negative result, we also assessed the expression of prepro-
MCH mRNA in the nodose ganglia of fed and fasted wild-type mice. As expected, chromogenic ISH
revealed very intense signals in the lateral hypothalamus (Figure 10E). In contrast, the rest of the brain
and the nodose ganglion were completely devoid of signal, regardless of the nutritional status of the mice
(Figure 10F-H).

Absence of CART immunoreactivity in gastrointestinal endings
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In the vagus nerve itself, we did not observe CART immunoreactivity any YFP-labeled axons
(Figure 12A). In the gastrointestinal tract, abundant CART immunoreactivity was observed, likely
originating from post-ganglionic neurons (Calupca et al., 2001; Ekblad et al., 2003; Gonsalvez et al.,
2010) and vagal efferents (Zheng et al., 2002). In those tissues, CART staining was observed in enteric
neurons and fibers running closely to ChR2-YFP axons. However, CART did not colocalize with YFP-
labeled axons themselves. For instance, ChR2-YFP-labeled specialized endings resembling vagal
intraganglionic laminar endings were CART negative (Figure 12B). Similar observations were reported
in the duodenal mucosa (not shown). This suggested that CART is not efficiently transported to the
peripheral sensory endings of C-fibers including those in the vagus nerve.

Discussion

The present study characterized CART (55-102) immunoreactivity in the vagal afferents of
Na,1.8-Cre-ChR2-YFP mice. Our results indicated that CART (55-102) is constitutively expressed in
approximately 55% of the vagal Na,1.8-expressing neurons, even in the fasted mice. MCH, a peptide that
was previously reported to be induced in CART-positive vagal afferents of fasted animals, was
undetectable. In contrast to several studies, we concluded that the neuropeptidergic profile of the CART-
positive vagal afferents is remarkably stable across the energy balance spectrum.

Technical considerations. We used reporter mice that invariably express ChR2-YFP in Na,1.8-
Cre-expressing cells to label C-fibers in their entirety. Na,1.8-Cre mice crossed with either tdTomato or
ChR2 reporter animals have previously been utilized to label the perikarya and axons of C-fibers,
including somatosensory nociceptors (Gautron et al., 2011; Shields et al., 2012; Daou et al., 2013; Bonin
et al., 2016). To our knowledge, this is the first study to use Na,1.8-Cre-ChR2-YFP mice to describe
visceral C-fibers. Overall, our data further validate the usefulness of ChR2-YFP as an excellent neuronal
tracer. In particular, ChR2-YFP presented the advantage of brightly labeling the membrane of both central
and peripheral endings, thereby allowing the tracing of specialized endings at high resolution. In the
dorsovagal complex, this approach was critical for distinguishing the axons of vagal origins from central
axons. A minor caveat of this mouse model is that GFP immunohistochemistry was required to detect
ChR2-YFP in peripheral tissues, probably due to its limited peripheral transport. In the past, isolectin B4
binding to C-fiber neurons has been commonly employed to trace the perikarya and central axons of C-
fiber neurons (Fang et al., 2006; Fullmer et al., 2007; Solorzano et al., 2015). However, due to
extraneuronal binding (Kirkeby and Moe, 2001), isolectin B4 does not permit the labeling of axons that
innervate peripheral tissues. In addition, numerous developmental, biological and inflammatory factors
influence Isolectin B4 binding to sensory neurons (Beland and Fitzgerald, 2001; Fullmer et al., 2007);
Therefore, it is possible that isolectin B4 binding to C-fibers may vary in response to different
physiological conditions.

In contrast to several previous studies (de Lartigue et al., 2007; De Lartigue et al., 2010; de
Lartigue et al., 2014), we did not observe any suppression of CART immunoreactivity in response to
fasting, even though we used the same antibodies. However, our mouse data are in agreement with our
ISH and the results of Broberger and colleagues, who investigated the regulation of the CART mRNA in
metabolically challenged rats (Broberger et al., 1999). Importantly, the number and appearance of CART-
labeled cells were consistent with the published literature (Broberger et al., 1999; Zheng et al., 2002;
Scruggs et al., 2003). In addition, abundant CART immunoreactivity was also observed in the nodose
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ganglion of fasted rat. Together, these observations made us confident that the CART immunostaining
observed in our study, including in the fasted mice, was not the result of false-positive labeling. Likewise,
our failure to detect MCH in the nodose ganglion was not likely due to false-negative results because we
employed well-characterized antisera that successfully stained the brain. If MCH had been truly produced
in the nodose ganglion of fasted animals, then we should have been able to detect it in the vagal terminals
of the dorsovagal complex. More importantly, prepro-MCH mRNA was completely undetectable in the
mouse nodose ganglion, even in the fasted condition. The absence of MCH in vagal afferents is consistent
with the fact that the administration of MCH in the 4™ ventricle does not influence food intake (Zheng et
al., 2005; Baird et al., 2008). Even though differences in age, strain, bleeds of antibody, and diets may
have influenced our results, we are confident that MCH is not produced by the vagal afferents.

Regarding the neuropeptidergic make-up of the vagal afferents. Although many different
neuropeptides have been described in vagal afferents, the majority of them are expressed at relatively low
levels and/or expressed in small numbers of neurons, which is true for substance P, galanin, neuropeptide
Y, and CGRP (Helke and Niederer, 1990; Calingasan and Ritter, 1992; Kummer et al., 1993; Matsumoto
et al.,, 2003; Young et al., 2008). Of note, the aforementioned peptides are often produced by vagal
afferents innervating the lungs (Undem et al., 2004; Plato et al., 2006) and therefore are not necessarily
involved in feeding regulation. This contrasts sharply with CART, which is abundantly expressed in
many vagal afferents, including those involved in feeding. Furthermore, our results indicate that CART
expression in the nodose ganglion is not influenced by metabolic challenges. This result is not entirely
surprising because few physiological or pathophysiological stimuli have been reported to modify
neuropeptide expression in vagal afferents, with the notable exception of the peripheral axotomy (Zhang
et al.,, 1996; Reimer and Kanje, 1999). Hence, the neuropeptidergic profiles of the CART-positive
hypothalamic neurons and CART-positive vagal afferents are substantially different. For instance,
hypothalamic CART neurons often co-express several feeding-related peptides (Elias et al., 1998).
Moreover, hypothalamic CART expression is significantly altered by metabolic challenges, including
food restriction (Kristensen et al., 1998) and high-fat diet feeding (Lee et al., 2013). Nonetheless, even in
the hypothalamus, we are not aware of neurons switching from being anorectic to being orexigenic.

Most published studies agree that approximately 40-50% of the neurons are immunoreactive for
CART in rats and mice in the fed condition (Zheng et al., 2002; de Lartigue et al., 2007; Gautron et al.,
2012). Using radioactive ISH, approximately 48% of the vagal afferents were found to express CART in
the rat (Broberger et al., 1999). However, using chromogenic ISH, we found that approximately 67% of
the mouse vagal afferents expressed CART. This is likely due to the fact that the RNAscope technology is
not only more sensitive than immunofluorescence but also provides better signal-to-noise ratio than
radioactive ISH (Wang et al., 2012). Nonetheless, species differences in the distribution and percentage of
vagal afferents expressing neuropeptides have been reported in the nodose ganglion of rats and mice
(Zhuo et al., 1997). Therefore, we cannot completely rule out that CART mRNA is expressed in more
vagal afferents in the mouse than in the rat. However, our current data in both species combined with that
of Broberger and colleagues (Broberger et al., 1999) support the view that vagal CART is not regulated
by fasting.
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Localization of CART in vagal terminals. Many neuropeptides, including vasoactive intestinal
peptide and calcitonin gene-related peptide, are known to be transported from the cell body of vagal
afferents to their peripheral terminals (Zhuo et al., 1995). We expected to find CART in C-fiber terminals
located in the stomach and duodenum because previous studies clearly showed that CART-positive vagal
afferents project to these locations (Zheng et al., 2002). Surprisingly, we failed to detect CART
immunoreactivity in the axons and peripheral endings of vagal neurons that innervate the stomach wall
and duodenal mucosa. We concluded that CART was not efficiently transported to the vagal endings and,
consequently, may serve mainly as a central neurotransmitter. However, we cannot entirely rule out that
our study missed CART immunoreactivity in the gastrointestinal tract. Further tracing studies are
therefore warranted to determine the projection sites of CART-positive vagal afferents in both thoracic
and abdominal viscera.
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Figure 1. Distribution of ChR2-YFP fluorescence in the nodose ganglion of the Na,1.8-Cre-
ChR2-YFP mice. A: Many neuronal cell bodies and axons were brightly fluorescent in the nodose (NG)
and petrosal-jugular ganglion (PJG) (three images were horizontally stitched together). B-D: Details of
NG peripherin-labeled neurons (AlexaFluor 594). ChR2-YFP is apparent in the membrane and cytoplasm
of many NG neurons (but not all) (B). Asterisks are positioned over representative peripherin-positive
neurons that were not labeled with ChR2-YFP (B, C). Abbreviations: NG, nodose ganglion; PJG,
petrosal-jugular ganglion; X, cervical vagus nerve. Scale bars = 40 um in A; 20 um in B (also applies to
C,D).

Figure 2. Distribution of ChR2-YFP fluorescence in the dorsovagal complex of the Na,1.8-Cre-
ChR2-YFP mice. A: Vagal afferents terminating in the area postrema (AP) and nucleus of the solitary
tract (NTS) were labeled with ChR2-YFP (3 horizontally stitched images). B: Highly varicose ChR2-
YFP-labeled axons circling the cell body of one TH-positive neuron (AlexaFluor 594) located in the NTS.
C: Single optical section of ChR2-YFP-labeled axons in the AP revealing thin varicose axons of varying
sizes. Asterisks are positioned over the presumptive locations of the post-synaptic cell bodies, whereas the
arrowheads indicate representative vagal varicosities. Abbreviations: AP, area postrema; DMV, dorsal
nucleus of the solitary tract; sol, solitary tract; commissural part of the nucleus of the solitary tract;
SolDM, dorsomedial part of the nucleus of the solitary tract; SolM, intermediate part of the nucleus of the
solitary tract; SubP, subpostrema area. Scale bars = 60 um in A; 5 um in B and C.

Movie 1. File compilation of a Z-stack of ChR2-YFP-labeled axons (green) around one TH-
positive neuron (AlexaFluor 594) in the area postrema of the Na,1.8-Cre-ChR2-YFP mouse. Note the
varicosities in close apposition to the outline of the TH-positive neuron.

Figure 3. Distribution of ChR2-YFP fluorescence throughout the rostrocaudal extension of the
dorsovagal complex of one representative Na,1.8-ChR2-YFP mouse. Several digital images were stitched
together (epifluorescence with Apotome filter). The number in the bottom right corner indicates the
approximate distance from Bregma according to the Franklin and Paxinos Mouse Brain Atlas (3™
edition). Abbreviations: 4v, fourth ventricle; cc, central canal.

Figure 4. Identification of ChR2-YFP-positive fibers in peripheral tissues from the Na,1.8-Cre-
ChR2-YFP mice. A: Weakly fluorescent structures resembling nerve endings (arrowheads) were observed
in the epidermis of the forepaw. B: GFP immunolabeling greatly enhanced the labeling of individual
axons ramifying into the epidermis. C: We could not detect endogenous YFP fluorescence in the
duodenal mucosa before immunolabeling. D: YFP-labeled axons were evident in the lamina propria (Ip)
when the tissue was stained for GFP. The antibody produced a small amount of nonspecific background
staining in the epithelium (ep). Arrowheads indicate representative YFP-positive fibers. Scale bars = 20
um in A (also applies to B, C, D).

Figure 5. CART (55-102) detection in the nodose ganglion (NG) of the Na,1.8-Cre-ChR2-YFP
mice. A: CART-positive cells (AlexaFluor 594) resembling neurons were observed throughout the NG.
The two cells located in the inset are represented at high magnification in panel C. B: Omission of the
primary antibody eliminated CART immunoreactivity. Only a few debris and background could be
observed in the NG. C: Two adjacent ChR2-YFP-, CART-positive neurons are shown. CART is detected
in vesicle-like structures in the cytoplasm and proximal axon. The larger neuron contained more

19



o)t

4

drVianuscr:

=

UG ACCEpt

e

N

e

703
704

705
706
707
708
709
710
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725

726
727
728
729

730
731
732
733
734
735
736
737
738
739
740
741
742

immunoreactivity than the smaller neuron. Two other YFP-labeled neurons did not contain CART. Scale
bars =50 pm in A and B; 5 pm in C.

Figure 6. CART (55-102) immunolabeling of the nodose ganglion (NG) of metabolically
challenged Na,1.8-Cre-ChR2-YFP mice. A, C, E: CART-positive perikarya (AlexaFluor 594) across the
feeding groups. B, D, F: CART staining and endogenous ChR2-YFP fluorescence delineate the outline of
the vagal afferents. Asterisks are positioned over representative CART-positive cells. Note that CART
immunoreactivity is almost always contained within the cell membrane of the YFP-labeled cells, with a
few rare exceptions (arrowhead). Following visual inspection, the CART distribution pattern and intensity
appeared comparable across the feeding groups. Scale bars =20 um in A; applies to all images.

Figure 7. Estimates of CART-positive neurons and afferents across the feeding groups. A: The
percentage of YFP- and CART-positive neurons in the nodose ganglion (NG) of the Na,1.8-Cre-ChR2-
YFP mice was not influenced by feeding status (n=7-8 per group). B: The percentage of CART-positive
varicosities in the area postrema (AP) was identical in the Na,1.8-Cre-ChR2-YFP mice under different
feeding conditions. The data are expressed as the average of the means percentage + maximum values
(n=7-8 per group). Each circle represents one value from one mouse. C: Frequency of CART
immunoreactivity profiles with varying intensity across feeding groups (n=7 per group). On the left,
frequency scattergraph of distributions of individual CART-positive cell profiles with median and
interquartile range. Each grey dot is one cell profile. The total number of profiles examined in each group
is annotated. On the right, the same data were represented as stacked bars after categorizations of
immunoreactivity level. Data are provided as means percentage + SEM. D: Frequency of cells expressing
pCART mRNA in the nodose ganglia of fed (n=4) and fasted (n=3) wild-type mice. Cells were scaled
based on the intensity of hybridization signals. The total number of profiles examined in each group is
annotated. Stacked bars provide means percentage + SEM.

Figure 8. (A, B): CART (55-102)-positive neurons in the nodose ganglia of lean Zucker rats.
Several digital images were stitched together (epifluorescence with Apotome filter). Many CART-
positive neurons (AlexaFluor 594) were observed in the nodose ganglion of fed and fasted rats. White
arrows indicate examples of CART neurons. Scale bar = 100 pm in A and applies to B.

Figure 9. CART (55-102) immunolabeling of the dorsovagal complex of metabolically
challenged Na,1.8-Cre-ChR2-YFP mice. A, B, C: CART-positive (AlexaFluor 594) perikarya and fibers
of various origins were observed throughout the nucleus of the solitary tract (NTS) and area postrema
(AP). We noticed a trend toward increased immunoreactivity in the fasted groups. However, our estimates
(see Figure 6) indicate that the levels of CART in vagal afferents remained unchanged across feeding
conditions. D, E, F: CART immunoreactivity combined with endogenous ChR2-YFP fluorescence. G:
CART was very abundant in the AP. In particular, many YFP-labeled varicosities of vagal origin were
enriched for CART. However, we also observed CART immunoreactivity that was not contained in
ChR2-YFP-labeled fibers. H: High magnification of the distribution of CART immunoreactivity in the
vagal fibers of the AP in a single optical plan. Of note, CART frequently labeled the cytoplasm contained
within the YFP-labeled varicosities, which are indicated by arrowheads. Abbreviations: AP, area
postrema; NTS, nucleus of the solitary tract. Scale bars = 60 um in A and applies to B-F; 15 pm in G; 5
um in H.
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Figure 10. Detection of prepro-CART (pCART) and prepro-MCH (pMCH) mRNAs using
chromogenic ISH. A: pCART hybridization signals (brown DAB; brighfield optics) were strong in select
hypothalamic nuclei. B: Throughout the nodose ganglion of fed mice, pCART signals of varying intensity
were observed in many cell profiles. C: The nodose ganglion of fasted mice also contained pCART
hybridization signals. D: Details of the hybridization signal in the nodose ganglion of one fasted mouse.
Please note representative cell profiles without signal (*), or with low (1), medium (m), and high (h)
signals. E: Hybridization signals for pMCH were very strong in neurons of the lateral hypothalamus. F,
G: In contrast to the hypothalamus, pMCH signals were not observed in the nodose ganglia of fed and
fasted mice. H: Details of the nodose ganglion of one fasted mouse showing several neuronal profiles
completely devoid of signals (*). Tissue was counterstained with hematoxylin. Abbreviations: 3V, third
ventricle; Arc, arcuate nucleus; DMH, dorsomedial hypothalamus; LHA, lateral hypothalamus; NG,
nodose ganglion; VMH, ventromedial hypothalamus; ZI, zona incerta. Scale bars = 500 um in A and E;
50 um in B, C, F, G; 20 um in D, H.

Figure 11. Absence of MCH staining in the vagal afferents of metabolically challenged Na,1.8-
Cre-ChR2-YFP mice. A: An antiserum against prepro-MCH (pMCH) labeled perikarya (AlexaFluor 594)
in the lateral hypothalamus (LHA). B: PMCH was undetectable in the nodose ganglion (NG) of fasted
Na,1.8-Cre-ChR2-YFP mice. C, D: An antiserum against the MCH peptide labeled very few axons
(arrowhead) in the medial NTS (SolM). MCH immunoreactivity was never observed in the YFP-labeled
fibers of vagal origin. The arrowheads point to one MCH-positive axon. AP, area postrema; NTS, nucleus
of the solitary tract; sol, solitary tract. Scale bars =40 pm in A and B; 10 um in C.

Figure 12. CART (55-102) immunolabeling of peripheral ChR2-YFP-labeled fibers. A: ChR2-
YFP fibers contained within the cervical vagus nerve. CART was not detected in the vagus nerve. We
obtained similar results in the cervical and subdiaphragmatic nerves on both sides. B: In whole mounts of
the gastric muscularis, numerous GFP-positive axons and specialized endings can be observed. The leafy
structure may correspond to an intraganglionic laminar ending (arrowhead) of vagal origin. CART
immunoreactivity was abundant in large varicose fibers and, to a lesser extent, the cell body of enteric
neurons (EN). Nonetheless, CART immunoreactivity was not found in GFP-stained fibers. Abbreviations:
IGLE, intraganglionic laminar ending; EN, enteric neuron. Scale bar = 10 um in A and B.
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Primary Manufacturer | Cat# Lot# Host Working | Immunogen

antibody dilution

Peripherin EMD Millipore | AB1530 2446692 Rabbit | 1:500 trp-E-peripherin fusion protein
containing all but the 4 N
terminal amino acids of rat
peripherin

CART Phoenix H-003-62 01251-10; 1/800 — | Tle-Pro-Ile-Tyr-Glu-Lys-Lys-Tyr

pharmaceuticals 1/1,000 -Gly-GlIn-Val-Pro-Met-Cys-Asp

35-102 01251-6 -Ala-Gly-Glu-GIn-Cys-Ala-Val-
Arg-Lys-Gly-Ala-Arg-Ile-Gly-
Lys-Leu-Cys -Asp-Cys-Pro-Arg-
Gly-Thr-Ser -Cys-Asn-Ser-Phe-
Leu-Leu-Lys-Cys-Leu
[Disulfide bonds between Cys1-
Cys3,Cys2-Cys5,Cys4-Cys6]

CART H-003-63 01102 pGlu - Glu - Asp - Ala - Glu -
Leu - Gln - Pro - Arg - Ala - Leu

1-39 - Asp - Ile - Tyr - Ser - Ala - Val
- Asp - Asp - Ala - Ser - His -
Glu - Lys - Glu - Leu - Pro - Arg
- Arg - Gln - Leu - Arg - Ala -
Pro - Gly - Ala - Val - Leu - Gln

MCH H-070-47 01629-3 1/1,000 Asp-Phe-Asp-Met-Leu-Arg-Cys-
Met-Leu-Gly-Arg-Val-Tyr-Arg-
Pro-Cys-Trp- Gln-Val

TH Abcam ab101853 GR120879-17 | Goat Synthetic peptide corresponding
to human TH 30-100 (N
terminal)

ProMCH Santa Cruz sc-14509 B2415 1/100 — | 20-amino-acid peptide near the

Biotech. 1/1,000 C-terminus of pro-MCH

precursor of human origin

GFP Aves Lab GFP-10120 | GFP697986 Chicken | 1/1,000 GFP emulsified in Freund’s
adjuvant

Secondary | Manufacturer | Cat# Lot# Host

antibody

Anti-Rabbit | Life A21207 1256153 Donkey

AlexaFluor5




1608643

1356650

Table 1. Information relative to the primary and secondary antisera used in the study.
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Table 2. List of reagents used for in situ hybridization.

ISH RNAScope probes from ACD

Gene name(s) Accession # Target region Cat#-channel Chromogenic labels
CARTPT NM_013732.7 11 - 860 432001-c1 DAB - brown
PMCH NM_029971.2 4-652 478721-c1 DAB - brown




