Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleResearch Article: New Research, Novel Tools and Methods

Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest

Giovanni Rabuffo, Jan Fousek, Christophe Bernard and Viktor Jirsa
eNeuro 28 September 2021, 8 (5) ENEURO.0283-21.2021; https://doi.org/10.1523/ENEURO.0283-21.2021
Giovanni Rabuffo
Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan Fousek
Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christophe Bernard
Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Viktor Jirsa
Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Visual Abstract

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

At rest, mammalian brains display remarkable spatiotemporal complexity, evolving through recurrent functional connectivity (FC) states on a slow timescale of the order of tens of seconds. While the phenomenology of the resting state dynamics is valuable in distinguishing healthy and pathologic brains, little is known about its underlying mechanisms. Here, we identify neuronal cascades as a potential mechanism. Using full-brain network modeling, we show that neuronal populations, coupled via a detailed structural connectome, give rise to large-scale cascades of firing rate fluctuations evolving at the same time scale of resting-state networks (RSNs). The ignition and subsequent propagation of cascades depend on the brain state and connectivity of each region. The largest cascades produce bursts of blood oxygen level-dependent (BOLD) co-fluctuations at pairs of regions across the brain, which shape the simulated RSN dynamics. We experimentally confirm these theoretical predictions. We demonstrate the existence and stability of intermittent epochs of FC comprising BOLD co-activation (CA) bursts in mice and human functional magnetic resonance imaging (fMRI). We then provide evidence for the existence and leading role of the neuronal cascades in humans with simultaneous EEG/fMRI recordings. These results show that neuronal cascades are a major determinant of spontaneous fluctuations in brain dynamics at rest.

  • EEG/fMRI
  • network modeling
  • neuronal cascades
  • resting state

Footnotes

  • The authors declare no competing financial interests.

  • This work was supported by Agence Nationale de la Recherche (ANR) Grants ANR-17-CE37-0001-CONNECTOME and ANR-20-NEUC-0005-01-Brainstim and European Union (EU)’s EC | Horizon 2020 (EU Framework Programme for Research and Innovation) Grants 945539 (SGA3) and 826421, and Israeli-French high council for scientific & technological research program (Maïmonide).

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Back to top

In this issue

eneuro: 8 (5)
eNeuro
Vol. 8, Issue 5
September/October 2021
  • Table of Contents
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest
Giovanni Rabuffo, Jan Fousek, Christophe Bernard, Viktor Jirsa
eNeuro 28 September 2021, 8 (5) ENEURO.0283-21.2021; DOI: 10.1523/ENEURO.0283-21.2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest
Giovanni Rabuffo, Jan Fousek, Christophe Bernard, Viktor Jirsa
eNeuro 28 September 2021, 8 (5) ENEURO.0283-21.2021; DOI: 10.1523/ENEURO.0283-21.2021
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Abstract
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
    • Synthesis
    • Author Response
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • EEG/fMRI
  • network modeling
  • neuronal cascades
  • resting state

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Article: New Research

  • Novel roles for the GPI-anchor cleaving enzyme, GDE2, in hippocampal synaptic morphology and function
  • Upright posture: a singular condition stabilizing sensorimotor coordination
  • EEG Signatures of Auditory Distraction: Neural Responses to Spectral Novelty in Real-World Soundscapes
Show more Research Article: New Research

Novel Tools and Methods

  • CalTrig: A GUI-based Machine Learning Approach for Decoding Neuronal Calcium Transients in Freely Moving Rodents
  • Automatic OptoDrive for Extracellular Recordings and Optogenetic Stimulation in Freely Moving Mice
  • An Open-Source and Highly Adaptable Rodent Limited Bedding and Nesting Apparatus for Chronic Early Life Stress
Show more Novel Tools and Methods

Subjects

  • Novel Tools and Methods
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.