Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research Article: New Research, Disorders of the Nervous System

Trimetazidine Use in Parkinson’s Disease: Is It a Resolved Problem?

Dávid Pintér, Dániel Bereczki, András Ajtay, Ferenc Oberfrank, József Janszky and Norbert Kovács
eNeuro 16 April 2021, 8 (3) ENEURO.0452-20.2021; https://doi.org/10.1523/ENEURO.0452-20.2021
Dávid Pintér
1Department of Neurology, Medical School, University of Pécs, Pécs, Hungary 7623
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dávid Pintér
Dániel Bereczki
2Department of Neurology, Medical School, Semmelweis University, Budapest, Hungary 1085
3Hungarian Academy of Sciences - Semmelweis University, Neuroepidemiology Research Group, Budapest, Hungary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
András Ajtay
2Department of Neurology, Medical School, Semmelweis University, Budapest, Hungary 1085
3Hungarian Academy of Sciences - Semmelweis University, Neuroepidemiology Research Group, Budapest, Hungary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ferenc Oberfrank
4Institute of Experimental Medicine, Budapest, Hungary 1083
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
József Janszky
1Department of Neurology, Medical School, University of Pécs, Pécs, Hungary 7623
5Hungarian Academy of Sciences - University of Pécs, Clinical Neuroscience Magnetic Resonance Research Group, Pécs, Hungary 7623
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Norbert Kovács
1Department of Neurology, Medical School, University of Pécs, Pécs, Hungary 7623
5Hungarian Academy of Sciences - University of Pécs, Clinical Neuroscience Magnetic Resonance Research Group, Pécs, Hungary 7623
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    Patients having Parkinson’s disease with ongoing trimetazidine treatment (A), new initiations or withdrawal (B) from 2010 to 2016 and interrupted time series models. EMA, European Medicines Agency; PD, Parkinson’s disease; TMZ, trimetazidine.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    Possible indications for ongoing TMZ treatment (A) and new initiations on the drug (B) in PD from 2010 to 2016. The following categorizations were used: (1) antianginal indication (ICD-10-CM I20, on-label prescriptions); (2) other cardiological indications (ICD-10-CM I00-I99 with the exemption of ICD-10-CM I20, possibly off-label prescriptions after the EMA warning); (3) ophthalmological indications (ICD-10-CM H30-H36, definitely off-label prescriptions after the EMA warning); and (4) otological indications (ICD-10-CM H80-H83, definitely off-label indications after the EMA warning). Other non-investigated disorders might have also served as the basis of TMZ use or initiation. One patient might have had more than one diagnosis. ICD-10-CM, International Classification of WHO Diseases, 10th Revision, Clinical Modification.

Tables

  • Figures
    • View popup
    Table 1

    ARIMA model parameters for Figure 1A

    EstimateStandard errort valuep value
    ARIMA model parameters 1OutcomesNo transformationConstant3726.399145.99325.525<0.001
    ARLag 10.6090.4461.3640.206
    Time periodNo transformationNumeratorLag 0259.58538.5506.734<0.001
    PhaseNo transformationNumeratorLag 03144.925305.50510.294<0.001
    InteractNo transformationNumeratorLag 0−530.22150.743−10.449<0.001
    ARIMA model parameters 2
    OutcomesNo transformationConstant3725.494145.36925.628<0.001
    ARLag 10.6050.4471.3520.209
    PhaseNo transformationNumeratorLag 0−37.185133.227−0.2790.786
    6 months preinterventionNo transformationNumeratorLag 0259.90138.4736.755<0.001
    6 months postinterventionNo transformationNumeratorLag 0−270.59329.031−9.321<0.001
    ARIMA model parameters 3
    OutcomesNo transformationConstant3725.852145.95125.528<0.001
    ARLag 10.6090.4461.3640.206
    PhaseNo transformationNumeratorLag 0−567.264151.953−3.7330.005
    12 months preinterventionNo transformationNumeratorLag 0259.80238.5426.741<0.001
    12 months postinterventionNo transformationNumeratorLag 0−270.72929.187−9.276<0.001
    ARIMA model parameters 4
    OutcomesNo transformationConstant3725.668145.56025.595<0.001
    ARLag 10.6060.4471.3560.208
    PhaseNo transformationNumeratorLag 0−1097.990183.443−5.985<0.001
    18 months preinterventionNo transformationNumeratorLag 0259.84438.4966.750<0.001
    18 months postinterventionNo transformationNumeratorLag 0−270.60729.076−9.307<0.001
    ARIMA model parameters 5
    OutcomesNo transformationConstant3724.868145.79925.548<0.001
    ARLag 10.6080.4471.3620.206
    PhaseNo transformationNumeratorLag 0−1629.819222.141−7.337<0.001
    24 months preinterventionNo transformationNumeratorLag 0260.09838.5266.751<0.001
    24 months postinterventionNo transformationNumeratorLag 0−270.75329.171−9.282<0.001
    ARIMA model parameters 6
    OutcomesNo transformationConstant3724.800145.74425.557<0.001
    ARLag 10.6080.4471.3620.206
    PhaseNo transformationNumeratorLag 0−2160.452264.907−8.156<0.001
    30 months preinterventionNo transformationNumeratorLag 0260.09338.5206.752<0.001
    30 months postinterventionNo transformationNumeratorLag 0−270.77629.142−9.291<0.001
    ARIMA model parameters 7
    OutcomesNo transformationConstant3725.820145.69925.572<0.001
    ARLag 10.6070.4471.3590.207
    PhaseNo transformationNumeratorLag 0−2688.893309.975−8.675<0.001
    36 months preinterventionNo transformationNumeratorLag 0259.78238.5146.745<0.001
    36 months postinterventionNo transformationNumeratorLag 0−270.63529.101−9.300<0.001
    ARIMA model parameters 8
    OutcomesNo transformationConstant3725.288145.46525.609<0.001
    ARLag 10.6060.4471.3540.209
    PhaseNo transformationNumeratorLag 0−3220.464356.342−9.038<0.001
    42 months preinterventionNo transformationNumeratorLag 0259.94438.4866.754<0.001
    42 months postinterventionNo transformationNumeratorLag 0−270.62629.045−9.317<0.001
    ARIMA model parameters 9
    OutcomesNo transformationConstant3725.283145.60425.585<0.001
    ARLag 10.6070.4471.3570.208
    PhaseNo transformationNumeratorLag 0−3751.680404.167−9.282<0.001
    48 months preinterventionNo transformationNumeratorLag 0259.96938.5016.752<0.001
    48 months postinterventionNo transformationNumeratorLag 0−270.67329.106−9.300<0.001
    ARIMA model parameters 10
    OutcomesNo transformationConstant3725.515146.02625.513<0.001
    ARLag 10.6100.4461.3680.205
    PhaseNo transformationNumeratorLag 0−4282.119453.283−9.447<0.001
    54 months preinterventionNo transformationNumeratorLag 0259.86938.5516.741<0.001
    54 months postinterventionNo transformationNumeratorLag 0−270.90529.197−9.279<0.001
    • View popup
    Table 2

    ARIMA model parameters for TMZ withdrawal in Figure 1B

    EstimateStandard errort valuep value
    ARIMA model parameters 1OutcomesNo transformationConstant82.12147.1381.7420.115
    ARLag 1−0.3430.567−0.6050.560
    Time periodNo transformationNumeratorLag 034.98314.4502.4210.039
    PhaseNo transformationNumeratorLag 0327.73075.6124.3340.002
    InteractNo transformationNumeratorLag 0−49.69015.668−3.1710.011
    ARIMA model parameters 2
    OutcomesNo transformationConstant82.14247.1471.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 029.60655.1240.5370.604
    6 months preinterventionNo transformationNumeratorLag 034.97714.4532.4200.039
    6 months postinterventionNo transformationNumeratorLag 0−14.7056.041−2.4340.038
    ARIMA model parameters 3
    OutcomesNo transformationConstant82.14147.1461.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−20.07865.658−0.3060.767
    12 months preinterventionNo transformationNumeratorLag 034.97714.4522.4200.039
    12 months postinterventionNo transformationNumeratorLag 0−14.7066.041−2.4340.038
    ARIMA model parameters 4
    OutcomesNo transformationConstant82.13947.1461.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−69.76477.938−0.8950.394
    18 months preinterventionNo transformationNumeratorLag 034.97814.4522.4200.039
    18 months postinterventionNo transformationNumeratorLag 0−14.7066.041−2.4340.038
    ARIMA model parameters 5
    OutcomesNo transformationConstant82.13747.1451.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−119.45191.262−1.3090.223
    24 months preinterventionNo transformationNumeratorLag 034.97914.4522.4200.039
    24 months postinterventionNo transformationNumeratorLag 0−14.7066.041−2.4340.038
    ARIMA model parameters 6
    OutcomesNo transformationConstant82.13447.1441.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−169.141105.233−1.6070.142
    30 months preinterventionNo transformationNumeratorLag 034.97914.4522.4200.039
    30 months postinterventionNo transformationNumeratorLag 0−14.7066.041−2.4340.038
    ARIMA model parameters 7
    OutcomesNo transformationConstant82.13147.1421.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−218.834119.624−1.8290.101
    36 months preinterventionNo transformationNumeratorLag 034.98014.4512.4210.039
    36 months postinterventionNo transformationNumeratorLag 0−14.7066.041−2.4350.038
    ARIMA model parameters 8
    OutcomesNo transformationConstant82.12847.1411.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−268.529134.300−1.9990.077
    42 months preinterventionNo transformationNumeratorLag 034.98114.4512.4210.039
    42 months postinterventionNo transformationNumeratorLag 0−14.7066.040−2.4350.038
    ARIMA model parameters 9
    OutcomesNo transformationConstant82.12547.1401.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−318.228149.176−2.1330.062
    48 months preinterventionNo transformationNumeratorLag 034.98214.4502.4210.039
    48 months postinterventionNo transformationNumeratorLag 0−14.7076.040−2.4350.038
    ARIMA model parameters 10
    OutcomesNo transformationConstant82.12147.1391.7420.115
    ARLag 1−0.3430.567−0.6050.560
    PhaseNo transformationNumeratorLag 0−367.929164.198−2.2410.052
    54 months preinterventionNo transformationNumeratorLag 034.98314.4502.4210.039
    54 months postinterventionNo transformationNumeratorLag 0−14.7076.040−2.4350.038
    • View popup
    Table 3

    ARIMA model parameters for TMZ initiation in Figure 1B

    EstimateStandard errort valuep value
    ARIMA model parameters 1OutcomesNo transformationConstant776.317103.2317.520<0.001
    ARLag 1−0.2970.326−0.9100.386
    Time periodNo transformationNumeratorLag 0−118.99331.738−3.7490.005
    PhaseNo transformationNumeratorLag 0−396.802155.769−2.5470.031
    InteractNo transformationNumeratorLag 0105.41932.8683.2070.011
    ARIMA model parameters 2
    OutcomesNo transformationConstant776.291103.2277.520<0.001
    ARLag 1−0.2970.326−0.9110.386
    PhaseNo transformationNumeratorLag 0235.690124.1161.8990.090
    6 months preinterventionNo transformationNumeratorLag 0−118.98531.736−3.7490.005
    6 months postinterventionNo transformationNumeratorLag 0−13.57312.070−1.1250.290
    ARIMA model parameters 3
    OutcomesNo transformationConstant776.294103.22870.520<0.001
    ARLag 1−0.2970.326−0.9110.386
    PhaseNo transformationNumeratorLag 0341.105146.5962.3270.045
    12 months preinterventionNo transformationNumeratorLag 0−118.98631.736−3.7490.005
    12 months postinterventionNo transformationNumeratorLag 0−13.57412.070−1.1250.290
    ARIMA model parameters 4
    OutcomesNo transformationConstant776.297103.2287.520<0.001
    ARLag 1−0.2970.326−0.9110.386
    PhaseNo transformationNumeratorLag 0446.522172.4432.5890.029
    18 months preinterventionNo transformationNumeratorLag 0−118.98731.736−3.7490.005
    18 months postinterventionNo transformationNumeratorLag 0−13.57412.070−1.1250.290
    ARIMA model parameters 5
    OutcomesNo transformationConstant776.301103.2297.520<0.001
    ARLag 1−0.2970.326−0.9110.386
    PhaseNo transformationNumeratorLag 0551.942200.3592.7550.022
    24 months preinterventionNo transformationNumeratorLag 0−118.98831.737−3.7490.005
    24 months postinterventionNo transformationNumeratorLag 0−13.57412.070−1.1250.290
    ARIMA model parameters 6
    OutcomesNo transformationConstant776.305103.2297.520<0.001
    ARLag 1−0.2970.326−0.9110.386
    PhaseNo transformationNumeratorLag 0657.365229.5902.8630.019
    30 months preinterventionNo transformationNumeratorLag 0−118.98931.737−3.7490.005
    30 months postinterventionNo transformationNumeratorLag 0−13.57412.070−1.1250.290
    ARIMA model parameters 7
    OutcomesNo transformationConstant776.310103.2307.520<0.001
    ARLag 1−0.2970.326−0.9100.386
    PhaseNo transformationNumeratorLag 0762.790259.6932.9370.017
    36 months preinterventionNo transformationNumeratorLag 0−118.99131.737−3.7490.005
    36 months postinterventionNo transformationNumeratorLag 0−13.57412.071−1.1250.290
    ARIMA model parameters 8
    OutcomesNo transformationConstant776.315103.2317.520<0.001
    ARLag 1−0.2970.326−0.9100.386
    PhaseNo transformationNumeratorLag 0868.219290.3982.9900.015
    42 months preinterventionNo transformationNumeratorLag 0−118.99231.737−3.7490.005
    42 months postinterventionNo transformationNumeratorLag 0−13.57412.071−1.1250.290
    ARIMA model parameters 9
    OutcomesNo transformationConstant776.320103.2327.520<0.001
    ARLag 1−0.2970.326−0.9100.386
    PhaseNo transformationNumeratorLag 0973.651321.5313.0280.014
    48 months preinterventionNo transformationNumeratorLag 0−118.99431.738−3.7490.005
    48 months postinterventionNo transformationNumeratorLag 0−13.57412.071−1.1250.290
    ARIMA model parameters 10
    OutcomesNo transformationConstant776.325103.2337.520<0.001
    ARLag 1−0.2970.326−0.9100.386
    PhaseNo transformationNumeratorLag 01079.087352.9803.0570.014
    54 months preinterventionNo transformationNumeratorLag 0−118.99531.738−3.7490.005
    54 months postinterventionNo transformationNumeratorLag 0−13.57412.071−1.1250.290
Back to top

In this issue

eneuro: 8 (3)
eNeuro
Vol. 8, Issue 3
May/June 2021
  • Table of Contents
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Trimetazidine Use in Parkinson’s Disease: Is It a Resolved Problem?
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Trimetazidine Use in Parkinson’s Disease: Is It a Resolved Problem?
Dávid Pintér, Dániel Bereczki, András Ajtay, Ferenc Oberfrank, József Janszky, Norbert Kovács
eNeuro 16 April 2021, 8 (3) ENEURO.0452-20.2021; DOI: 10.1523/ENEURO.0452-20.2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Trimetazidine Use in Parkinson’s Disease: Is It a Resolved Problem?
Dávid Pintér, Dániel Bereczki, András Ajtay, Ferenc Oberfrank, József Janszky, Norbert Kovács
eNeuro 16 April 2021, 8 (3) ENEURO.0452-20.2021; DOI: 10.1523/ENEURO.0452-20.2021
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • trimetazidine
  • Parkinson’s disease
  • angina pectoris
  • European Medicines Agency
  • interrupted time series analysis

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Article: New Research

  • Experience-dependent neuroplasticity in the hippocampus of bilingual young adults
  • Firing Activities of REM- and NREM-Preferring Neurons are Differently Modulated by Fast Network Oscillations and Behavior in the Hippocampus, Prelimbic Cortex, and Amygdala
  • Characterisation of transgenic lines labelling reticulospinal neurons in larval zebrafish
Show more Research Article: New Research

Disorders of the Nervous System

  • Expression of HDAC3-Y298H Point Mutant in Medial Habenula Cholinergic Neurons Has No Effect on Cocaine-Induced Behaviors
  • Parallel gene expression changes in ventral midbrain dopamine and GABA neurons during normal aging
  • Demyelination produces a shift in the population of cortical neurons that synapse with callosal oligodendrocyte progenitor cells
Show more Disorders of the Nervous System

Subjects

  • Disorders of the Nervous System
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.