Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro

eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleResearch Article: New Research, Sensory and Motor Systems

Behavioral and Neural Variability of Naturalistic Arm Movements

Steven M. Peterson, Satpreet H. Singh, Nancy X. R. Wang, Rajesh P. N. Rao and Bingni W. Brunton
eNeuro 24 May 2021, 8 (3) ENEURO.0007-21.2021; DOI: https://doi.org/10.1523/ENEURO.0007-21.2021
Steven M. Peterson
1Department of Biology, University of Washington, Seattle, Washington 98195
2eScience Institute, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Satpreet H. Singh
3Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Satpreet H. Singh
Nancy X. R. Wang
4IBM Research, San Jose, California 95120
5Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajesh P. N. Rao
3Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
5Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
6Center for Neurotechnology, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bingni W. Brunton
1Department of Biology, University of Washington, Seattle, Washington 98195
2eScience Institute, University of Washington, Seattle, Washington 98195
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bingni W. Brunton
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Motor behaviors are central to many functions and dysfunctions of the brain, and understanding their neural basis has consequently been a major focus in neuroscience. However, most studies of motor behaviors have been restricted to artificial, repetitive paradigms, far removed from natural movements performed “in the wild.” Here, we leveraged recent advances in machine learning and computer vision to analyze intracranial recordings from 12 human subjects during thousands of spontaneous, unstructured arm reach movements, observed over several days for each subject. These naturalistic movements elicited cortical spectral power patterns consistent with findings from controlled paradigms, but with considerable neural variability across subjects and events. We modeled interevent variability using 10 behavioral and environmental features; the most important features explaining this variability were reach angle and day of recording. Our work is among the first studies connecting behavioral and neural variability across cortex in humans during unstructured movements and contributes to our understanding of long-term naturalistic behavior.

  • electrocorticography
  • naturalistic neuroscience
  • spectral power

Footnotes

  • The authors declare no competing financial interests.

  • This research was supported by Defense Advanced Research Projects Agency Grant FA8750-18-2-0259, National Science Foundation Grants 1630178 and EEC-1028725, the Sloan Foundation, the Washington Research Foundation, and the Weill Neurohub.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Back to top

In this issue

eneuro: 8 (3)
eNeuro
Vol. 8, Issue 3
May/June 2021
  • Table of Contents
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Behavioral and Neural Variability of Naturalistic Arm Movements
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Behavioral and Neural Variability of Naturalistic Arm Movements
Steven M. Peterson, Satpreet H. Singh, Nancy X. R. Wang, Rajesh P. N. Rao, Bingni W. Brunton
eNeuro 24 May 2021, 8 (3) ENEURO.0007-21.2021; DOI: 10.1523/ENEURO.0007-21.2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Behavioral and Neural Variability of Naturalistic Arm Movements
Steven M. Peterson, Satpreet H. Singh, Nancy X. R. Wang, Rajesh P. N. Rao, Bingni W. Brunton
eNeuro 24 May 2021, 8 (3) ENEURO.0007-21.2021; DOI: 10.1523/ENEURO.0007-21.2021
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
    • Author Response
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • electrocorticography
  • naturalistic neuroscience
  • spectral power

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Article: New Research

  • Effects of Cortical FoxP1 Knockdowns on Learned Song Preference in Female Zebra Finches
  • Impaired AMPARs Translocation into Dendritic Spines with Motor Skill Learning in the Fragile X Mouse Model
  • Taste-Odor Association Learning Alters the Dynamics of Intraoral Odor Responses in the Posterior Piriform Cortex of Awake Rats
Show more Research Article: New Research

Sensory and Motor Systems

  • Different control strategies drive interlimb differences in performance and adaptation during reaching movements in novel dynamics
  • The nasal solitary chemosensory cell signaling pathway triggers mouse avoidance behavior to inhaled nebulized irritants
  • Taste-Odor Association Learning Alters the Dynamics of Intraoral Odor Responses in the Posterior Piriform Cortex of Awake Rats
Show more Sensory and Motor Systems

Subjects

  • Sensory and Motor Systems

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.