
Novel Tools and Methods

Rigbox: An Open-Source Toolbox for Probing
Neurons and Behavior
Jai Bhagat,1,p Miles J. Wells,1,2,p Kenneth D. Harris,1 Matteo Carandini,2 and Christopher P. Burgess2

https://doi.org/10.1523/ENEURO.0406-19.2020

1UCL Queen Square Institute of Neurology, University College London, London WC2N 5DU, United Kingdom and
2UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom

Abstract

Setting up an experiment in behavioral neuroscience is a complex process that is often managed with ad hoc
solutions. To streamline this process, we developed Rigbox, a high-performance, open-source software tool-
box that facilitates a modular approach to designing experiments (https://github.com/cortex-lab/Rigbox).
Rigbox simplifies hardware input-output, time aligns datastreams from multiple sources, communicates with
remote databases, and implements visual and auditory stimuli presentation. Its main submodule, Signals, al-
lows intuitive programming of behavioral tasks. Here we illustrate its function with the following two interactive
examples: a human psychophysics experiment, and the game of Pong. We give an overview of running experi-
ments in Rigbox, provide benchmarks, and conclude with a discussion on the extensibility of the software and
comparisons with similar toolboxes. Rigbox runs in MATLAB, with Java components to handle network com-
munication, and a C library to boost performance.

Key words: behavioral; control; experimental; software; toolbox

Significance Statement

Configuring the hardware and software components required to run a behavioral neuroscience experiment
and manage experiment-related data are a complex process. In a typical experiment, software is required
to design a behavioral task, present stimuli, read hardware input sensors, trigger hardware outputs, record
subject behavior and neural activity, and transfer data between local and remote servers. Here we introduce
Rigbox, which, to the best of our knowledge, is the only software toolbox that integrates all of the aforemen-
tioned software requirements necessary to run an experiment. This MATLAB-based package provides a
platform to rapidly prototype experiments. Multiple laboratories have adopted this package to run experi-
ments in cognitive, behavioral, systems, and circuit neuroscience.

Introduction
In behavioral neuroscience, much time is spent setting

up hardware and software, and ensuring compatibility
between them. Experiments often require configuring
disparate software to interface with distinct hardware,
and integrating these components is no trivial task.
Furthermore, there are often separate software compo-
nents for designing a behavioral task, running the task,
and acquiring, processing, and logging the data. This re-
quires learning the fundamentals of different software

packages and how to make them communicate
appropriately.
Consider a typical experiment focused on decision-mak-

ing, in which a subject chooses a stimulus among a set of
possibilities and obtains a reward if the choice was correct
(Carandini and Churchland, 2013). The software setup for
this experiment may seem simple: ostensibly, all that is re-
quired is software to run the behavioral task, and software
to handle experiment data. However, when considering

Received October 4, 2019; accepted May 25, 2020; First published June 3,
2020.
The authors declare no competing financial interests.

Author contributions: K.D.H., M.C., and C.P.B. designed research; J.B.,
M.J.W., and C.P.B. performed research; C.P.B. contributed unpublished
reagents/analytic tools; J.B. and M.J.W. analyzed data; J.B., M.J.W., and
C.P.B. wrote the paper.

July/August 2020, 7(4) ENEURO.0406-19.2020 1–12

Open Source Tools and Methods

https://orcid.org/0000-0003-2571-3712
https://orcid.org/0000-0002-5930-6456
https://doi.org/10.1523/ENEURO.0406-19.2020
https://github.com/cortex-lab/Rigbox

implementation details for these two types of software, the
setup can grow quite complex. Running the behavioral task
requires software for starting, stopping, and transitioning
between task states, presenting stimuli, reading input devi-
ces, and triggering output devices. Handling experiment
data requires software for acquiring, processing, and log-
ging stimulus history, response history, and subject physiol-
ogy, and transferring data between servers and databases.
To address this variety of needs in a single software

toolbox, we designed Rigbox (github.com/cortex-lab/
Rigbox). Rigbox is modular, high-performance, open-
source software for running behavioral neuroscience ex-
periments and acquiring experiment-related data. Rigbox
facilitates acquiring, time aligning, and managing data
from a variety of sources. Furthermore, Rigbox allows
users to programmatically and intuitively design and para-
metrize behavioral tasks via a framework called Signals.
We begin by giving a general overview of Signals, the core

package of Rigbox. We illustrate the following two simple in-
teractive examples of its use: an experiment in visual psycho-
physics, and the game of Pong. Next, we describe how
Rigbox runs Signals experiments and manages experiment
data. We then discuss the design considerations of Rigbox
and the various types of experiments that have been imple-
mented using Rigbox. Last, we detail the requirements of
Rigbox and provide benchmarking results. If you wish to try
out the code examples used in this paper, please install
Rigbox by following the information in the github repository
README file (http://github.com/cortex-lab/Rigbox).

Signals
Signals is a framework designed for building bespoke

behavioral tasks. In Signals, an experiment is built from a
reactive network whose nodes (“signals”) represent ex-
periment parameters. This simplifies problems that deal
with how experiment parameters change over time by
representing relationships between these parameters
with straightforward, self-documenting operations. For
example, to define a drifting grating, a user could create a
signal that changes the phase of a grating as a function of
time (Fig. 1). This is shown in the following code below:
theta = 2 p p ; % angle of phase in radians
freq = 3; % frequency of phase in Hz

stimulus.phase = theta p freq p t; % phase that cycles at 3Hz
for given stimulus
Whenever the clock signal, t, is updated (e.g., by a

MATLAB timer callback function), the values of all its de-
pendent signals are then recalculated asynchronously
via callbacks. This paradigm is known as functional reac-
tive programming (see D. Lew, “An Introduction to
Functional Reactive Programming,” https://blog.danlew.
net/2017/07/27/an-introduction-to-functional-reactive-
programming/).
The operations that can be performed on signals are not

just limited to basic arithmetic. Many built-in MATLAB func-
tions (including logical, trigonometric, casting, and array op-
erations) have been overloaded to work on signals as they
would on basic numeric or char types. Furthermore, a num-
ber of classical functional programming functions (e.g.,
“map” and “scan”) can be used on signals (Fig. 2). These
allow signals to gate, trigger, filter, and accumulate other
signals to define a complete experiment.

Example 1: a psychophysics experiment
Our first example of a human-interactive Signals ex-

periment is a script that recreates a psychophysics ex-
periment to study the mechanisms that underlie the
discrimination of a visual stimulus (Ringach, 1998). In
this experiment, the observer looks at visual gratings
(Fig. 3a) that change rapidly and randomly in orientation
and phase. The gratings change so rapidly that they
summate in the visual system, and the observer tends to
perceive two or three of them as superimposed. The task
of the observer is to hit the “ctrl” key whenever the orienta-
tion of the grating is vertical. At key press, the probability of
detection is plotted as a function of stimulus orientation in
the recent past. Typically, this exposes a center-surround
type of organization, with orientations near vertical eliciting
responses, but orientations further away suppressing re-
sponses (Fig. 3b). The Signals network representation of
this experiment is shown in Figure 4.

t

2π 3

 x =
f(2π, t)

 stimulus.phase =
 f(x, 3)

f = @times
Tim

e

Figure 1. A representation of the time-dependent phase of a
visual stimulus in Signals using a clock signal, t. t represents
time in seconds since experiment start (its value therefore con-
stantly increases). An unfilled circle represents a constant value:
it becomes a node in the network when combined with another
signal in an operation (in this instance, via multiplication, repre-
sented by the MATLAB function, times). The bottom right
shows how the phase of the grating changes over time: the
white arrow indicates the phase shift direction.

This work was funded by theMedical Research Council (Doctoral Training Award
to C.P.B.), the Royal Society (Newton International Fellowship to A.J.P.), EMBO
(Fellowship to A.J.P.), the Human Frontier Science Program (Fellowship to A.J.P.),
and the Wellcome Trust (Grant 205093 to M.C. and K.D.H.). M.C. holds the
GlaxoSmithKline/Fight for Sight Chair in Visual Neuroscience, University College
London.

pJ.B. and M.J.W. contributed equally to writing the manuscript.
C.P. Burgess’s present address: DeepMind, 5 New Street Square, London

EC4A 3HQ, United Kingdom.
Acknowledgments: We thank Andy Peters, Nick Steinmetz, Max Hunter,

Peter Zatka-Haas, Kevin Miller, Hamish Forrest, and other members of the
laboratory for troubleshooting, feedback, inspiration, and code contribution.
Correspondence should be addressed to Jai Bhagat at j.bhagat@ucl.ac.uk.
https://doi.org/10.1523/ENEURO.0406-19.2020

Copyright © 2020 Bhagat et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Open Source Tools and Methods 2 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

http://github.com/cortex-lab/Rigbox
http://github.com/cortex-lab/Rigbox
http://github.com/cortex-lab/Rigbox
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/
https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-programming/
mailto:j.bhagat@ucl.ac.uk
https://doi.org/10.1523/ENEURO.0406-19.2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

To run this experiment, simply run ringach98 script
https://github.com/cortex-lab/signals/blob/master/docs/
examples/ringach98.m after installing Rigbox and press
the “Play” button. Below is a breakdown of the 30-odd
lines of code:

First, some constants are defined:
oris = 0:18:162; % set of orientations, deg
phases = 90:90:360; % set of phases, deg
presentationRate = 10; % Hz

winlen = 10; % length of histogram window, frames
Next, we create a figure:
figh = figure(‘Name’, ‘Press “ctrl” key on vertical grating’,...
‘Position’, [680 250 560 700], ‘NumberTitle’, ‘off’);vbox =

uix.
VBox(‘Parent’, figh); % container for the play/pause button

and axes% Create axes for the histogram plot.
axh = axes(‘Parent’, vbox, ‘NextPlot’, ‘replacechildren’,

‘XTick’, oris);

0

1

0

1

y = x.delay(1)

0

1

x.to(y)

0

0.5

1

-0.2

-0.1

0

0.1

0.2

0

0.5

1
x.keepWhen(y > 0)

-2

-1

0

1

2

-2

-1

0

1

2

y = x.skipRepeats()

0

1

y.then(5)

0

1

0

0.5

1

1.5

y = x.map(true)

0

3

6
y = x.scan(@plus, 0)

x

y = Δx

f(x)

f(x, y)

Figure 2. The creation of new signals via example signals methods. Each panel, in which the x-axis represents time and the y-axis
represents value, contains a signal. Each column depicts a set of related transformations. The top row contains four arbitrary sig-
nals. The second row depicts a signal that results from applying an operation on the signal in the panel above. The third row depicts
a signal that results from applying an operation on the signals in the two panels above. Conceptually, each signal can be thought of
as both a continuous stream of discrete values, and as a discrete representation whose value changes over time.

Figure 3. Output shown when running “ringach98.m” a, A sample grating that the subject is required to respond to via a “ctrl” key
press. b, A heatmap showing the grating orientations for the 10 frames immediately preceding the key press, summed over all of
the key presses for the duration of the experiment. After a few minutes, the distribution of orientations that were presented at each
key press resembles a 2D Mexican Hat wavelet, centered on the orientation the subject was reporting at the subject’s average reac-
tion time. In this example, the subject was reporting a vertical grating orientation (90°) with an average reaction time of ;600ms.

Open Source Tools and Methods 3 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

https://github.com/cortex-lab/signals/blob/master/docs/examples/ringach98.m
https://github.com/cortex-lab/signals/blob/master/docs/examples/ringach98.m

xlabel(axh, ‘Orientation’);
ylabel(axh, ‘Time (frames)’);
ylim([0 winlen]1 0.5);
vbox.Heights = [30 �1]; % 30 px for the button, the rest for

the plot

Next, we create our Signals network. The function
playgroundPTB creates a new Signals network and one input
signal, t. It creates a start button, which, when pressed, starts a
MATLAB timer that periodically updates t with the time.
Finally, it returns an anonymous function, setElemsFn, that,
when called with a visual stimulus object, adds the textures to a
stimulus renderer:

% Create a new Psychtoolbox stimulus window and renderer,
returning a timing
% signal, ‘t’, and function, ‘setElemsFn’, to load the visual

elements.
[t, setElemsFn] = sig.test.playgroundPTB(vbox);
net = t.Node.Net; % handle to the network

Now, we derive some new signals from UI key press events
and the clock signal:

% Create a signal from the key board presses.
keyPresses = net.fromUIEvent(figh, ‘WindowKeyPress

Fcn’);
% Filter it, keeping only ‘ctrl’ key presses. Turn into logical

signal.
reports = strcmp(keyPresses.Key, ‘ctrl’);
% Sample the current time at ‘presentationRatè.
sampler = skipRepeats(floor(presentationRate p t));

To change the orientation and phase at a given frequency, we
derive some indexing signals that will select a value from the ori-
entation and phase sets. The map method calls a function with the
value of a signal each time it changes. @(;) foo is the MATLAB
syntax for creating an anonymous function. Each time the sam-
pler signal changes, a new random integer is generated.

% Randomly sample orientations and phases by generating
new indices for selecting values from ‘oris’ and ‘phases’ each
time ‘sampler’ updates.

oriIdx = sampler.map(@(;) randi(numel(oris))); % index for
‘oris’ array
phaseIdx = sampler.map(@(;) randi(numel(phases))); %

index for ©phases© array
currPhase = phaseIdx.map(@(idx) phases(idx)); % get

current phase
currOri = oriIdx.map(@(idx) oris(idx)); % get current ori

Next, we derive some signals for updating our plot of re-
action times. First, a Boolean array the size of our orienta-
tion set is created, then we derive a matrix from these
vectors, storing the last 10 orientations presented.

% Create a signal to indicate the current orientation (a
Boolean column vector)
oriMask = oris’ == currOri;
% Record the last few orientations presented (i.e., ‘buffer’ the

last few values that ‘oriMask’ has taken.) as a MxN matrix
where M is the number of orientations (the length of ‘oris’) and
N is the number of frames (‘winlen’)
oriHistory = oriMask.buffer(winlen);

Each time the user presses the “ctrl” key (represented by the
reports signal), the values in the oriHistory matrix are added to
the histogram via the scan method, which initializes the histo-
gram with zeros.

% After each keypress, add the ©oriHistory© snapshot to an
accumulating histogram.
histogram = oriHistory.at(reports).scan(@plus, zeros(numel

(oris), winlen));

Now, each time the histogram updates, we call imagesc with
its value, updating the plot axes.

% Plot histogram surface each time it changes.

histogram.onValue(@(data) imagesc(oris, 1:winlen, flipud
(data’), ‘Parent’, axh));

Finally, we create the visual stimulus signal and send it to the
renderer. The vis.grating function returns a subscriptable signal,
which has parameter fields related to visual grating properties.
When the values of these signal fields are updated, the underly-
ing textures are rerendered by setElemsFn.

% Create a Gabor with changing orientations and phases.
grating = vis.grating(t, ‘sinusoid’, ‘Gaussian’);
grating.show = true; % set grating to be always visible
grating.orientation = currOri; % assign orientation
grating.phase = currPhase; % assign phase
grating.spatialFreq = 0.2; % cyc/deg
% Add the grating to the renderer.
setElemsFn(struct(‘grating’, grating));

With this powerful framework, a user can easily define
complex relationships between stimuli, actions, and out-
comes to create a complete experiment protocol. This proto-
col takes the form of a user-written MATLAB function, which
we refer to as an “experiment definition” (“exp def”).
When Rigbox initializes an experiment, a new Signals

network is created with input layer signals representing
time, experiment epochs (e.g., new trials), and hard-
ware input devices (e.g., position sensors). These input
signals are passed into the exp def function, and the
code in the exp def operates on these signals to create
new signals that are added to the network (Fig. 5). The
exp def is called just once to set up this network.

inputs

t

keyboard

strcmp

‘ctrl’

sampler

stimulus

orientation

orientation:

orientation
set

selection history

Figure 4. A simplified Signals network diagram of the Ringach
experiment. Each circle represents a node in the network that
carries out an operation on its direct input. The left-most nodes
are inputs to the network, and the values from the right-most
layer are used to update the stimulus and the histogram plot.
An unfilled circle represents a constant value.

Open Source Tools and Methods 4 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

At experiment start, values are posted to the input signals
of the network. During experiment runtime, these input sig-
nals are continuously updated within the main of the experi-
ment while loop or through user interface UI and timer
callbacks occur. For example, a position sensor input device
may be read from continuously in a while loop to update the
signal representing this device. These input signal updates
asynchronously propagate to the dependent signals that
were created in the exp def. The experiment ends when the
“experiment stop” signal is updated (i.e., when all trial condi-
tions have occurred or after a specified duration of time).
The following is a brief overview of the structure of an

exp def. An exp def takes up to seven input arguments:
function expDef(t, events, params, visStim, inputs, out-

puts, audio)
In order, these are as follows: (1) the clock signal; (2) an

events structure containing signals that define experiment
epochs, and signals—from those created within the exp def—
which the experimenter wishes to log; (3) a signal parameters
structure that defines session- or trial-specific signals whose
values can be changed directly within a graphical UI (GUI) be-
fore starting an experiment—signal parameter defaults are set
within the exp def, and parameter sets can be saved and
loaded across subjects and experiments; (4) the visual stimuli
handler, which contains as fields all signals that parametrize
the display of visual stimuli—any visual stimulus signal
can be assigned various elements, which the viewing
model allows to be defined in visual degrees, for being
rendered to a screen, and a visual stimulus can be
loaded directly from a saved image file; (5) an inputs
structure containing signals that map to hardware
input devices; (6) an outputs structure containing sig-
nals that map to external hardware output devices;
and (7) the audio stimuli handler, which can contain as
fields signals that map to available audio devices.
Tutorials on creating an exp def, examples of exp

defs, and standalone scripts (including those men-
tioned in this article), and an in-depth overview of
Signals can be found in the signals/docs folder https://
github.com/cortex-lab/signals/tree/master/docs.

Example 2: Pong
A second human-interactive Signals experiment con-

tained in the Rigbox repository is an exp def that runs the
classic computer game Pong (Fig. 6). The signal that sets

the player’s paddle position is
mapped to the optical mouse. The
epoch structure is set so that a trial
ends on a score, and the experiment
ends when either the player or cpu
(central processing unit) reaches a
target score. The code is divided into
the following three sections: (1) initial-
izing the game; (2) updating the game;
and (3) creating visual elements and
defining exp def signal parameters. To
run this exp def, follow the directions
in the header of the signalsPong file
https://github.com/cortex-lab/signals/
blob/master/docs/examples/signals
Pong.m. Because the file itself (in-
cluding copious documentation) is
.300 lines, we will share only an over-

view here; however, readers are encouraged to look
through the full file at their leisure.function signalsPong(t,
events, p, visStim, inputs, outputs, audio)
In this first section, we define constants for the game, arena,

ball, and paddles:

%% Initialize the game
% how often to update the game in secs
[...]
% initial scores and target score
[...]
% size of arena, ball, and paddle: [w h] in visual degrees
[...]
% ball angle, and ball velocity in visual degrees per second
[...]
% cpu and player paddle X-axis positions in visual degrees
[...]

The helper function, getYPos, returns the y-position of the
cursor, which will be used to set the player paddle:function
yPos = getYPos()
[...]end
% get cursor’s initial y-positioncursorInitialY = events.

expStart.map(@(;) getYPos);
In the second section, we define how the ball and paddle in-

teractions update the game:
%% Update game
% create a signal that will update the y-position of the play-

er’s paddle using ‘getYPos
‘playerPaddleYUpdateVal = (cursor.map(@(;)get YPos)-

cursorInitialY)pcursorGain
% make sure the y-value of the player’s paddle is within the

screen bounds,
playerPaddleBounds = cond(...
playerPaddleYUpdateVal. arenaSz(2)/2, arenaSz(2)/2, ...
playerPaddleYUpdateVal, -arenaSz(2)/2, -arenaSz(2)/2, ...
true, playerPaddleYUpdateVal);
% and only updates every ©tUpdatè secs
playerPaddleY = playerPaddleBounds.at(tUpdate);
% Create a struct, ©gameDataInit©, holding the initial game state
gameDataInit = struct;
...
% Create a subscriptable signal, ©gameDatà, whose fields

represent the current

Clock

Hardware
inputs

 External
hardware outputs

Experiment
epochs transformations

Screen

Speaker

Figure 5. A Signals representation of an experiment. There are three types of input sig-
nals in the network, representing a clock, experiment epochs (e.g., new trials and ex-
periment start and end conditions), and hardware input devices (e.g., an optical mouse,
keyboard, rotary encoder, lever). In an exp def, the user defines transformations that
create new signals (data not shown) from these input signals, which ultimately drive
outputs (e.g., a screen, speaker, and external hardware such as a reward valve). The
exp def is called once to create these experimenter-defined signals, which are updated
during experiment runtime as the input signals they depend on are updated.

Open Source Tools and Methods 5 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

https://github.com/cortex-lab/signals/tree/master/docs
https://github.com/cortex-lab/signals/tree/master/docs
https://github.com/cortex-lab/signals/blob/master/docs/examples/signalsPong.m
https://github.com/cortex-lab/signals/blob/master/docs/examples/signalsPong.m
https://github.com/cortex-lab/signals/blob/master/docs/examples/signalsPong.m

% game state (total scores, etc.), and which will be updated
every ©tUpdatè secs
gameData = playerPaddleY.scan(@updateGame,

gameDataInit).subscriptable;
The helper function, updateGame, updates gameData.

Specifically, it updates the data structure with ball angle,

velocity, position, cpu paddle position, and player and cpu
scores, based on the current ball position, which is updated at
each sampled timestep, as follows:function gameData =
updateGame(gameData, playerPaddleY)
[...]end
% define trial end (when a score occurs)

Figure 6. A screenshot of Pong run in Signals. The top shows the paddles and ball during gameplay. The bottom shows the GUI used to
launch the game. The paddle colors (represented by an RGB vector) and target score are examples of global signal parameters that can be
set once before starting the game. The ball color is an example of a conditional signal parameter that changes randomly after every trial (in
this case, after a score) between the arrays indicated in each row (which in this case specify the colors white, red, and blue).

Open Source Tools and Methods 6 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

anyScored = playerScore | cpuScore;
events.endTrial = anyScored.then(true);
% define game end (when player or cpu score reaches target

score)
endGame = (playerScore == targetScore) | (cpuScore ==

targetScore);
events.expStop = endGame.then(true);
[...]
In the final section, we create the visual elements representing

the arena, ball, and paddles, and define the exp def signal pa-
rameters, as follows:
%% Define the visual elements and the experiment signal

parameters
% create the arena, ball, and paddles as ‘vis.patch’ subscript-

able signals
arena = vis.patch(t, ‘rectangle’);
ball = vis.patch(t, ‘circle’);
ball.color = p.ballColor;
playerPaddle = vis.patch(t, ‘rectangle’);
cpuPaddle = vis.patch(t, ‘rectangle’);
% assign the arena, ball, and paddles to the ‘visStim’ sub-

scriptable signal handlervis
Stim.arena = arena;
visStim.ball = ball;
visStim.playerPaddle = playerPaddle;
visStim.cpuPaddle = cpuPaddle;
% define parameters that will be displayed in the GUI
try
% ‘p.ballColor’ is a conditional signal parameter: on any

given trial, the ball
% color will be chosen at random among three colors: white,

red, blue
p.ballColor = [1 1 1; 1 0 0; 0 0 1]’; % RGB color vector array
% ‘p.targetScorè is a global signal parameter: it can be

changed via the GUI used
% to run this exp def before starting the game
p.targetScore = 5;
catch
end

Running experiments and managing data
in Rigbox
Rigbox contains a suite of packages for interfacing with

hardware, acquiring and managing data, communicating
with a remote database, time aligning events from a vari-
ety of sources, and implementing a user interface for
managing experiments.
Rigbox simplifies experiments by providing an ab-

stract interface for hardware interactions. All hardware
devices, including screens and speakers, are repre-
sented by abstract classes that provide a basic set of
interface methods. Methods for initializing, configur-
ing, and communicating with a particular device are
handled by specific subclasses. This design choice
avoids the creation of device-specific dependencies
within the toolbox and the experiment code of the
user. In this way, hardware devices can be swapped
without modifying code or affecting the experiment
workflow, and adding support for new devices is
straightforward. For example, to support a new

multifunction input/output (I/O) device (e.g., an Arduino or
other microcontroller), one could simply extend the 1hw/
DaqController class, and to support a new hardware input
sensor (e.g., a lever or joystick), one could simply subclass
the1hw/PositionSensor class.
Intuitive and robust data management is another es-

sential feature of Rigbox. Simple function wrappers
save and locate data via human-readable experiment
reference strings that reflect straightforward experi-
ment directory structures (i.e., subject/date/session).
Data can be saved both locally and remotely, and even
distributed across multiple servers. Rigbox uses a sin-
gle paths config file, making it simple to change the lo-
cation of data and configuration files. Furthermore, this
code can be easily integrated with the personal code of
a user to generate read and write paths for arbitrary da-
tasets. A Parameters class, which sets, validates, and
assorts experiment conditions for each experiment,
simplifies data analysis across experiments by stand-
ardizing parameterization. Rigbox can also communi-
cate with an Alyx database to query and post data
related to a subject or session. Alyx is a lightweight
meta-database that can be hosted on an internal server
or in the cloud (e.g., via Amazon Web Services). Alyx al-
lows users to organize experiment sessions and their
associated files, and to keep track of subject informa-
tion, such as diet, breeding, and surgeries (Bonacchi et
al., 2020).
Experiments typically involve recording simultane-

ously from many devices, and temporal alignment of
these recordings can be challenging. Rigbox contains a
class called Timeline, which manages the acquisition
and generation of clocking pulses via a National
Instruments multifunction I/O data acquisition device
(NI-DAQ; Fig. 7). The main clocking pulse of Timeline,
“chrono,” is a digital square wave sent out from the NI-
DAQ that can flip each time a new chunk of data and are
available to the NI-DAQ. A callback function to this flip
event collects the NI-DAQ time stamp of the scan
where the flip occurred. The difference between this
time stamp and the system time recorded when the flip

triggers

DAQ
Device

inputs

clock pulse

Figure 7. A representation of a Timeline object. The topmost
signal is the main timing signal, “chrono,” which is used to unify
all time stamps across computers during an experiment. The
“inputs” represent different hardware and software input signals
read by a NI-DAQ, and the “triggers” represent different hard-
ware output signals, triggered by a NI-DAQ.

Open Source Tools and Methods 7 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

command was sent is recorded as an offset time. This
offset time can be used to unify all event time stamps
across computers: all event time stamps are recorded
in time relative to chrono. A Timeline object can acquire
any number of hardware or software events [e.g., from
hardware inputs directly wired to the NI-DAQ, or UDP
(user datagram protocol) messages sent from another
computer] and record their values with respect to this off-
set. For example, a Timeline object can record when a re-
ward valve or laser shutter is opened, a sensor is interacted
with, or a screen displaying visual stimuli is updated. In ad-
dition to chrono, a Timeline object can also output TTL
(transistor–transistor logic) and clock pulses for triggering
external devices (e.g., to acquire frames at a specific rate).
Last, Rigbox provides an intuitive yet powerful user

interface for running experiments. For this, two

computers are required. An experiment is started from
a GUI on one computer, referred to as the “Master
Computer” (MC), which runs the experiment on a re-
cording rig, referred to as the “Stimulus Computer”
(SC; Fig. 8). An SC is responsible for stimuli presenta-
tion, rig hardware interaction, and data acquisition. The
MC GUI is used to select, parameterize, and start ex-
periments (Fig. 9). Customizable experiment panels can
also be displayed within a different tab in the MC GUI to
monitor experiments (Fig. 10). MC and SC communi-
cate during runtime via TCP/IP (transmission control
protocol/internet protocol; using WebSockets), and MC
can communicate with multiple SCs simultaneously to
run multiple experiments in parallel.
Instructions for installation and configuration can be

found in the README file and the docs/setup folder

Figure 9. The new experiments tab within the MC GUI. This tab allows a user to select a subject, experiment type, and rig on which
to run an experiment. Additionally, rig-specific options can be set via the “Options” button, and signal parameters for the behavioral
task can be set via the editable parameter fields.

Start exp Update GUI End exp

Initialize
network

Call exp def Post to expStart Post to expStop Save dataUpdate input
signals

MC

SC Update exp def
signals

Figure 8. A simplified chronology of events that occur when starting an experiment via the MC GUI. Pushing the “Start” button on
the MC GUI sends a message to SC to initialize a Signals network, then call the user’s Signals exp def to create new signals within
the network, then post to the ‘expStart’ signal to start the experiment. After starting the experiment, the network input signals are
continuously updated via callbacks (e.g., via a MATLAB timer callback, or by reading from hardware input devices), which update
the rest of the signals in the network (i.e., those signals defined in the user’s exp def). These updates can then be displayed back to
the user on the MC GUI. This continues until the experiment is either ended from the MC GUI, or a condition is met within the user’s
exp def that updates the ‘expStop’ signal. After the experiment is ended, experiment data are saved.

Open Source Tools and Methods 8 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

https://github.com/cortex-lab/Rigbox/tree/master/docs/
setup. This includes information on required dependen-
cies, setting data repository locations, configuring hard-
ware devices, and enabling communication between the
MC and SC computers. Hardware and software require-
ments can also be found in the repository README and
the Requirements and benchmarking section of this article.

Data availability
Rigbox is currently under active, test-driven develop-

ment. All our code is open source, distributed under the
Apache 2.0 license at https://github.com/cortex-lab/
Rigbox (Extended Data 1), and we encourage users to
contribute. Please see the contributing section of the
README for information on contributing code and report-
ing issues. When using Rigbox to run behavioral tasks
and/or acquire data, please cite this publication.

Discussion
In our laboratory, Rigbox is at the core of our operant,

passive, and conditioning experiments. The principal

behavioral task we use is a two-alternative forced choice
visual stimulus discrimination task (Burgess et al., 2017).
Using Rigbox, we have been able to rapidly prototype
multiple variants of this task, including unforced choice,
multisensory choice, behavior matching, and bandit
tasks, using wheels, levers, balls, and lick detectors. The
Signals exp defs for each variant act as a concise and in-
tuitive record of the task design. In addition, Rigbox has
made it easy to combine these tasks with a variety of
recording techniques, including electrode recordings, 2-
photon imaging, and fiber photometry; and neural pertur-
bations, such as scanning laser inactivation and dopami-
nergic stimulation (Jun et al., 2017; Jacobs et al., 2018;
Zatka-Haas et al., 2018; Shimaoka et al., 2019; Steinmetz
et al., 2019; Armin et al., 2020). Rigbox has also enabled
us to scale our behavioral training: because one MC can
control multiple SCs, we run and manage many experi-
ments simultaneously.
Often, experiments are iterative: task parameters are

added or modified many times over, and finding an ideal
parameter set can be an arduous process. Rigbox allows
a user to develop and test an experiment without having

Figure 10. Experiment panels with live updates for two experiments. The top text fields in each panel display experiment informa-
tion such as elapsed time, trial number, and the current running total of delivered reward. Below the text fields is a psychometric
plot showing task performance for specific types of trials, and below this is a plot showing the real-time trace of a hardware input
device (the panel on the left shows a two-alternative unforced choice task for which the green bar indicates the direction of the ac-
tion the subject must make to receive a reward). There is also a text field for logging comments that can be immediately posted to
an Alyx database. These experiment panels are highly customizable.

Open Source Tools and Methods 9 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

https://github.com/cortex-lab/Rigbox/tree/master/docs/setup
https://github.com/cortex-lab/Rigbox/tree/master/docs/setup
https://github.com/cortex-lab/Rigbox
https://github.com/cortex-lab/Rigbox
https://doi.org/10.1523/ENEURO.0406-19.2020.ed1

to worry about boilerplate code and UI modifications, as
these are handled by Rigbox packages in a modular fash-
ion. Much of the code is object oriented with most as-
pects of the system represented as configurable objects.
Given the modular nature of Rigbox, new features and
hardware support may be easily added, provided there is
driver support in MATLAB.
To the best of our knowledge, Rigbox is the most com-

plete behavioral control software toolbox currently avail-
able in the neuroscience community; however, several
other toolboxes implement similar features in different
ways (Aronov and Tank, 2014; see also Bpod Wiki,
https://sites.google.com/site/bpoddocumentation/home;
BControl Behavioral Control System, https://brodywiki.
princeton.edu/bcontrol/index.php?title=Main_Page; T. Akam,
https://pycontrol.readthedocs.io/en/latest/; Table 1).
Some of these toolboxes also include some features not
currently available in Rigbox, for example, microsecond
precision triggering of within-trial events, and creating 3D
virtual environments. Indeed, the features used by a par-
ticular toolbox have advantages (and disadvantages) de-
pending on the user’s desired experiment.
There are pros and cons to following different program-

ming paradigms for software developers who decide how
users will design behavioral tasks. Generally, three main
paradigms exist: procedural, object oriented, and func-
tional reactive. Here, in the context of programmatic task
design, we briefly discuss the differences between these
paradigms and in which scenarios one may be favored
over the others. Note that here we discuss only the aspect
of a toolbox that deals with behavioral task design, not the
overall structure of a toolbox (e.g., Rigbox is built on an ob-
ject-oriented paradigm, but Signals provides a functional re-
active paradigm in which to implement a behavioral task).
A procedural approach to task design is probably the

most familiar to behavioral neuroscientists. This approach
focuses on “how to execute” a task by explicitly defining a
control flow that moves a task from one state to the next.
The Bcontrol, pyBpod, and pyControl toolboxes follow this
paradigm by using real-time finite state machines (RTFSMs),
which control the state of a task (e.g., initial state, reward,
punishment) during each trial. Some advantages of this ap-
proach are that it is simple and intuitive, and guarantees
event timing precision down to the minimum cycle of the
state machine (e.g., Bcontrol RTFSMs run at a minimum
cycle of 6 kHz). Some disadvantages of this approach are
that the memory for task parameters are limited by the num-
ber of states in the RTFSM, and that the discrete implemen-
tation of states is not amenable to experiments that seek to

control parameters continuously (e.g., a task that uses con-
tinuous hardware input signals).
Like the procedural approach to task design, an object-

oriented approach also tends to be intuitive: objects can
neatly represent the state of an experiment via datafields.
Objects representing experimental parameters can easily
pass information to each other and trigger experimental
states via event callbacks. The VirMEn toolbox imple-
ments this approach by treating everything in the virtual
environment as an object and having a runtime function
update the environment by performing method calls on
the objects based on input sensor signals from a subject
performing a task. Some disadvantages of this approach
are that the speed of experimental parameter updates are
limited by the speed at which the programming language
performs dynamic binding (which is often much slower
than the RTFSM approach discussed above), and that op-
eration “side effects” (which can alter an experiment’s
state in unintended ways) are more likely to occur due to
the emphasis on mutability, when compared with a pure
procedural or functional reactive approach.
By contrast, Signals follows a functional reactive ap-

proach to task design. As we have seen, some advan-
tages of this approach include simplifying the process of
updating experiment parameters over time, endowing

Table 1: Comparison of major features across behavioral control system toolboxes

BControl pyBpod pyControl VirMEn Rigbox
Behavioral task design paradigm Procedural Procedural Procedural Object oriented Functional reactive
Presents visual stimuli? 3D/VR environments? No No No Yes, yes Yes, no
Interfaces with hardware? Yes Yes Yes Yes Yes
Time aligns multiple datastreams? Yes Yes Yes No Yes
Communicates with a remote database? Yes Yes No No Yes
Contains unit and integration tests? ? ? Yes ? Yes

The top row contains the toolbox names, and the first column contains information on the implementation of a feature. Note: the toolboxes and features men-
tioned in this table are not exhaustive.

Figure 11. Benchmarking results for operations (specified by
the x-axis) on a single signal. The black “x” shows the mean
value per group.

Open Source Tools and Methods 10 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

https://sites.google.com/site/bpoddocumentation/home
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page
https://pycontrol.readthedocs.io/en/latest/

parameters with memory, and facilitating discrete and
continuous event updates with equal ease. In general, a
task specification in this paradigm is declarative, which
can often make it clearer and more concise than in other
paradigms, where control flow and event handling code
can obscure the semantics of the task. Some disadvan-
tages are that it suffers from similar speed limitations as in
an object-oriented approach, and programmatically de-
signing a task in a functional reactive paradigm is prob-
ably unfamiliar to most behavioral neuroscientists. When
initially thinking about how a functional reactive network
runs a behavioral task, it may be helpful to think of experi-
ment parameters as nodes in the network that get up-
dated via callbacks; there are no procedural calls to the
network during experiment runtime.

When considering the entire set of behavioral tasks, no
single programming paradigm is perfect, and it is there-
fore important for a user to consider the goals for the im-
plementation of their task accordingly.

Hardware requirements
For most experiments, typical, contemporary, factory-

built desktops running Windows 10 with dedicated
graphics cards should suffice. Specific requirements of an
SC will depend on the complexity of the experiment. For
example, running an audiovisual integration task on three
screens requires quality graphics and sound cards. SCs
may additionally require a multifunction I/O device to com-
municate with external rig hardware, of which only NI-
DAQs (e.g., NI-DAQUSB 6211) are currently supported.

Figure 13. Delay times for specific updates when running a 2AFC (two-alternative forced choice) visual contrast discrimination task. The
number next to each violin plot indicates the number of samples in the group. “Rotary Encoder delay” is the time between polling con-
secutive position values from a rotary encoder. “Stim Window Delay” is the time between triggering a display to be rendered, and its
complete render on a screen. “Reward Delay” is the time between triggering and opening a reward valve. The 99th percentile outliers
were not included in the plot for “Rotary Encoder delay”: there were 98 instances in which the delay took between 200 and 600ms, due
to the execution time of the NI-DAQmx MATLAB package when sending analog output (reward delivery) via the USB-6211 DAQ.

Figure 12. Benchmarking results for updating every signal in a network, for networks of various number of signals (nodes) spread
over various number of layers (depth). The black “x” shows the mean value per group.

Open Source Tools and Methods 11 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

Below are some minimum hardware specifications re-
quired for computers that run Rigbox:

• CPU: 4 logical processors @ 3.0 GHz base speed
(e.g., Intel Core i5-6500)

• RAM: DDR4 16 GB @ 2133 MHz (e.g., Corsair
Vengeance 16 GB)

• GPU: 2 GB @ 1000 MHz base and memory speed
(e.g., NVIDIA Quadro P400).

Software requirements
Similar to the hardware requirements, software require-

ments for an SC will depend on the experiment. For ex-
ample, if acquiring data through a NI-DAQ, the SC will
require the MATLAB NI-DAQmx support package in addi-
tion to the following minimum requirements:

• OS: 64 Bit Windows 7 (or later)
• Libraries: Visual C11 Redistributable Packages for

Visual Studio 2013 and 2015
• MATLAB: 2018b or later, including the Data

Acquisition Toolbox

� Community MATLAB toolboxes:
8 GUI Layout Toolbox (version 2 or later)
8 Psychophysics Toolbox (version 3 or later).

Benchmarking
Fast execution of experiment runtime code is crucial for

performing and accurately analyzing results from a behav-
ioral experiment. Here we provide benchmarking results
for the Signals framework. We include results for individu-
al operations on a signal and for operations that propa-
gate through each signal in a network. Single built-in
MATLAB operations and Signals-specific methods are
consistently executed in the microsecond range (Fig. 11).
The network used in a typical two-alternative unforced
stimulus discrimination task (https://github.com/cortex-
lab/signals/blob/558170702aa2e6962c58f8b2a7b603a96
b2c6b1a/docs/examples/advancedChoiceWorld.m) con-
tains 338 signals spread over 10 layers; a similar network
of 350 signals spread over 20 layers can update all signals
in under 5 ms, and a network of 120 signals spread over
20 layers can update all signals with submillisecond preci-
sion (Fig. 12). Last, we include results for reading from
and triggering hardware devices in the above-mentioned
stimulus discrimination task.
Updates of the position of a rotary encoder used to indi-

cate choice typically took ,2 ms, the time between ren-
dering and displaying the visual stimulus typically took
,15 ms, and the delay between triggering and delivering
a reward was typically under 0.2 ms (Fig. 13).
All of the results in the Benchmarking section were

obtained from running MATLAB 2018b on a Windows
10 64 bit OS with an Intel core i7 8700 processor and 16
GB DDR4 dual-channel RAM clocking at a double data
rate of 2133MHz. Because single executions of signals
operations were too quick for MATLAB to measure

precisely, we repeated operations 1000 times and di-
vided the MATLAB returned measured time by 1000.
The Performance Testing Framework in MATLAB 2018b
was used to obtain these results. https://github.com/
cortex-lab/signals/blob/558170702aa2e6962c58f8b2a
7b603a96b2c6b1a/tests/Signals_perftest.m contains
the code used to generate the results shown in Figures
11 and 12; https://github.com/cortex-lab/signals/tree/
558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/
results contains a table of these data; and https://
github.com/cortex-lab/signals/tree/558170702aa2e696
2c58f8b2a7b603a96b2c6b1a/tests/results contains the
data used to generate the results shown in Figure 13A.
National Instruments USB-6211 was used as the data
acquisition I/O device.

References

Abbott LF, Angelaki DE, Carandini M, Churchland AK, Dan Y, Dayan
P, Deneve S, Fiete I, Ganguli S, Harris KD, Häusser M, Hofer S,
Latham PE, Mainen ZF, Mrsic-Flogel T, Paninski L, Pillow JW,
Pouget A, Svoboda K, Witten IB, et al. (2017) An international labo-
ratory for systems and computational neuroscience. Neuron
96:1213–1218.

Armin L, Okun M, Moss MM, Gurnani H, Farrell K, Wells MJ, Reddy
CB, Kepecs A, Harris KD, Carandini M (2020) Dopaminergic and
Prefrontal Basis of Learning from Sensory Confidence and Reward
Value. Neuron 105:700–711.e6.

Aronov D, Tank DW (2014) Engagement of neural circuits underlying
2D spatial navigation in a rodent virtual reality system. Neuron
84:442–456.

Bonacchi N, Chapuis G, Churchland AK, Harris KD, Hunter M,
Rossant C (2020) Data architecture for a large-scale neuroscience
collaboration. BioRxiv. Advance online publication. Retrieved June
4, 2020. doi:10.1101/827873.

Burgess CP, Lak A, Steinmetz NA, Zatka-Haas P, Bai Reddy C,
Jacobs EAK, Linden JF, Paton JJ, Ranson A, Schröder S, Soares
S, Wells MJ, Wool LE, Harris KD, Carandini M (2017) High-yield
methods for accurate two-alternative visual psychophysics in
head-fixed mice. Cell Rep 20:2513–2524.

Carandini M, Churchland AK (2013) Probing perceptual decisions in
rodents. Nat Neurosci 16:824–831.

Jacobs EAK, Steinmetz NA, Carandini M, Harris KD (2018) Cortical
state fluctuations during sensory decision making. BioRxiv
348193. doi: 10.1101/348193.

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B,
Lee AK, Anastassiou CA, Andrei A, Aydın Ç, Barbic M, Blanche TJ,
Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M,
Karsh B, Ledochowitsch P, et al. (2017) Fully integrated silicon
probes for high-density recording of neural activity. Nature
551:232–236.

Ringach DL (1998) Tuning of orientation detectors in human vision.
Vision Res 38:963–972.

Shimaoka D, Steinmetz NA, Harris KD, Carandini M (2019) The im-
pact of bilateral ongoing activity on evoked responses in mouse
cortex. Elife 8:e43533.

Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD (2019)
Distributed correlates of visually-guided behavior across the
mouse brain.Nature 576:266–273.

Zatka-Haas P, Steinmetz NA, Carandini M, Harris KD (2018) Distinct
contributions of mouse cortical areas to visual discrimination.
BioRxiv. Advance online publication. Retrieved December 21,
2018. doi: 10.1101/501627.

Open Source Tools and Methods 12 of 12

July/August 2020, 7(4) ENEURO.0406-19.2020 eNeuro.org

https://github.com/cortex-lab/signals/blob/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/docs/examples/advancedChoiceWorld.m
https://github.com/cortex-lab/signals/blob/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/docs/examples/advancedChoiceWorld.m
https://github.com/cortex-lab/signals/blob/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/docs/examples/advancedChoiceWorld.m
https://github.com/cortex-lab/signals/blob/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/Signals_perftest.m
https://github.com/cortex-lab/signals/blob/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/Signals_perftest.m
https://github.com/cortex-lab/signals/blob/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/Signals_perftest.m
https://github.com/cortex-lab/signals/tree/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/results
https://github.com/cortex-lab/signals/tree/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/results
https://github.com/cortex-lab/signals/tree/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/results
https://github.com/cortex-lab/signals/tree/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/results
https://github.com/cortex-lab/signals/tree/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/results
https://github.com/cortex-lab/signals/tree/558170702aa2e6962c58f8b2a7b603a96b2c6b1a/tests/results
http://dx.doi.org/10.1016/j.neuron.2017.12.013
http://dx.doi.org/10.1016/j.neuron.2014.08.042
https://www.ncbi.nlm.nih.gov/pubmed/25374363
http://dx.doi.org/10.1101/827873
http://dx.doi.org/10.1016/j.celrep.2017.08.047
https://www.ncbi.nlm.nih.gov/pubmed/28877482
http://dx.doi.org/10.1038/nn.3410
https://www.ncbi.nlm.nih.gov/pubmed/23799475
http://dx.doi.org/10.1101/348193
http://dx.doi.org/10.1038/nature24636
https://www.ncbi.nlm.nih.gov/pubmed/29120427
http://dx.doi.org/10.1016/S0042-6989(97)00322-2
https://www.ncbi.nlm.nih.gov/pubmed/9666979
http://dx.doi.org/10.7554/eLife.43533
http://dx.doi.org/10.1038/s41586-019-1787-x
http://dx.doi.org/10.1101/501627

	Rigbox: An Open-Source Toolbox for Probing Neurons and Behavior
	Introduction
	Signals
	Example 1: a psychophysics experiment
	Example 2: Pong

	Running experiments and managing data in Rigbox
	Data availability
	Discussion
	Hardware requirements
	Software requirements
	Benchmarking

	References

