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Abstract

During self-guided behaviors, animals identify constraints of the problems they face and adaptively employ ap-
propriate strategies (Marsh, 2002). In the case of foraging, animals must balance sensory-guided exploration
of an environment with memory-guided exploitation of known resource locations. Here, we show that animals
adaptively shift cognitive resources between sensory and memory systems during foraging to optimize route
planning under uncertainty. We demonstrate this using a new, laboratory-based discovery method to define
the strategies used to solve a difficult route optimization scenario, the probabilistic “traveling salesman” prob-
lem (Raman and Gill, 2017; Fuentes et al., 2018; Mukherjee et al., 2019). Using this system, we precisely ma-
nipulated the strength of prior information as well as the complexity of the problem. We find that rats are
capable of efficiently solving this route-planning problem, even under conditions with unreliable prior informa-
tion and a large space of possible solutions. Through analysis of animals’ trajectories, we show that they shift
the balance between exploiting known locations and searching for new locations of rewards based on the pre-
dictability of reward locations. When compared with a Bayesian search, we found that animal performance is
consistent with an approach that adaptively allocates cognitive resources between sensory processing and
memory, enhancing sensory acuity and reducing memory load under conditions in which prior information is
unreliable. Our findings establish new approaches to understand neural substrates of natural behavior as well
as the rational development of biologically inspired approaches for complex real-world optimization.
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Animals display remarkable problem-solving abilities across a variety of complex situations. Here, we used
a large, computer-controlled foraging field with precisely controlled probabilities of food resources in either
repeated or random locations to test how rats determine which strategies to use to solve an extremely com-
plicated route planning problem. We found that rats balanced exploration for novel locations of food with
exploitation of known food locations to solve this problem, with the balance between exploratory and ex-
ploitative strategies governed by the amount of information available regarding resource location. Our re-
sults show how animals balance sensory input with learned information to solve complex, real-world route
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Introduction

Animals balance the ability to flexibly interact with their
environment with the need to reserve energy while forag-
ing. Foraging in natural environments can be particularly
difficult due to the sparse and unreliable nature of sensory
cues emanating from food sources. This is especially true
when animals need to travel between multiple locations
and it is unknown whether food will be present at these lo-
cations. Under conditions of high uncertainty, it may be
beneficial to rely on sensory information during foraging
and use a more exploratory approach, when the in-
creased cognitive demand of this strategy is offset by the
need to flexibly interact with the environment. Conversely,
using a memory-based strategy to exploit known re-
source locations allows for the quick establishment of effi-
cient stereotyped routes, yet result in behaviors that are
not readily adaptable to changing contingencies in the en-
vironment. It is therefore important for animals to maintain
cognitive flexibility while foraging in their natural environ-
ment to execute the most efficient behaviors required for
food procurement (Dolan and Dayan, 2013). To this end,
the ability to adaptively modify search strategy by using
internal representations of the dynamic environment
would serve to vastly increase the effectiveness of forag-
ing bouts (Slotnick, 2001; Zhang and Manahan-Vaughan,
2015).

Animals must learn the constraints of their environment
to determine how to optimize their foraging strategies,
with the balance of exploration versus exploitation being
vital in this context (Kramer and Weary, 1991; Auh and
Menguc, 2005; Gupta et al., 2006; Mehlhorn et al., 2015).
During exploration, animals sample from multiple food
patches over the course of several foraging bouts. This al-
lows them to construct an internal representation of differ-
ent possible locations where they can find food, with the
benefit being that their future foraging would be more re-
sistant to reduced or noisy sensory cues. Exploitation of
this information follows and relies on remembering boun-
tiful patch locations so that animals have a framework to
use for navigation. While benefits of exploitation include
spending less energy traveling to locations where it is un-
known whether food will be available, potential draw-
backs would be that this strategy fails when resources
have been exhausted or when resource locations change.
Additional exploration after establishing resource location
is thus most useful when new resource locations need to
be discovered, such as when information regarding
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resource locations is found to be unreliable. Under the
constraints of foraging in an unpredictable environment, it
is more difficult to exploit reliable resource locations to re-
duce foraging costs and strategies should shift toward
exploration.

The ability to rapidly solve complex problems, such as
optimization of foraging strategies, is a defining feature of
animal intelligence. Indeed, varieties of animals solve diffi-
cult optimization problems nearly instantaneously (Wall
and Balda, 1977; Kenward et al., 2005; Drea and Carter,
2009; Zhang et al., 2015). However, it has been difficult to
study route optimization during naturalistic foraging in a
laboratory setting. Historically, many foraging tasks have
been studied with apparatuses that do not explore the full
behavioral repertoire of a natural forager. One issue is the
difficulty of providing alternative possible paths for the an-
imals when they are restricted to a track, such as a figure-
8 maze (Pedigo et al., 2006). In these simplified tasks, the
space of available behaviors is limited to simple actions
such as left and right turns. While other studies avoid
these restrictions through the use of open field designs,
these approaches necessarily reduce the precision and
reproducibility of resource locations (Agarwal et al,
2014). We address these challenges by studying natural-
istic foraging in a large, computer-controlled open field
where food rewards can be precisely and reproducibly lo-
cated anywhere in the environment.

Using our computer-controlled open field design, we in-
vestigated the strategies rats use to solve a notoriously dif-
ficult optimization scenario, the probabilistic traveling
salesman problem. In this problem, an agent must estab-
lish the most efficient (i.e., shortest) route between a finite
number of locations, and each location has a certain prob-
ability of containing pellets (Leipald, 1978; Percus and
Martin, 1999). We observed rats’ ability to follow efficient
acquisition sequences and measured how well animal per-
formance correlated with memory-guided exploitative
strategies or sensory-guided exploratory strategies as a
function of the predictability of the pellet distributions on
which animals were trained. These precise behavioral ex-
periments suggest animals adaptively shift their reliance on
sensory information in response to the reliability of the for-
aging environment.

Materials and Methods

Subjects

The experiments in this study were performed on 12
male Long-Evans rats, purchased from Charles River
Labs and housed individually. All animals were maintained
on a 12/12 h dark/light reverse schedule (lights off at 7 A.
M.) with ad libitum access to water. After a week-long ha-
bituation to the animal housing facility, all animals were
then sustained at 85% of their free-feeding body weight
to maintain motivation. All tests were performed between
9 AM. and 6 P.M., during the dark phase of the light
cycle. Zeitgeber time (ZT; with ZTO =lights on in the ani-
mal facility) of experiments was ZT14 to ZT23. To limit dis-
tal visual cues, all tests were performed under dim red
light (~660nm). All experimental procedures were
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approved by the Institutional Animal Care and Use
Committee at the University of Washington.

Testing apparatus

The foraging arena was a large, fully enclosed open-
field measuring 2.5 m in length, 1 m in width, and 1 m in
height. The frame of the arena was constructed from T-
slotted aluminum railings. The sides of the arena were
constructed from 1.27-cm-thick clear acrylic, while the
ceiling was 0.635cm in thickness. The floor was a sheet
of 0.0635-cm-thick opaque white acrylic. The ends of the
arena were made from a wire mesh to allow for air to cir-
culate throughout. A nest area where the animals would
remain during the intertrial interval was attached to one
end of the arena. The nest area was constructed from
1.27-cm-thick clear acrylic. Two synchronized cameras
(The Imaging Source; DMK 23UP1300; frame rate 120 per
second) were used to track the movement of the animals.
An automated, custom-made pellet dispenser was used
to bait the arena with 45-mg sucrose pellets (Bio-Serv).
An Arduino Uno controlled the movement of the motors
running the pellet dispenser, allowing movement in the x-
and y-coordinate plane.

Estimation of odor cues

Odor cue dispersal in the arena was directly measured
using an ethanol source and miniature ethanol sensors
(Tariqg et al., 2019) that were scanned in a grid across the
arena. The maximal signal detected at each sensor loca-
tion over 30 s was normalized. There was no flow im-
posed on the arena, which limited the dispersal of
airborne odor cues.

Behavioral paradigm

Before testing, all animals were habituated to the animal
facility for one week. Animals then spent 2 d habituating to
the attached waiting cage for ~15min at a time. In order
to motivate animals to return to the waiting cage, sucrose
pellets were placed in the cage every 2min when a 1-s,
1000-Hz tone was played. They were then granted access
to the test arena and were given 2-3 d to habituate to it.
Animals were considered to have reached criterion when
they were able to make three transitions between the
waiting cage and test arena within 30 min.

Animals were placed into the waiting cage at the begin-
ning of each testing session. Rats completed one session
a day of three trials each. Before each trial, the automated
pellet dispenser baited the arena with sucrose pellets or-
ganized into three clusters of approximately three pellets
each. During foraging periods the dispenser was auto-
matically lifted out of the arena so that the animals could
not interact with it. Procedures differed only through the
testing phase, when animals were assigned to forage
within environments of high, medium, or low food location
predictability. Animals trained on the environment with
high food location predictability (n=4) were overtrained
on a single distribution of pellet locations that stayed con-
sistent across trials and sessions. Animals foraging in the
environment with low food location predictability (n=4)
were trained on unpredictable pellet distributions that
changed across trials. All other animals (n=4) were
trained on a moderately predictable distribution of pellet
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locations that changed slightly over time. All rats were
given a maximum of 30 min to eat all of the sucrose pellets
during the session. The entire testing period lasted for 30—
35 d with approximately five sessions a week.

Experimental design and statistical analysis

No explicit power analysis was conducted to determine
sample sizes. However, the number of animals used is
consistent with experiments in the current literature. All
analyses were conducted using MATLAB (MathWorks) on
PC workstations running under the Windows 10 operating
system. A custom LabView (National Instruments) program
was used to collect the behavioral data, also on a PC run-
ning the Windows 10 operating system. Significant differ-
ences between groups were assessed with the Mann—
Whitney U test followed by p value adjustment with false
discovery rate when multiple comparisons were made.
Error bars in figures report the standard error of the mean
and significant differences are indicated with asterisks.

Predictability of pellet distributions was quantified using
an across trial minimum distance metric, which, for each
pellet in a given distribution, reports the minimum dis-
tance from that pellet to all pellets in the immediately pre-
vious distribution. Relative entropy (RE) is equivalent to
Kullback-Leibler divergence and was calculated as:
RE(P || Q) sz(j)/og(P(j))/Q(j)) for all points j in the
current trial’s probability “density function (P) and the
probability density function calculated from all previous
trials (Q). Before calculating the RE all distributions were
convolved with a smoothing function, which was an aver-
aging filter of width=1 cm. RE is reported in bits.

For establishing optimal pellet acquisition sequen-
ces for each distribution, we used a genetic algorithm
developed by Joseph Kirk: Fixed Start Open Traveling
Salesman Problem - Genetic Algorithm. Briefly, this al-
gorithm starts from a population of randomly gener-
ated paths that start at the entrance to the arena and
travel to each pellet once. It then uses an iterative pro-
cess wherein in each “generation” of solutions the fit-
ness of every path in the population is evaluated; the
objective function for fitness in this case is minimiza-
tion of path length. The more fit (shorter) paths are se-
lected, and each path’s sequence of pellet locations is
modified (recombined with other paths or randomly
changed, or “mutated”) to form a new generation. The
new generation of candidate paths is then used in the
next iteration of the algorithm. The algorithm can be
terminated when either a maximum number of genera-
tions has happened or the path length reaches a small
enough value.

Efficiency of foraging paths was calculated as fe = lo//a,
where o is the optimal path length, /a is the animal’s path
length, and fe is foraging efficiency.

Bayesian search

For analyses conducted in Figure 5, we modeled rat be-
havior as a Bayesian search. Briefly, the search arena is
divided into 2.8-cm squares resulting in a 40 x 80 grid of
possible locations. This grid is then populated with the
same pellet distributions that were used in the behavioral
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experiments. We start our analysis on day 10 of training,
which provides an agent with up to the first 10d of training
data as a map of prior expectations regarding pellet loca-
tions (Fig. 5A). The expression for prior expectation of pel-
let location is given by:

pe(x,y) = 'w(x.y)/(t - L),

where t is the trial number, rw is the probability of a pellet
being found at a given point, (x, y), over previous trials,
and pe is the resulting prior expectation from the previous
pellet locations. L is based on the length of memory being
used and is defined as L = (t —md, 1), with md being
memory depth in trials, with md> = 1. To enforce the
nearest-neighbor search strategy used by rats, this
map of prior expectations is discounted by linear dis-
tance from the agent, resulting in decreased likelihood
to search first in areas that are located at large distan-
ces from the agent. This results in the following expres-
sion at a point, (x, y) within the grid of possible pellet
locations:

m(va) :pe(X,y) * ((max(d) - d(va))/maX(d))v

where d is the distance from the agent, and m is the mem-
ory-based map of prior expectations for pellet location
adjusted by distance from the agent. The agent also uses
sensory information that decays with distance to update
their expectation of the possible pellet location,

s(x,y) = cr(x,y) = ((max(d) — d(x.y))/max(d))>,

where s is the sensory density function, and cr is a map
with the current location of all pellets set to 1 and all other
locations set to 0. The term SE is an exponent that deter-
mines the rate of decay of sensory information with dis-
tance. These two sources of information are weighted
and then summed to result in a map that guides the
agent’s next step in the search path,

p(x.y) =s(xy) x swtm(x,y) « (1 — sw),

where p is the probability map, s is the sensory density
function, and m is the memory-based map of prior ex-
pectations for pellet location. The term sw is the weight
given to sensory information, {sw|0 < sw < 1}. The agent
makes its next step along the vector to the maximum
point of p. The agent is considered to have perfect target
detection at their location, such that after the agent
moves to a new location, if a pellet is at that location it is
always detected and if no pellet is at that location the
probability of a target at that site is updated to 0. To fit pa-
rameters for the Bayesian search, we used a three-dimen-
sional coarse grid of values for sw, SE, and md. We found
the best fit for each animal in this grid and report these re-
sults in Figure 5.

For reported measures in Figure 5F, sa= g—
i;se/(SE) +sw(3 /2, where sa is sensory acuity, and SE is
the set of values of SE across all best fits for 12 animals,
while mi = (max(pr{md > 0}) — mean(pr{md < 3}))/(max
(pr{md > 0}) — min(pr{md > 0})), where mi is long-term
memory usage, and pr is the correlation of the agent’s
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performance with the animal’s performance using md set to
the indicated range of values.

Software accessibility
All software developed for analysis and generation of
figures is available at the Gire Lab website and at GitHub.

Results

Route planning revealed through controlling
predictability of reward locations

We adapted the probabilistic traveling salesman prob-
lem for experimental investigation through the use of an
automated system for precise, computer-controlled food
pellet placement within a large foraging arena (Fig. 1A).
We divided a cohort of 12 rats into three equal groups
that foraged within environments of high, medium, and
low food location predictability (Fig. 1B). Animals in each
group were tested across precisely replicated pellet
placements (Fig. 1C), and all placements used had equiv-
alent optimal path lengths (Fig. 1D), as calculated through
a genetic algorithm solution to the traveling salesman
problem for each pellet placement (see Materials and
Methods). We generated sequences of pellet locations
over days to create distributions that were extremely well
predicted by prior experience as well as distributions that
were unable to be anticipated based on prior pellet loca-
tions. To generate pellet placements with controlled levels
of predictability, we quantified the between trial minimum
distance for each pellet of a given distribution and all pel-
lets of the previous trial’s distribution and set this value to
be low for the computer-generated set of locations used
for predictable conditions and to be high for the unpre-
dictable condition (Fig. 1E). The lower values for pellets in
predictable distributions indicate that these pellets are in
areas that are extremely close to where pellets were lo-
cated on the previous trial, allowing animals to create an
expectation over repeated searches. This is also demon-
strated through a reduction of the RE (a measure of sur-
prise) of newly-encountered pellet distributions following
multiple days of training for animals in high and medium
predictability conditions. Animals could not develop such
an expectation under low levels of predictability and RE
does not decrease with training for the unpredictable dis-
tribution (Fig. 1F). In all conditions, animals searched for
an average of seven pellets, with the precise number on a
given trial unknown to the animal (Fig. 1G). This results in
typically 7!, or 5040 possible sequences of pellet acquisi-
tion, with most sequences being extremely suboptimal.
Examples of trajectories taken by animals on the first and
last days of training demonstrate changes in search tra-
jectories with learning (Fig. 1H). After training, all animals
favored a small subset of near-optimal acquisition se-
quences (Fig. 2A), consistent with findings in non-proba-
bilistic optimization across a number of species (Blaser
and Ginchansky, 2012). We found that a simple nearest
neighbor heuristic (in which rats solve the task by traveling
to the next nearest pellet) achieved strong performance
on this task, often comparable to that of optimized routes
(Fig. 2B). Indeed, we found that animals achieved optimal
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Figure 1. A computer-controlled probabilistic traveling salesman task enables direct tests of behavioral strategies under uncer-
tainty. A, top, A large, automated arena with a rat shown for scale. Bottom, The temporal structure of a typical trial. B, Rats forage
for pellets in highly predictable (left), moderately predictable (center), and actively randomized (right) pellet placements. Placements
are shown across all trials (20d, 3 trials per day). C, The automated system allows for reproducible pellet placement across animals.
From the top to bottom of the matrix correlation coefficients are shown for two different predictable distributions and the single un-
predictable distribution. D, Pellet distributions from each placement shown in panels B, C have equivalent optimal path lengths.
Error bars are standard error of the mean. E, Example histograms are shown for the most predictable (black) and least predictable
(gray) distributions that were tested. Vertical colored lines show the mean for the predictable (blue) and unpredictable (red) distribu-
tions. The distributions for all animals are plotted as colored circles, with color corresponding to across trial minimum distance. F,
RE for each predictability grouping (high, blue; medium, purple; randomized, red) across sessions of training. Higher values indicate
higher entropy. G, Average number of pellets per trial for each predictability level. H, Examples of routes taken by rats on the first
trial of the first day (top panels) and after 20 d of training (bottom panels). Color shifts from cyan to yellow as each animal’s trajectory
progresses.

performance only when the optimal solution was the
same as a nearest neighbor approximating solution (Fig.
20C), suggesting that the rats employed the nearest neigh-
bor heuristic to solve the task. Rats foraging in predictable
environments were capable of employing a nearest neigh-
bor strategy earlier during training, although all animals,
even those in unpredictable environments, did increase
the use of nearest neighbor routes while foraging (Fig.
2D). However, animals in the highest predictability group

May/June 2020, 7(3) ENEURO.0536-19.2020

were significantly more effective at ordering their search
based on nearest neighbor relations of reward locations
(error relative to a nearest neighbor search: 16.9 = 0.5cm
for most predictable, 22.1 = 2 cm for moderately predict-
able, and 20.8 = 1.4cm for least predictable, n=4 ani-
mals per predictability group; Fig. 2E; for statistical tests
used for all comparisons, see Materials and Methods).
Examples of optimal, nearest neighbor, and animal se-
quences of pellet acquisition for animals in highly
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Figure 2. Search performance approaches a nearest neighbor heuristic after experience with reward locations. A, Average distance
per pellet. Rats acquire pellets in a sequence that is extremely efficient (red lines) compared with a random sampling of all possible se-
quences (blue bars). Predictability decreases from top to bottom. B, Performance of a nearest neighbor strategy on all distributions
tested in this study when compared with the optimal path length. Dashed lines represent 10%, 20%, and 30% above optimal. C,
Animal performance on trials in which a nearest neighbor search is optimal versus trials in which a nearest neighbor search is subopti-
mal. Asterisk indicates significant difference between the groups. D, The probability that rats in each predictability group acquire the
nearest pellet during search increases during training for all groups. The initial training epoch at which rats showed significant improve-
ment from the first day is indicated by color-matched horizontal lines and asterisks. E, Scatter plot showing the relation between pre-
dictability of distribution (x-axis) and difference between animal acquisition sequence and nearest neighbor sequence (y-axis) for all 12
animals. Error bars are standard error of the mean across trials for each animal. F, Example of optimal and nearest neighbor pellet ac-
quisition sequences and the actual sequences and trajectories taken by animals. For the right panels, color shifts from cyan to yellow

as the animal’s trajectory progresses and from dark to light blue as the pellet acquisition sequence progresses.

predictable and unpredictable environments are shown in
Figure 2F.

Predictable environments enable enhancement of
search routes

In our task, which involves probabilistic presence of pel-
lets, this nearest neighbor search can be implemented
through two different strategies: in a sensory-guided
strategy animals use cues (odor or vision) to navigate to-
ward the nearest detected target; in a memory-guided
strategy animals use prior information to navigate toward
the nearest, most likely locations of pellets. We next in-
vestigated which of the two alternative strategies might
guide a nearest neighbor search within each level of un-
certainty. Over training, animals across all predictability
levels significantly increased their probability to travel to
the nearest pellet during search (Fig. 2D). However, the
number of days of training taken for this to occur was de-
pendent on the predictability of the pellet distribution

May/June 2020, 7(3) ENEURO.0536-19.2020

(significant improvement on days 2-10 for highly and
moderately predictable conditions, significant improve-
ment not until days 10-15 for unpredictable conditions; p
<0.05 compared with day 1, n=4 for all groups; Fig. 2D).
We found that animals searching in highly predictable en-
vironments were effective at enhancing the efficiency of
their search across long distances (>40cm) and learned
to do this relatively early in training (days 5-10). Those in
moderately predictable environments also learned to in-
crease the efficiency of their search tours but required
more training to do so (days 10-15), while those searching
in unpredictable environments did not significantly in-
crease the efficiency of their tours (Fig. 3A,B). As the un-
predictable nature, or “surprise value” of the environment
increased, the ability of animals to increase the efficiency
of their search tours decreased (R = —0.72, p <0.008,
n=12; Fig. 3C). These results suggest that based on the
predictability of the environment rats employ two different
strategies to find the next nearest pellet, one in which
tours can be efficiently narrowed toward straight line
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Figure 3. Predictability supports increased route efficiency. A, Animals searching in predictable environments increase efficiency
with training (for efficiency metric, see Materials and Methods). Efficiency was measured on paths to rewards that were located
>40cm away and were assessed on day 1 and then on blocks of 5d until day 20. The first day of training that showed significant
improvement in efficiency from the first day is indicated by color-matched horizontal lines and asterisks. B, Animals in both predict-
able groups significantly increased the efficiency of their search routes on the last block of training when compared with the first
day. Significant improvement is marked by a horizontal line and asterisk. C, Efficiency of search routes measured on the last block
of training (days 15-20) show a strong negative correlation to the unpredictability of the foraging environment, here measured as the
cross trial minimum pellet distance (see Materials and Methods). D, All animals increase speed during training. Average speed was
taken without including pauses. Color matched horizontal bars indicate the first point at which speed was significantly greater than
day 1 for each predictability condition. E, Animals spend a small amount of time pausing during the task and this does not signifi-

cantly change with training. F, The number of pauses per route as a function of training.

paths and another in which paths between rewards are
necessarily circuitous (Fig. 1H, lower panel for example
tours after training).

In addition to supporting better-ordered search routes
(Fig. 2D-F) and efficient paths to the nearest target from far-
ther away (Fig. 3A-C), predictable distributions also enabled
rats to enhance the speed of their travel between rewards.
During training, the speed of the trajectories taken between
pellets increased the most quickly for animals operating in
the most predictable environments, although all animals
eventually learned to decrease time between rewards by in-
creasing speed (Fig. 3D). Time spent pausing (speed <1
cm/s) and number of pauses per second did not significantly
change with training (Fig. 3E,F), suggesting consistent moti-
vation to perform the task across all animals.

Analyzing shifting weightings between sensory-
dominated and memory-dominated strategies

We next sought to more precisely quantify the role of
sensory information and memory in the navigation strat-
egies used by animals under varying levels of uncertainty.
To perform this analysis we simulated animal behavior by
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developing an agent that searched through foraging
space using multiple free parameters related to explora-
tory and exploitative search characteristics (McNamara et
al.,, 2006; Elazary and Itti, 2010). These parameters in-
clude the length of memory for the prior, the distance over
which sensory signals from the pellets are detected, and
the relative weighting of sensory and memory terms. We
allowed these parameters to vary on a multidimensional
grid and analyzed goodness of fit to actual animal per-
formance as the correlation between trial-by-trial per-
formance of the simulated searcher and the animal (Fig. 5;
see Materials and Methods). As expected, searches with
long-range, noiseless sensory information lead to a per-
fect nearest neighbor search and do not correlate well
with animal behavior (Fig. 5B), since rats do not have ac-
cess to perfect information and need to use local sensory
information or learned locations to navigate (for an exami-
nation of possible sensory cues used for this task, see
Fig. 4). Similarly, searches with only a memory term also
do not correlate well with actual behavior (Fig. 5B).
Consistent with animals under different levels of uncer-
tainty using diverse search strategies, we found that any
set of a wide range of parameters applied uniformly to all
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Figure 4. Sensory cues are local. A, top, Experimentally determined spread of odor in the foraging arena (see Materials and
Methods). Bottom, Calculated size of a pellet necessary for it to be visible for a foraging rat under bright, broad-spectrum lighting
conditions with high contrast, based on reported values for rat visual acuity Prusky et al. (2000, 2002). The dashed red line indicates
the actual size of the pellets used (and thus the distance for detection under ideal conditions). All experiments in the current study
were done under dim red light using pellets matched in color to the arena floor, further limiting the range for visual detection. B,
Estimated best-case pellet detection distances for olfactory (cyan) and visual (red) sensory cues. Because of both the dim, red light-
ing conditions and the lightly odorized pellets, actual detection distances are likely to be much smaller. C, The entire time course of
odor for one mapping experiment (~180 min) used to establish the distribution in panel A. As the sensor is moved closer to the
source (later in the experiment), odor fluctuations become much larger. D, A grid of mean odor intensity values that were sampled
during the experiment and convolved with a Gaussian function to create the estimated odor density function in panel A. Odor sen-

sor activation over time from the indicated locations (1, 2, and 3) is shown to the left of the grid.

animals resulted in only moderate correlation with actual
behavior (Fig. 5C). We next allowed parameters to vary in-
dividually for each animal. While this approach will trivially
result in a better fit due to the increased number of free
parameters (p <0.01, n = 12; Fig. 5B,C), we used the val-
ues of parameters obtained for these individual fits to ex-
amine the contribution of sensory and memory input to
the simulated search that best matched each animal’s
performance. When varying the length of memory used by
the searcher we found that simulated searches across the
most predictable distributions benefited from increased
memory with an increase in correlation to actual animal
performance when the simulated searcher had access to
cumulative memory of previous searches (predictable,
single trial memory: R=0.12 = 0.05; cumulative memory
R=0.66 + 0.03, p <0.05, n=4). Searches across moder-
ately predictable and unpredictable distributions did not
show a significant increase in correlation with animal be-
havior with increased memory (Fig. 5D). Consistent with
these results, the impact of shuffling prior distributions
on agent performance was directly related to the predict-
ability of the dataset (Fig. 5E). To quantify the impact of
sensory input on these searches we combined the

May/June 2020, 7(3) ENEURO.0536-19.2020

weighting given to sensory input with the distance from
which each agent could detect a target to create a mea-
sure of sensory acuity for each simulated agent (see
Materials and Methods). This measure was well correlated
with increasing RE of the training set, suggesting that
animals increased sensory acuity under uncertainty
(R=0.8469, p=0.005; Fig. 5F, left panel). We also used
the length of memory for the best match to animal behav-
ior to create a metric for long-term memory usage (see
Materials and Methods). We found a significant inverse
correlation between RE and long-term memory usage (R
= —0.7252, p=0.0076; Fig. 5F, right panel), suggesting
that as the training set became more predictable animals
relied more on long-term memory. Our results are consist-
ent with a Bayesian search where searchers adaptively
shift the weightings given to various locations (and thus,
their likelihood to travel to these locations) based on their
relative weightings of sensory and memory terms. For ex-
ample, a searcher may shift the weighting of a given loca-
tion based on being rewarded there many times in the
past (exploitative, memory-guided strategy) or it may shift
the weighting based on sensing cues emanating from a
given location (exploratory, sensory-guided strategy).
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Figure 5. Modeling behavior as a Bayesian search with adaptive sensory acuity and memory depth explains performance under un-
certainty. A, Examples of prior distributions accumulated over all trials for one predictable and one unpredictable set of pellet loca-
tions. Distributions have been normalized to their largest value (color bar). B, Correlation to animal performance of models with
parameters emphasizing sensory (S) or memory (M) guidance or an adaptive model (A) individually fit to each animal. Horizontal
lines indicate comparisons with significant differences between groups. C, Correlation of agent’s search performance with animal
behavior when using parameters fit to other animals (all others) or the best fit to that specific animal (best fit). The best fit is signifi-
cantly better than the fits from other animals (p = 0.0043, n=12; significance indicated by horizontal line and asterisk). D,
Correlation between animal behavior and a Bayesian search with either single trial memory (1) or best performance with cumulative
memory (C). Significant difference is indicated by the horizontal line with an asterisk. E, Performance ratio (path length with priors
from different distributions/path length with correct prior) for all animals plotted as a function of the across trial minimum distance
for the distributions presented to each animal (significant correlation: R = —0.85, p=0.0004). A higher value for the performance
ratio indicates longer path length with a shuffled prior. Agents searching with unpredictable distributions (red) show identical per-
formance regardless of the prior used. F, left, Sensory acuity based on the best fit search parameters versus RE based on the distri-
butions that animals have experienced. Right, Long-term memory usage versus RE of pellet distributions encountered.

Discussion efficacy as animals that are operating in highly predictable

Animals make use of appropriate cognitive strategies  environments, although due to the short-range nature of
and behaviors to solve the many problems they are faced  sensory cues a sensory-guided strategy fails at long dis-
with during self-guided behaviors such as foraging tances and animals are unable to increase the efficiency
(Marewski and Link, 2014). It is known that when animals  of foraging trajectories over these distances (Fig. 3).
are introduced to new environments with multiple food lo- ~ Conversely, animals operating in predictable environments
cations they may continually explore and sample the dif-  reduce their reliance on sensory input in favor of stereo-
ferent options, or they may exploit a single, most typed and efficient searches based on long-term memory,
profitable option (Krebs et al., 1978). However, it is not  which allows them to enhance search tours over long dis-
fully understood how animals balance exploratory behav-  tances. In short, in a sensory-dominated strategy animals
iors against exploitative behaviors (Gupta et al., 2006). Our ~ approach the nearest sensed pellet, while in a memory-do-
study revealed that rodents make use of their prior knowl-  minated strategy animals approach the nearest remem-
edge of the predictability of an environment to determine  bered location, enabling more efficient, planned routes to
the extent that they rely on sensory cues during their forag-  emerge. This result is consistent with the finding that hu-
ing bouts. Our results are consistent with a strategy that in-  mans integrate information from different sensory modal-
creases sensory acuity and reduces memory load in direct  ities and dynamically give greater weight to the modality
relation to the level of uncertainty in an environment (Fig.  that provides the stronger, most well-defined estimate
6). This increased reliance on sensory input allows animals  (Ernst and Banks, 2002). Taken together, these results sug-
searching across unpredictable environments to employ  gest that animals assess the predictability of an environ-
an effective nearest neighbor strategy with nearly the same  ment to select appropriate strategies to allocate cognitive
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Figure 6. Schematic of two strategies selected to solve the
probabilistic traveling salesman task. A schematic of the main
results, showing that animals adaptively change the strategies
used for a search depending on the level of uncertainty of the
environment, here depicted as a spectrum from red (uncertain)
to blue (predictable).

resources between sensory processing and memory while
solving complex natural problems.

While it is difficult for animals to rapidly learn efficient
paths for collecting rewards in the unpredictable environ-
ment, optimal paths in this environment are not more
complex than those in predictable environments, as
shown in Figure 1D. Indeed, animals in unpredictable en-
vironments do optimize their foraging behavior after many
sessions, achieving a roughly equal ability to perform a
nearest-neighbor solution to the task (Fig. 2D). They may
learn a general understanding of where pellets have never
been found (such as along the boundaries of the arena)
and may focus their search to the center of the arena to
maximize getting close enough to pellets to then use sen-
sory guidance to approach the reward locations (exam-
ples in Fig. 1B,H). This suggests that while animals have a
diminished, imperfect ability to rapidly learn efficient
paths in unpredictable environments they are still capable
of improving their foraging strategy, perhaps through a
combination of coarse predictions and enhanced sensory
guidance.

The differential weighting of sensory cues, specifically
odor cues, is expected when the turbulent nature of odor
plumes in natural environments is taken into account.
Odor-guided searches are notoriously difficult due to the
sparse and intermittent nature of odor plumes (Vickers,
2000). The ability of rodents to form internal representa-
tions of their environment could allow them to apply
learned spatial information to dynamic environments, cre-
ating a map that would act to lessen the cognitive load re-
quired to use the complex sensory cues in odor plumes
and greatly increase the effectiveness of odor-guided
searches. So it follows that rodents would prefer to use a
strategy that relies less on olfactory cues when instead
they could navigate using the cognitive map of their famil-
iar environment. This is in line with our results suggesting
that under unpredictable conditions rats do not efficiently
navigate to the next closest pellet when it is >40 cm from
their current location (Fig. 3A). Previous research sug-
gests that 40 cm is close to the threshold of rodents’ abil-
ity to gain a directional benefit from the sparse odor cues

May/June 2020, 7(3) ENEURO.0536-19.2020

Research Article: New Research 10 of 11
emanating from an odor source (Gire et al., 2016; Liu et
al., 2020). This difficulty is increased when rats have been
trained on unpredictable environments and are unable to
construct strong expectations of pellet location. Since
there is no underlying structure of where pellets can be
found that animals in the unpredictable environment can
learn over time, the low weighting given to the memory
terms in the Bayesian model reflects animals’ discounting
of information that will not be as useful as increasing their
reliance on sensory cues. Animals then take advantage of
the sensory cues emanating from food locations by in-
creasing their weighting, which is in line with the results
from our Bayesian model (Fig. 5). Monitoring the trajecto-
ries of the rats allowed us to also determine that rats trav-
eled in much more efficient paths when they were
navigating under conditions of high predictability. This
suggests that they are able to navigate directly to where
pellets are located without having to resort to behaviors
indicative of searching for olfactory cues, which typically
result in more circuitous search trajectories (Fig. 1H).

Optimizing travel paths during navigation is a notori-
ously difficult problem to solve, especially when one con-
siders the complexity of the traveling salesman problem.
One must determine the shortest path between multiple
locations to travel efficiently and conserve the most en-
ergy or increase the rate of reward per unit time. This
problem is extremely difficult to solve optimally as the
complexity of the problem scales unfavorably with the
number of targets that must be visited. In our task, this
problem is even more complex due to the fact that ani-
mals only have probabilistic information about whether
food pellets will be present at target locations. While not
optimal, simplifying heuristics enable solutions to such
complex optimization problems to be reached in relatively
short periods of time. Nearest neighbor tours are a com-
mon strategy used to solve the traveling salesman prob-
lem (Johnson, 1990; Tsai et al., 2004). Under this strategy,
the agent simply travels to the next nearest target location
until all targets have been visited. While not optimal, this
approach is computationally simple, resulting in rapid sol-
utions with time to solve scaling well with task complexity.
Our results suggest that animals adopt a nearest neighbor
strategy to procure all of the pellets; however, the degree
to which the strategy resembles a perfect nearest neigh-
bor strategy depends on the predictability of the environ-
ment. Animals trained in a predictable environment select
a strategy that highly resembles a nearest neighbor
search earlier on in training (Fig. 2), which allows them to
more effectively exploit pellet locations and increase effi-
ciency (Fig. 3A) and speed (Fig. 3D) of their routes. In con-
trast, animals trained in unpredictable environments
select a strategy that resembles a nearest neighbor
search much later in training (Fig. 2D). These differential
time courses could reflect the time necessary to train the
underlying memory or sensory networks in the brain, with
sensory training requiring a longer training period.

The novel, fully-automated foraging arena we designed
allows for new ways to study the balance between explo-
ration and exploitation. Using an automated, moving pel-
let dispenser allows for food rewards to be placed in an
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unlimited number of different locations throughout the for-
aging arena. This allows us to instantaneously change any
location in the arena into a reward location. Instead of
being confined to defined locations, such as fixed near a
feeder, we are able to create many different distributions
of where food can be found, mimicking distributions that
might occur in a more naturalistic setting. By combining
this automated arena with computer-generated reward
distributions, we can also scale the difficulty of the task to
address specific research questions. This allows us to
study more complex behaviors that current experimental
paradigms are not equipped to adequately explore.
Through computer-aided creation of reward location se-
quences, our new approach also supports direct testing
of algorithms that could be used to perform self-guided
optimization. This task also integrates extremely well with
new advances in automated behavioral tracking (Nath et
al., 2019). Finally, the self-guided nature of our task allows
for future studies to elucidate neural mechanisms under-
lying complex behaviors, such as route optimization.
Since animals trained on this task are not explicitly
shaped or instructed on how to best perform, we are able
to study how the brain changes as animals develop solu-
tions to complex, natural problems.
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