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Abstract

Local brain signal variability [SD of the BOLD signal (SDBOLD]] correlates with age and cognitive performance,
and recently differentiated Alzheimer’s disease (AD) patients from healthy controls. However, it is unknown
whether changes to SDBOLD precede diagnosis of AD or mild cognitive impairment. We compared ostensibly
healthy older adult humans who scored below the recommended threshold on the Montreal cognitive assess-
ment (MoCA) and who showed reduced medial temporal lobe (MTL) volume in a previous study (“at-risk” group,
n=20), with healthy older adults who scored within the normal range on the MoCA (“control” group, n=20).
Using multivariate partial least-squares analysis we assessed the correlations between SDBOLD and age, MoCA
score, global fractional anisotropy, global mean diffusivity, and four cognitive factors. Greater SDBOLD in the MTL
and occipital cortex positively correlated with performance on cognitive control/speed tasks but negatively corre-
lated with memory scores in the control group. These relations were weaker in the at-risk group. A post hoc
analysis assessed associations between MTL volumes and SDBOLD in both groups. This revealed a negative cor-
relation, most robust in the at-risk group, between MTL SDBOLD and MTL subregion volumetry, particularly the
entorhinal and parahippocampal regions. Together, these results suggest that the association between SDBOLD

and cognition differs between the at-risk and control groups, which may be because of lower MTL volumes in
the at-risk group. Our data indicate relations between MTL SDBOLD and cognition may be helpful in understand-
ing brain differences in individuals who may be at risk for further cognitive decline.
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Significance Statement

Moment-to-moment variability in the BOLD signal, once dismissed as nuisance noise, is now understood to
be an information-bearing signal. BOLD variability correlates with age and cognitive performance and was
recently used to differentiate Alzheimer’s disease (AD) patients from controls. As AD is a progressive dis-
ease, AD patients may benefit from its early detection. We found that older adults at-risk for cognitive de-
cline showed differences in the relationships between BOLD variability and cognitive performance, relative
to healthy controls. Notably, the differences were strongest in medial temporal lobe (MTL), areas where AD
is known to begin. Our data suggest that correlations between MTL BOLD variability and cognition may be
useful for understanding brain differences in individuals at risk for further cognitive decline.
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Introduction
Alzheimer’s disease (AD) is characterized by cognitive

decline, especially to memory performance (Alzheimer’s
Association, 2017). Epidemiological evidence suggests
age is the strongest risk factor for AD (Alzheimer’s
Association, 2017) and because of its progressive nature,
patients may benefit from its early detection. Many stud-
ies have tried to predict AD in preclinical patients (Jack
and Holtzman, 2013; Jack et al., 2013; Dubois et al.,
2016), but efforts are ongoing.
Temporal variability of the BOLD signal (SDBOLD) cor-

relates with age (Garrett et al., 2010) and cognitive per-
formance (Garrett et al., 2013a, 2011). Initially, older age
and poorer cognitive performance were primarily associ-
ated with lower SDBOLD during task-based fMRI and
therefore SDBOLD was conceptualized as an indicator of
brain health (Garrett et al., 2010, 2011, 2013a; Grady and
Garrett, 2014; Guitart-masip et al., 2016). However, early
studies of SDBOLD also found age-related increases of
variability in the inferior temporal gyrus (Garrett et al.,
2010), hippocampus (Garrett et al., 2011), and other
areas. More recently, studies have corroborated these
findings, showing aging is related to greater resting-
state variability in some networks, but lower variability in
others (Nomi et al., 2017). Another study found some
cognitive domains were positively associated with rest-
ing-state SDBOLD, whereas others were inversely related
(Burzynska et al., 2015). Furthermore, in clinical popula-
tions, stroke was associated with resting-state variability
increases in the left postcentral gyrus (Kielar et al., 2016);
multiple sclerosis with resting-state increases in temporal
gyrus and dorsal medial prefrontal cortex (Petracca et al.,
2017); 22q11.2 deletion syndrome with resting-state in-
creases in temporal lobe and caudate (Zöller et al., 2017);
medial temporal lobe epilepsy with task-based increases in
various cortical and subcortical regions (Protzner et al.,
2013); and most notably, AD with resting-state increases in
superior frontal gyrus, precentral gyrus, and putamen
(Scarapicchia et al., 2018). Together, these findings raise
the possibility that SDBOLD may support behavior differ-
ently in healthy aging and disease.
Because of its sensitivity to age and cognitive perform-

ance, SDBOLD is a promising tool for understanding age-

related pathologies like AD. A few studies provide hints
regarding what physiological mechanisms may be driving
SDBOLD. Researchers have demonstrated a relation be-
tween age-related changes in SDBOLD and dopaminergic
neuromodulation (Garrett et al., 2015). Additionally, higher
SDBOLD may reflect lower dimensional functional integra-
tion within brain networks (Garrett et al., 2018), suggest-
ing that the optimal (and more variable) brain would have
the lowest dimensionality (and therefore more tightly inte-
grated networks) necessary given the contextual de-
mands. This framework may explain some of the SDBOLD

findings across the literature. Notably, Burzynska et al.
(2015) found that resting-state SDBOLD was positively cor-
related with complex tasks that required greater dynamic
range, but negatively associated with less complex tasks.
Further, increased local variability may be common
across numerous clinical populations (Protzner et al.,
2013; Kielar et al., 2016; Petracca et al., 2017; Zöller et al.,
2017; Scarapicchia et al., 2018) because of a shift toward
suboptimal dynamics in the face of structural brain dam-
age. Similarly, increased integration between brain net-
works with older age is a robust finding in healthy adults
(Damoiseaux, 2017). Regardless, if SDBOLD reliably dif-
fers in individuals showing early signs of cognitive de-
cline from their cognitively normal counterparts, it may
prove useful in understanding the brain differences that
may precede mild cognitive impairment (MCI) and AD
diagnosis.
The present study compares relations between cogni-

tive performance and SDBOLD in ostensibly normal older
adults identified as at-risk of developing MCI and age-
matched controls. The at-risk group scored below the
threshold Montreal cognitive assessment (MoCA) score
(,26), whereas controls scored in the normal range.
Although this grouping was based solely on MoCA score,
previous investigations of this sample observed differen-
ces in other brain and behavioral domains consistent with
preclinical cognitive and neural decline (Olsen et al., 2017;
Yeung et al., 2017). We hypothesized that the at-risk
group would have greater SDBOLD than controls, based
on findings in patients with diagnosed AD (Scarapicchia
et al., 2018). We also hypothesized that the relationship
between SDBOLD and cognition would depend on group
membership and cognitive domain. Specifically, we ex-
pected SDBOLD to be positively associated with more
complex tasks, whereas less complex tasks would be
negatively associated with SDBOLD, mirroring work by
Burzynska et al. (2015). Last, as reductions in medial tem-
poral lobe (MTL) volume were previously noted in our
sample (Olsen et al., 2017; Yeung et al., 2017), we con-
ducted a post hoc analysis to determine if SDBOLD was as-
sociated with MTL volumes in those regions showing
group differences in SDBOLD identified in the present
study.

Methods
Participants
Forty community-dwelling adults were recruited from

participant databases at the Rotman Research Institute at
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Baycrest and the University of Toronto. Participants
(Table 1) were chosen from the databases such that the
at-risk group (n=20) scored below the cutoff on the
MoCA (all ,26, M=23.4, SD=1.9; M age=71.5, SD
age=6.1, M education = 15.5, SD education = 2.9, 17 fe-
male), whereas the control group (n=20) scored above
the cutoff (M=27.9, SD=1.7; M age=70.3, SD age=4.5,
M education =16.5, SD education =2.8, 13 female). There
were no group differences in age, t(38) = 1.3, p=0.20, or
years of education, t(38) = �2.2, p=0.40, but a significant
difference in MoCA score, t(38) = 7.87, p,0.001. The sam-
ple has been reported on, and described in more detail, in
previous papers (Olsen et al., 2017; Yeung et al., 2017).
No participants were removed due to head motion (abso-
lute head motion at a single time point was no greater
than 2 mm and relative head motion did not exceed 2.5
mm for all participants).

Neuropsychological battery
Participants performed a battery of neuropsychologi-

cal tests to characterize their cognitive function in a sep-
arate session before the MRI scan. The battery included
the Rey–Osterrieth complex figure test (RCFT; Osterreith,
1944), Visual Object and Space Perception Battery (VOSP;
Warrington and James, 1991), Digit Span subset of the
Wechsler Adult Intelligence Scale (WAIS; Wechsler, 1999;
Wechsler et al., 2008), Logical Memory subset of the
Wechsler Memory Scale (WMS), Ed 4 (Wechsler, 2009),
Trail Making Test A and B (Reitan and Wolfson, 1985),
and the Wechsler Abbreviated Scale of intelligence

(WASI), Ed 4 (Wechsler, 1999). Collectively, the battery
assessed intelligence, visuospatial performance, cog-
nitive control/speed, and memory (Table 2) using 14
tests.
Principal component analysis (PCA) was used (“princi-

pal” function in R) to expose the latent structure within the
battery and to reduce the dimensionality of the dataset.
Data were transformed if significantly skewed (p,0.05)
using square root, or log10 to improve the correlation
structure. If necessary, variables were inverted so that
higher scores always indicated better performance. Point
of inflection on a scree plot was used to identify the num-
ber of components to keep. After extracting this number
of factors, an oblique rotation was performed using the
“principal” function in R. Factor correlations were as-
sessed, and none exceeded 0.32 (greatest was between
PC1 and PC4, r=0.30), indicating that ,10% of the var-
iance was shared between factors. In this case, the solu-
tion is nearly orthogonal, and an orthogonal rotation is
also appropriate (Tabachnick and Fidell, 2007). As such, a
four-factor solution using a varimax rotation was per-
formed using “principal” in R. The identified factors were
largely multi-factorial and any single description would be
unsatisfactory. However, as a high-level description and
to allow identification at a glance, we loosely named the
factors as (1) visuospatial, (2) cognitive control and speed
of processing (cognitive control/speed), (3) intelligence,
and (4) memory based on the primary cognitive functions
assessed by the tasks that strongly contributed to each
(loading .|0.4|; Table 2). Factor scores for each partici-
pant represent the degree to which they express the fac-
tor; higher factor scores indicate better performance on
the tests reliably contributing to the factor. Factor scores
were used in subsequent analyses.

Imaging procedure
All neuroimaging was performed in a single session

with a 3T Siemens Trio scanner using a 12-channel head
coil. Participants received a T1-weighted, magnetization-

Table 1: Demographic characteristics

At-risk (SD) Controls (SD)
n 20 20
MoCA 23.4 (1.9), all ,26 27.9 (1.7), all .26
Age 71.5 (6.5) 70.3 (4.5)
Education 15.5 (2.9) 16.5 (2.8)
Sex 17 female 13 female

Table 2: Factor loadings for neuropsychological tests

Neuropsychological Test Subtest 1. Visuospatial
2. Cognitive
control/speed 3. Memory 4. Intelligence

RCFT Immediate recall 0.87 -0.03 0.06 0.13
Delayed recall 0.84 -0.01 0.08 0.24

VOSP Silhouettes 0.58 0.13 0 0.23
Progressive silhouettes 0.69 0.23 -0.09 0.2

WASI Block design 0.53 0.16 0.37 0.53
Trail making test (TMT) Alternating (version A) 0.46 0.54 0.11 �0.14

Sequential (version B) 0.41 0.69 0.3 0.18
WAIS Digit span forward �0.31 0.72 �0.13 0.18

Digit span backward 0.08 0.79 0.21 0.08
WMS Immediate recall �0.08 0.2 0.85 0.28

Delayed recall 0.09 0.05 0.88 �0.02
WASI Matrix reasoning 0.36 0.6 0.06 0.42

Vocabulary 0.24 0.19 0.15 0.83
Similarity 0.24 0.08 0.05 0.8

Proportion of variance accounted
for by each factor

0.24 0.18 0.15 0.13

pLoadings .|0.40| are bold to assist with factor interpretation.
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prepared, rapid acquisition with gradient echo image
(MP-RAGE) whole-brain anatomic scan (TE/TR=2.63ms/
2000ms, 160 axial slices perpendicular to the AC–PC
line, 256� 192 acquisition matrix, voxel size = 1� 1 � 1
mm, FOV=256 mm). The T1-weighted MP-RAGE scan
was used for slice placement during the acquisition of a
subsequent high-resolution T2-weighted scan in an
oblique-coronal plane, perpendicular to the hippocampal
long axis (TE/TR=68ms/3000ms, 20–28 slices depend-
ing on head size, 512� 512 acquisition matrix, voxel
size = 0.43� 0.43� 3 mm, no skip, FOV=220 mm).
The DTI duration was 9:22 (min:s). There were 68 slices

taken perpendicular to the AC–PC line with the following pa-
rameters: 34 directions, TE/TR=84ms/7900ms, FOV=242
mm, flip angle 90°, b value=1000 s/mm2, voxel size=
2.2� 2.2� 2.2mm.
Participants were instructed to keep their eyes open

and focused on a fixation cross during the resting-state
scan. It consisted of 180 BOLD-sensitive slices (6min,
180 time points, TR=2000ms, TE=30ms, flip angle =
70°, FOV=200 mm, 30 slices, 64� 64 matrix, voxel
size = 4.0� 4.0� 4.0 mm).

DTI preprocessing
Eddy current-induced distortions were corrected using

FSL’s “eddy_correct” command, and the diffusion gradi-
ent vectors rotated accordingly. The MNI152_T1_1mm
standard brain was then registered to subject T1-w space
using a nonlinear registration conducted with Advanced
Normalization Tools (ANTs). Warps produced in this step
were used to transform MNI AAL cortical masks using
ANTs’ “WarpImageMultiTransform” executable and a
nearest neighbor interpolation. FSL’s FLIRT function was
used to register subject T1-w images to DTI space.
Diffusion tensor models were fitted at each voxel by FSL’s
“dtifit”.

fMRI preprocessing
Resting-state fMRI preprocessing was done using

FMRIB’s FEAT toolbox. The following steps were per-
formed: (1) brain extraction with “bet” (Smith, 2002), (2)
motion correction with MCFLIRT (Jenkinson et al., 2002),
(2) slice timing correction, (3) spatial smoothing (6 mm),
and (4) registration to anatomic volume using FLIRT
(Jenkinson et al., 2002). Next, a bandpass filter was ap-
plied (0.01–0.1Hz). Linear and quadratic detrending was
performed, and then all functional volumes were exam-
ined for artefacts using independent component analysis
(ICA) within-run, within-person, as implemented by FSL/
MELODIC (Beckmann and Smith, 2004). Extra de-noising
using ICA was performed in light of previous research
showing group differences in SDBOLD were enhanced fol-
lowing the procedure (Garrett et al., 2010). Noise compo-
nents were identified using the following criteria, by two
independent coders: (1) spiking (components dominated
by abrupt time series spikes ;�6 SD), (2) motion (promi-
nent edge or “ringing” effects, sometimes, but not always
accompanied by large time series spikes), (3) susceptibil-
ity and flow artefacts (prominent air-tissue boundary or

sinus activation, typically represents cardio/respiratory ef-
fects), (4) white matter and/or ventricle activation, (5) low-
frequency signal drift, (6) high-power in high-frequency
ranges unlikely to represent neural activity (;�75% of
total spectral power present ;.0.13Hz), and (7) spatial
distribution [“spotty”, or “speckled” spatial pattern that
appears scattered randomly across ;�25% of the brain,
with few if any clusters of;�10 contiguous voxels (at 4 �
4 � 4 mm voxel size)]. Generally, decision criteria were
applied conservatively, so if there was difficulty classifying
a component due to “signal” and “noise” both being pres-
ent, the component was kept. Components identified as
artefacts were regressed out of their respective scan
using the “regfilt” function in FSL.

Voxelwise diffusion tensor imaging analysis
Voxelwise analysis of the fractional anisotropy and

mean diffusivity maps was conducted using tract based
spatial statistics (TBSS) with FSL’s Diffusion Toolkit
(Smith et al., 2006). Briefly, this involves ensuring all sub-
jects’ fractional anisotropy (FA) and mean diffusivity (MD)
images were in common [Montreal Neurologic Institute
(MNI)] space, using FMRIB’s nonlinear registration tool,
FNIRT. A group mean FA and MD image was created, and
thinned to produce a mean FA/MD skeleton that repre-
sents the centers of all tracts common to the group. Each
subject’s FA/MD images were then projected onto this
skeleton. Nonparametric permutation-based statistics were
used to explore differences in FA and MD between groups
using FMRIB’s randomize function with 5000 unique per-
mutations. Correction for multiple comparisons was per-
formed using the threshold-free cluster enhancement tool
in randomize with threshold p, 0.05. Group comparison
PLS could also be used to assess group differences in FA/
MD; however, we chose to stay within the FSL/TBSS
framework, which was used to generate the FA/MD maps.
To get a summary metric of overall white matter integrity,
global FA and MD were calculated for each participant.
These were simply the averages of all non-zero voxels in
the skeletonized FA andMD images.

BOLD signal variability calculation
To calculate SDBOLD, voxelwise time series were ex-

tracted from the preprocessed resting fMRI images of
each subject and normalized such that the mean across
the brain was 100. The mean was then subtracted from
each subject’s voxelwise time series, so the data were ex-
pressed as deviation from the mean. Voxelwise SDBOLD

was then calculated on these time series for each subject.
We used code adapted from a previous study (https://
github.com/stefanschmidt/vartbx/; Garrett et al., 2013a),
simplified to account for our data having only a single
condition (resting-state). To restrict our analyses to gray
matter, we masked the SDBOLD maps with the gray matter
tissue prior provided by FSL thresholded at a probability
that a given voxel is gray matter.0.43. We assessed
head motion during the fMRI resting state scan and found
our groups did not differ in mean absolute head motion,
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t(38) = �1.03, p=0.31, or in mean relative head motion,
t(38) =�0.23, p=0.82.

Manual segmentation of MTL subregions
A single rater who was blind to MoCA score/group sta-

tus performed manual segmentation of three hippocam-
pal (HC) subfields (CA1, dentate gyrus/CA2 and CA3, and
subiculum) and four MTL cortices [anterolateral entorhinal
cortex (alERC), posteromedial ERC (pmERC), perirhinal
cortex (PRC), and parahippocampal cortex (PHC)] using
the coronal slices of the T2-weighted images (in-plane
resolution: 0.43� 0.43 mm, 3 mm between slices) in
FSLview v3.1. A second rater who was also blind to
MoCA score/group status, segmented the same regions
to provide an index of inter-rater reliability. The segmenta-
tion protocol was largely similar to the Olsen–Amaral–
Palombo protocol used for previous volumetric investiga-
tions of the MTL (Olsen et al., 2009, 2013; Palombo et al.,
2013; Yushkevich et al., 2015). The volumetric analysis of
our sample has been described extensively in two previ-
ous publications (Olsen et al., 2017; Yeung et al., 2017)
and therefore is not outlined further here. The at-risk
group showed significantly lower alERC volume than the
controls and trending lower volume in the CA1 subfield
and PRC, after correction for age (Olsen et al., 2017). We
also note that neither absolute nor relative head motion
during the resting state scan correlated with any of the
seven MTL volumes, p. 0.05.

Partial least-squares analysis
Partial least-squares (PLS) analysis relates two sets of

variables, by identifying linear combinations of variables
in both sets that maximally covary together (McIntosh and
Lobaugh, 2004; McIntosh and Miši�c, 2013). In this study,
we used two group comparison PLS analyses. The first
related group membership to neuropsychological factor
score, whereas the second related voxelwise SDBOLD to
group membership. These analyses aimed to find a pat-
tern of neuropsychological factors that differed between
groups, or a pattern of brain regions where SDBOLD dif-
fered between groups. We also used behavioral PLS to
find patterns of SDBOLD that related similarly and differ-
ently across groups to several potentially related variables
(age, MoCA score, global FA/MD, and scores on our four
neuropsychological factors). We included FA and MD in
this analysis as a previous study found global FA was
strongly associated with the relationship between neuro-
psychological performance and SDBOLD in a sample of
healthy adults a similar age to ours (Burzynska et al., 2015).
As such, we had reason to believe FA/MD may scale with
SDBOLD regardless of a significant difference in white mat-
ter integrity between groups. We also used behavioral PLS
to assess associations between neuropsychological test
scores and age in each group. This analysis allowed use to
check for differential cross-sectional changes with age in
terms of cognitive performance.
For the group comparison PLS analyses, a data matrix,

X, was composed of scores on the neuropsychological
factors, or a vectorized version of the SDBOLD values for

all voxels within our whole-brain gray matter mask. These
matrices were constructed such that observations (partic-
ipants nested in groups) corresponded to rows, whereas
voxels related to columns. Within-group column means
were calculated, and the data in X were mean-centered
creating Mdev. The mean-centered data were then sub-
jected to singular value decomposition (SVD): [U, S, V] =
SVD(Mdev), such that USV’ = Mdev. The resulting latent
variables (LVs) consist of left singular vector U, right sin-
gular vector V, and the diagonal matrix S. The left singular
vector U contains the element saliences (weights) that
identify the neuropsychological factors or voxels that
make the greatest contribution to the contrast captured
by the latent variable. The right singular vector V contains
the design salience, which signifies the contribution of
each group to the pattern of neuropsychological factors,
or voxelwise SDBOLD identified by the latent variable. The
scalar singular value, from the diagonal matrix S, denotes
the covariance between the data blocks, and indicates
strength of the relationship identified by the latent
variable.
For the first behavioral PLS, the construction of the

input matrix differed from the group comparison PLS,
such that it contained the correlations between SDBOLD
and age, MoCA score, global FA/MD, and our four cog-
nitive factors for each group. For the second behavioral
PLS, the input matrix contained correlations between
age and scores on the neuropsychological tests for
each group. First, correlations were calculated between
the submatrices Xnxp (n participants by p voxels or n
participants by p variables), and Ynxb (n participants by
b related variables). The correlations were then stacked
by group, which created the input matrix subjected to
SVD. Behavioral saliences V(i) indicate the degree to
which brain–behavior relationships are expressed for
each variable in Y, whereas element saliences U(i) indi-
cate the degree to which voxels express these brain–
behavior correlations.
Permutation testing was used to determine significance

of each latent variable. Rows of the input matrix are ran-
domly reordered and the decompositions performed, as
described above. This was done 1000 times, creating a
distribution of singular values. Bootstrapping was used to
estimate the reliability of individual weights. Participants
were randomly resampled (rows in X) with replacement
while respecting group membership. The resampled mat-
rices were decomposed, as described above. This was
done 1000 times, generating a sampling distribution for
the weights in the singular vectors. SE was calculated
from this sampling distribution, reflecting the stability of
the weight. A bootstrap ratio was then calculated for each
voxel, by dividing the weight from the singular vector by
its bootstrap-estimated SE, and is akin to a z score.
Confidence intervals were calculated around design/be-
havior weights using the percentiles derived from the
sampling distribution. Brain scores from the behavioral
PLS represent the degree to which each subject ex-
presses the contrast identified by the latent variable.

Post hoc comparison of MTL volumetry andMTL
SDBOLD

A previous study of our sample found the at-risk group
had significantly reduced alERC volume relative to controls
and trending lower volume in the CA1 subfield and PRC
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(Olsen et al., 2017). To assess the relation between MTL vol-
umes and SDBOLD in these same regions, we conducted a
post hoc behavioral PLS. The PLS model compared volume
of three HC subfields (CA1, dentate gyrus/CA2 and 3, and
subiculum) and four MTL cortices (alERC, pmERC, PRC,
and PHC) with SDBOLD in these MTL regions. Specifically,
the SDBOLD data were calculated from all voxels in our
whole-brain gray matter mask that overlapped with the left/
right hippocampal and parahippocampal regions of the au-
tomated anatomical labeling (AAL) parcellation (Tzourio-
Mazoyer et al., 2002). Critically, this included all regions
quantified by volumetry. This SDBOLD data formed the first
input, Xnxp, structured n participants by p voxels. The sec-
ond input matrix, Ynxr, contained MTL volume data for each
subject, n, by and brain region, r. Input matrices Xnxp and
Ynxr were subjected to behavioral PLS, as described in the
previous section. Brain scores from this PLS represent the
degree to which each subject expresses the contrast identi-
fied by the latent variable. Similarity of brain scores from the
PLS of MTL variability and volumes and the previous behav-
ioral PLS of whole-brain variability and potentially related
variables was assessed with Pearson correlation. This
showed the degree of association between the pattern of
SDBOLD related to the behavioral variables and the pattern of
SDBOLD related to MTL volumes.

Results
No group differences on brain variables, cognitive
measures
Before probing the relations among our variables, we

checked for differences in SDBOLD, FA, and MD between
the at-risk group and controls. A group comparison PLS
revealed no significant difference in voxelwise whole-
brain gray matter SDBOLD between those at-risk for MCI
and controls (p. 0.05). Non-parametric permutation-
based testing using FSL’s “randomise” found no signifi-
cant group differences in voxelwise FA or MD (p. 0.05).
Similar to this finding with randomize, group comparison
PLS of voxelwise FA and MD showed no group differen-
ces (FA, p=0.68; MD, p=0.17).
Our PCA of the neuropsychological battery revealed

four significant factors, which we designated as follows:
(1) visuospatial, (2) cognitive control/speed, (3) memory,
and (4) intelligence (Table 2). The groups did not signifi-
cantly differ in their performance on any of the factors;
however, a group comparison PLS showed the at-risk
group trended toward lower scores on the control/speed,
memory, and intelligence factors (p=0.053). We also note
that the visuospatial factor correlated moderately with
age, r(38)=�0.36, p=0.02; Fig. 1, though the other factors
did not (p. 0.05). For group differences on the individual
neuropsychological tests please refer to Table 2 in an ear-
lier paper: Olsen et al., 2017. Briefly, the at-risk group had
significantly lower WMS recognition accuracy and WASI
matrix reasoning scores (p, 0.01), lower scores on the
WMS delayed recall, digit span backward, Trails B, VOSP
incomplete letters and number locations (p, 0.05), and
trending lower scores on the digit span forward, WASI vo-
cabulary, WASI similarity, and VOSP position

discrimination (p, 0.1). A behavioral PLS (Fig. 2) found
age was associated with scores on the VOSP silhouette,
VOSP progressive silhouette, and WASI matrix reasoning
tests in the at-risk group, but not controls.

SDBOLD correlates with demographic, brain structure,
and cognitive variables
The omnibus behavioral PLS compared the relations

between voxelwise SDBOLD and several potentially related
variables (age, MoCA score, global FA, global MD, and
scores on our 4 cognitive factors) in both groups. A single
significant latent variable was identified, p,0.001, 41.1%
covariance. This LV (Fig. 3) showed that in controls, higher
SDBOLD was related to higher scores on the cognitive con-
trol/speed and intelligence factors, whereas lower SDBOLD

was related to greater global MD and higher scores on the
visuospatial and memory factors. The voxels that most re-
liably related to this LV were located in the posterior medi-
al temporal lobes, hippocampus, visual cortex, and
striatum (Fig. 3B; Table 3). In the at-risk group, we ob-
served the same pattern as in controls of lower SDBOLD

related to higher scores on the visuospatial factor.
However, higher SDBOLD was also related to older age
and lower scores on the control/speed factor in the at-risk
group. That is, the positive relation between the cognitive
control/speed factor and SDBOLD seen in the control
group was reversed in the at-risk group. Notably, there
was no relation between age and SDBOLD in controls and
no relation between memory and intelligence and SDBOLD

in the at-risk group.

MTL SDBOLD correlates with MTL volumes
An omnibus behavioral PLS compared bilateral MTL

SDBOLD with gray matter volume of three hippocampal
subfields and four MTL cortices in both groups (Fig. 4A,
B). A single significant LV (p, 0.0001, 72.0% covariance)
showed that reduced volume was associated with greater
MTL SDBOLD, especially in the at-risk group. Specifically,
reduced volumes in the CA1, CA3/DG, PHC, and alERC
were related to higher MTL SDBOLD in the at-risk group. In
the control group, the same pattern of greater MTL
SDBOLD was associated with lower PHC volume.
Brain scores from the PLS of MTL variability and volume

were highly correlated with brain scores from the whole-
brain variability and behavioral PLS in the control (r = 0.91,
p, 0.0001) and at-risk (r=0.89, p, 0.0001) groups (Fig.
4C). This suggests the pattern of SDBOLD associated with
behavioral performance is highly correlated with the pat-
tern of SDBOLD related to MTL volumes. Brain scores from
the PLS comparing MTL variability and volumes (Fig. 4A,
B) were not correlated with memory factor scores in both
groups (at-risk: r=0.13, p=0.57; controls: r =�0.39,
p=0.09).

Discussion
We investigated the relations between BOLD signal var-

iability and cognitive performance in a group of healthy
older adults and a group of older adults at-risk for
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cognitive decline, as documented by their sub-threshold
MoCA score and reduced MTL volumes (Olsen et al.,
2017). Our study demarcated older adults into at-risk and
control groups based on MoCA score because the MoCA
has demonstrated association with cognitive perform-
ance (D’Angelo et al., 2016; Yeung et al., 2017; Ryan et
al., 2019), electrophysiological signature (Newsome et al.,
2013), MTL volume (Olsen et al., 2017), strong sensitivity
and specificity for MCI (Nasreddine et al., 2005; Markwick
et al., 2012), and prediction of future conversion to AD
(Julayanont et al., 2014). In healthy older adults greater
SDBOLD was associated with higher cognitive control/
speed and intelligence scores, but lower memory and

visuospatial scores. Notably, this effect was not as robust
in the at-risk group. The at-risk group demonstrated nei-
ther the positive correlations observed between SDBOLD,
cognitive control/speed and intelligence, nor the negative
correlation between SDBOLD and memory scores. The ef-
fect observed in controls was most robust in the MTL,
where AD pathology is known to begin (Braak and Braak,
1991; Braak et al., 1993) and where our sample of at-risk
individuals had significantly reduced volume (Olsen et al.,
2017). We found that greater SDBOLD in the MTL was cor-
related with lower parahippocampal volume in both
groups, but that this relation involved more MTL regions
in the at-risk group. Critically, we also found no group

Figure 1. The at-risk group scored lower than controls on three neuropsychological factors (cognitive control/speed, memory, and
intelligence), though the group difference did not quite reach significance. A, Violin plots showing the distribution of factor scores for
each group. B, Results from a group comparison PLS that found a marginal effect such that the at-risk group scored lower than
controls on the cognitive control, memory and intelligence factors (p=0.053). Bootstrap ratios (BSRs) are plotted and represent a lin-
ear combination of the factors weighted by how strongly they contribute to the latent variable. Negative BSRs indicate the at-risk
group had lower scores than controls on these factors. BSRs may be interpreted similar to z score (.|2.5| akin to p, 0.05), suggest-
ing again that the at-risk group’s lower scores on the control/speed, memory, and intelligence factors was approaching significance.
Error bars represent 1 SE = standard error. C, Distribution of MoCA scores in the present sample. The black dashed line indicates
the recommended MoCA cutoff score (26 points out of 30).
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difference in SDBOLD between groups. Together, our re-
sults suggest that cortical atrophy may lead to greater
brain signal variability. Moreover, these changes may ex-
plain the differential relations observed between brain

signal variability and cognitive control/speed performance
in both groups. In the following we discuss implications
for the role of SDBOLD in cognition of healthy older adults
and in those at-risk for developing MCI.

Figure 3. Multivariate PLS analysis of the relationship between SDBOLD and 8 variables (age, MoCA score, global FA and MD, and
score on 4 neuropsychological factors). In controls, SDBOLD (particularly in the MTL) was associated with higher cognitive control/
speed and intelligence scores, but lower visuospatial and memory scores. These relationships were weaker in the at-risk group. A,
The first latent variable (p, 0.001, 41.1% covariance) from the omnibus, between groups behavioral PLS assessing correlations be-
tween the 8 variables and SDBOLD. The bars represent the correlation between each variable with the pattern of SDBOLD shown in
the corresponding brain plot (B). The error bars represent 95% confidence intervals, so the error bars of variables significantly con-
tributing to the latent variable will not cross zero. B Brain plots showing the bootstrap ratios for the latent variable, which may be in-
terpreted like z scores. That is, the highlighted voxels are reliably associated with the related variables in A that significantly
contribute to the latent variable. To clearly show the spatial pattern of the respective latent variable, only voxels with bootstrap ratios
.|4| are pictured.

Figure 2. A behavioral PLS (p=0.01, 87% covariance) found age was negatively correlated with scores on the VOSP silhouette,
VOSP progressive silhouette, and WASI matrix reasoning tests in the at-risk group, but not controls. The left bar graph shows the
correlation between age and the pattern of neuropsychological tests shown on the right. The error bars represent 95% confidence
intervals. Bootstrap ratios are pictured on the right, representing a linear combination of the neuropsychological tests weighted by
how much they contribute to the latent variable. Bootstrap ratios may be interpreted like z scores, such that bootstrap ratios .|2.5|
are considered to be reliably correlated with age in the group(s) that are significantly contributing to the latent variable. Immediate
(imm), delayed (del), sillhoutte (sil), version (Ver).
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Our first analyses assessed correlations between
SDBOLD and several potentially related variables: age,
MoCA score, global FA, global MD, and scores on our
four cognitive factors. In controls, we found that greater
BOLD signal variability, particularly in posterior MTL re-
gions, was related to lower global MD, suggesting gener-
ally greater white matter integrity. In terms of cognition,
greater BOLD signal variability was related to better per-
formance on the cognitive control/speed and intelligence
factors, but poorer performance on the visuospatial and
memory factors. Our results corroborated previous work,
which found that the direction of the relationship between
SDBOLD and cognitive factors was dependent on cognitive
domain and correlated with global white matter integrity
in healthy older adults (Burzynska et al., 2015). The cogni-
tive control/speed and intelligence factors may have re-
quired greater dynamic range than visuospatial and
memory factors, driving the different relations with
SDBOLD, as first hypothesized by Burzynska et al., 2015.
The regions where we observed a correlation between

SDBOLD and cognition have been associated with various
cognitive functions. Briefly, the bilateral superior parietal
regions are primarily associated with voluntary control of
attention during perception, but may also be involved with
memory retrieval, monitoring, and verification (Cabeza et
al., 2008). The hippocampus is broadly understood to
support episodic memory (Moscovitch et al., 2016). The

thalamus relays sensory and motor signals to the cerebral
cortex and is implicated in consciousness and sleep
(Steriade and Llinás, 1988). The fusiform and inferior tem-
poral cortex are involved in the ventral visual stream and
shape processing (Haxby et al., 1991; Denys et al., 2004).
Last, the insular cortex has multiple functions including
multimodal sensory processing and binding (Bushara et
al., 2003) and a role in emotion (Phan et al., 2002). A simi-
larity among many of these regions is that they have been
identified as network hubs (van den Heuvel and Sporns,
2011). Hubs are identified as well-connected regions
through structural or functional network analyses. As was
initially proposed by Burzynska et al. (2015), we suggest
that the high connectivity of these regions may result in or
require greater neural variability, which would be reflected
by greater SDBOLD. That is, greater SDBOLD in these re-
gions might indicate more flexible network integration,
which presumably would support higher scores on the
cognitive control/speed and intelligence factors.
We report a negative association between MTL SDBOLD

and our memory factor, whereas Burzynska et al. (2015)
reported a positive relationship and other studies have
shown SDBOLD supports other types of cognitive function
(Garrett et al., 2011, 2013a). However, another recent
study found a negative association between SDBOLD and
memory scores, though this was in a sample of AD pa-
tients (Scarapicchia et al., 2018). Regardless, the

Table 3. Significant clusters representing relationship between SDBOLD and eight variables (Fig. 3)

ROI name MNI coordinates, mm; x, y, z Cluster size, voxels BSR
Left parahippocampal gyrus 27, 22, 13 789 8.13
Right thalamus 17, 26, 16 369 7.31
Left lateral occipital cortex 31, 12, 26 32 7.02
Right caudate, subcallosal cortex 21, 36, 17 30 7.28
Left temporal fusiform cortex 31, 30, 8 29 5.72
Right superior parietal lobule 15, 21, 34 28 5.89
Right superior temporal gyrus, posterior division 6, 23, 18 28 7.09
Left superior parietal lobule 29, 19, 34 25 6.53
Left occipital pole 25, 8, 20 25 5.57
Left middle frontal gyrus 33, 36, 25 19 5.7
Left superior temporal gyrus 38, 23, 18 17 5.84
Left middle temporal gyrus 38, 28, 15 16 5.08
Right insular cortex 12, 29, 17 13 4.69
Right frontal pole 14, 42, 24 12 5.72
Left postcentral gyrus 33, 24, 30 11 5.25
Right precuneus cortex 21, 11, 28 11 5.65
Right paracingulate gyrus 20, 44, 16 10 5.56
Right superior paracingulate gyrus 20, 37, 27 10 4.59
Left caudate 25, 36, 20 8 5.23
Right frontal operculum cortex 13, 38, 18 8 4.95
Right angular gyrus 6, 19, 21 7 4.87
Right insular cortex 14, 32, 20 7 5.2
Right parietal operculum cortex 11, 25, 22 7 4.51
Left postcentral gyrus 38, 27, 24 7 5.42
Left juxstapositional lobule cortex (formerly supplementary morter cortex) 22, 28, 31 7 4.75
Left precuneus cortex 23, 18, 34 7 5.13
Left precuneus cortex 27, 16, 20 6 4.82
Right frontal pole 22, 46, 25 6 5.11
Right frontal pole 10, 33, 8 5 5.06
Right lateral occipital cortex, superior division 14, 15, 28 5 5.38
Right precuneus cortex 20, 18, 31 5 5.13

Only clusters of five voxels or larger with bootstrap ratio (BSR) .|4| are included.
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discrepancy highlights the need for further study with
larger samples and standardized methodology. We also
note the possibility that differences in the neuropsycho-
logical battery and preprocessing choices may contribute
to the observed inconsistencies across the literature. The
memory factors of the present study, Scarapicchia et al.
(2018) and Burzynska et al. (2015) were composed of dif-
ferent tests, which require use of different cognitive con-
structs to varying degrees (e.g., in the use of targets that
tax verbal vs visuospatial ability). Additionally, we note
that the present study and Burzynska et al. (2015) de-
noised the fMRI data, but Scarapicchia et al. (2018) did
not, and prior work has shown the importance of remov-
ing as much unwanted noise as possible when examining
SDBOLD (Garrett et al., 2010; Grady and Garrett, 2014).

Our initial omnibus PLS found that older age, and lower
scores on the visuospatial and cognitive control/speed
factors were related to greater BOLD signal variability in
the at-risk group. The positive relationship between visuo-
spatial performance and SDBOLD was common in the at-
risk and control groups. In the at-risk group however,
SDBOLD also correlated positively with age. Earlier work
observed that SDBOLD in fMRI task-based contexts was
reduced in older age (Garrett et al., 2011, 2013b; Grady
and Garrett, 2014, 2018). However, as we observed here,
some of these studies found isolated brain regions with
increased SDBOLD during rest and task-fMRI associated
with age (Garrett et al., 2010, 2011; Nomi et al., 2017).
Most notably, Garrett et al. (2010) found age-related in-
creases in the MTL, paralleling our finding in the at-risk
group. Therefore, although this relation between SDBOLD

Figure 4. Multivariate PLS analysis of the relationship between SDBOLD and gray matter volume in the HC and MTL. In the at-risk
group, reduced volumetry in the CA1, CA3/DG, PHC, and alERC was associated with higher SDBOLD in the MTL. The effect was
less widespread in controls. A, B, The first latent variable (p, 0.0001, 72.0% covariance) from the omnibus between groups behav-
ioral PLS assessing correlations between volumetry of 7 MTL regions (3 hippocampal subfields and 4 MTL subregions) and MTL
SDBOLD. A, The bars represent the correlation between each MTL subregion with the pattern of SDBOLD shown in the corresponding
brain plot (B). The error bars represent 95% confidence intervals, so the error bars of variables significantly contributing to the latent
variable will not cross zero. B, Brain plots showing the bootstrap ratios for the latent variable, which may be interpreted like z
scores. Voxels with bootstrap ratios .|2.5| are pictured and considered to be reliably correlated with the brain volumes that are sig-
nificantly contributing to the latent variable. C, Scatter plot shows the correlation between brain scores from the PLS comparing
whole-brain SDBOLD and several predictor variables (Fig. 3) and the brain scores from the PLS comparing MTL variability and vol-
umes. The strong correlation (at-risk: r=0.89, p, 0.0001; controls: r=0.91, p, 0.0001) indicates that the pattern of SDBOLD that is
associated with behavior is highly similar to the pattern of SDBOLD associated with MTL volumes. Brain volumes: HC subfields (CA1,
dentate gyrus/CA2 and 3, and subiculum) and MTL cortices (alERC, pmERC, PRC, and PHC).
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and age was somewhat weak in the at-risk group, the ef-
fect was nevertheless consistent with prior work. The
group difference in age-SDBOLD correlation was unex-
pected, but likely reflects greater age-related variation in
the neuropsychological battery (Fig. 2) in the at-risk
group, rather than difference in SDBOLD. We advocate
multivariate techniques such as PLS and canonical corre-
lation, which can unmask rich relations between age,
other demographic variables, and brain function (Ferreira
et al., 2016; Perry et al., 2017).
Critically, we found the at-risk group did not show the

positive correlations observed in controls between intelli-
gence, cognitive control/speed, and SDBOLD. Whereas
controls showed a positive relationship between control/
speed and SDBOLD, the at-risk group showed a negative
relationship. Similarly, controls showed a positive rela-
tionship between intelligence and SDBOLD, but this rela-
tion was non-significant in the at-risk group. Additionally,
we found a negative relationship in controls between
memory performance and SDBOLD, whereas this effect
was absent in the at-risk group. Our results suggest that
alterations in the relations between cognitive performance
and SDBOLD may occur in individuals at-risk for further
cognitive decline, including MCI. Importantly, the effect
was most robust in the MTL, where AD pathology is
known to begin (Braak and Braak, 1991; Braak et al.,
1993), and where this sample of ostensibly healthy older
adults showed reduction in gray matter volume (Olsen et
al., 2017).
In both groups, lower parahippocampal volume was

associated with greater SDBOLD in MTL brain areas.
Interestingly, the effect was more widespread in the at-
risk group, where lower volume of the CA1, CA3/DG, and
alERC were also related to greater SDBOLD. Importantly, a
previous study with our sample found that reduced vol-
ume in the MTL, especially the alERC, CA1/DG, and PRC
were strongly associated with MoCA performance (Olsen
et al., 2017). Furthermore, volume in the alERC has been
linked to object processing in this sample (Yeung et al.,
2017). Together, these results suggest lower MTL volume
is likely related to greater SDBOLD in the MTLs of older
adults regardless of cognitive status; however, the rela-
tionship was more reliable in the at-risk group, possibly
because of greater variability in MTL subregion volumes.
Furthermore, the correlation between brain scores from
both PLS analyses (Figs. 3. 4), suggests a strong similarity
between the patterns of SDBOLD associated with MTL vol-
umes and behavioral performance. In fact, we found a
trend for a similar negative correlation between the brain
scores from the MTL variability and volumes PLS and the
memory factor in controls, but not the at-risk group, simi-
lar to what was observed in the SDBOLD and behavior PLS
(Fig. 4). Given the exclusively negative associations be-
tween SDBOLD and cognitive performance in the at-risk
group, greater variability may represent a failed attempt to
compensate for cortical atrophy in the MTL. In contrast,
the controls showed positive associations between
SDBOLD and the cognitive control/speed and intelligence
factors, possibly because they have better maintained
MTL volumes.

Despite finding robust group differences in the relations
between SDBOLD and our demographic and behavioral
variables across groups, we did not observe a group dif-
ference in SDBOLD. Patients with various clinical diagno-
ses including stroke (Kielar et al., 2016), multiple sclerosis
(Petracca et al., 2017), 22q11.2 deletion syndrome (Zöller
et al., 2017), and AD (Scarapicchia et al., 2018) have dem-
onstrated greater SDBOLD relative to comparison groups.
However, our sample of at-risk participants, who pre-
sented with only early warning signs of cognitive decline
that did not meet diagnostic criteria for MCI, did not show
a difference in SDBOLD. We acknowledge SDBOLD is sensi-
tive to decisions made when preprocessing the raw data
(Garrett et al., 2010; Turner et al., 2015). To this end, we
highlight the careful de-noising of our data, which we view
as an important step for analyses of SDBOLD, as it has
been shown to enhance age effects (Garrett et al., 2010)
and should function to reduce the influence of “junk”
noise. If de-noising enhances group differences then we
can have confidence in our finding of no group differences
in SDBOLD per se, as de-noising should have made it eas-
ier to such differences if they existed.
We acknowledge the cognitive factors used this study

require contribution from multiple cognitive domains. As
such, future studies should aim to pinpoint the relations
between specific cognitive functions and SDBOLD and
how these associations may change in disease. We also
recognize our small sample size (N=40) limits the gener-
alizability of our findings, and highlight the need for longi-
tudinal studies that follow the “at-risk” group. Last,
variability of resting-state SDBOLD is contentious, particu-
larly in the context of aging (Tsvetanov et al., 2015, 2019).
In this regard, we note that our study did not focus exclu-
sively on age effects and again highlight our careful de-
noising of the data, which addresses artifact from cardio-
vascular and neurovascular signal.

Conclusions
We found that a group of ostensibly healthy older adults

previously identified as at-risk (Olsen et al., 2017) showed
a different relation between SDBOLD and cognition than did
controls. In controls, SDBOLD was positively correlated with
tasks of cognitive control/speed and intelligence, but nega-
tively correlated with memory and visuospatial scores. In
contrast, these relations were weaker in the at-risk group.
Notably, the relations between SDBOLD and cognition ob-
served in controls were most robust in MTL regions, where
AD pathology first occurs (Braak and Braak, 1991; Braak et
al., 1993). In addition, we showed that both groups had a
negative relation between parahippocampal volume and
MTL SDBOLD, however, the effect was more widespread in
the at-risk group. Our findings provide evidence that brain
signal variability may increase in the face of cortical atro-
phy, leading to the differential relations observed between
brain signal variability and cognitive performance in groups
of different cognitive status.
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