Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro

eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleResearch Article: New Research, Sensory and Motor Systems

Circuit and Cellular Mechanisms Facilitate the Transformation from Dense to Sparse Coding in the Insect Olfactory System

Rinaldo Betkiewicz, Benjamin Lindner and Martin P. Nawrot
eNeuro 4 March 2020, 7 (2) ENEURO.0305-18.2020; DOI: https://doi.org/10.1523/ENEURO.0305-18.2020
Rinaldo Betkiewicz
1Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
2Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
3Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin Lindner
1Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
3Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin P. Nawrot
1Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
2Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Martin P. Nawrot
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Published eLetters

Guidelines

As a forum for professional feedback, submissions of letters are open to all. You do not need to be a subscriber. To avoid redundancy, we urge you to read other people's letters before submitting your own. Name, current appointment, place of work, and email address are required to send a letter, and will be published with your review. We also require that you declare any competing financial interests. Unprofessional submissions will not be considered or responded to.

Submit a Response to This Article
Compose eLetter

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
17 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Vertical Tabs

Jump to comment:

No eLetters have been published for this article.
Back to top

In this issue

eneuro: 7 (2)
eNeuro
Vol. 7, Issue 2
March/April 2020
  • Table of Contents
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Circuit and Cellular Mechanisms Facilitate the Transformation from Dense to Sparse Coding in the Insect Olfactory System
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Circuit and Cellular Mechanisms Facilitate the Transformation from Dense to Sparse Coding in the Insect Olfactory System
Rinaldo Betkiewicz, Benjamin Lindner, Martin P. Nawrot
eNeuro 4 March 2020, 7 (2) ENEURO.0305-18.2020; DOI: 10.1523/ENEURO.0305-18.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Circuit and Cellular Mechanisms Facilitate the Transformation from Dense to Sparse Coding in the Insect Olfactory System
Rinaldo Betkiewicz, Benjamin Lindner, Martin P. Nawrot
eNeuro 4 March 2020, 7 (2) ENEURO.0305-18.2020; DOI: 10.1523/ENEURO.0305-18.2020
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Abstract
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
    • Author Response
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • efficient coding
  • lateral inhibition
  • odor trace
  • sensory processing
  • spike frequency adaptation
  • spiking neural network

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Article: New Research

  • Characterization of the Tau Interactome in Human Brain Reveals Isoform-Dependent Interaction with 14-3-3 Family Proteins
  • The Mobility of Neurofilaments in Mature Myelinated Axons of Adult Mice
  • A Conserved Role for Stomatin Domain Genes in Olfactory Behavior
Show more Research Article: New Research

Sensory and Motor Systems

  • Different control strategies drive interlimb differences in performance and adaptation during reaching movements in novel dynamics
  • The nasal solitary chemosensory cell signaling pathway triggers mouse avoidance behavior to inhaled nebulized irritants
  • Taste-odor association learning alters the dynamics of intra-oral odor responses in the posterior piriform cortex of awake rats
Show more Sensory and Motor Systems

Subjects

  • Sensory and Motor Systems

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.