Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro

eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleNew Research, Sensory and Motor Systems

Temporary Visual Deprivation Causes Decorrelation of Spatiotemporal Population Responses in Adult Mouse Auditory Cortex

Krystyna Solarana, Ji Liu, Zac Bowen, Hey-Kyoung Lee and Patrick O. Kanold
eNeuro 19 November 2019, 6 (6) ENEURO.0269-19.2019; DOI: https://doi.org/10.1523/ENEURO.0269-19.2019
Krystyna Solarana
1Department of Biology, University of Maryland, College Park, MD 20742
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Krystyna Solarana
Ji Liu
1Department of Biology, University of Maryland, College Park, MD 20742
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ji Liu
Zac Bowen
1Department of Biology, University of Maryland, College Park, MD 20742
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zac Bowen
Hey-Kyoung Lee
2Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hey-Kyoung Lee
Patrick O. Kanold
1Department of Biology, University of Maryland, College Park, MD 20742
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patrick O. Kanold
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Published eLetters

Guidelines

As a forum for professional feedback, submissions of letters are open to all. You do not need to be a subscriber. To avoid redundancy, we urge you to read other people's letters before submitting your own. Name, current appointment, place of work, and email address are required to send a letter, and will be published with your review. We also require that you declare any competing financial interests. Unprofessional submissions will not be considered or responded to.

Submit a Response to This Article
Compose eLetter

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Vertical Tabs

Jump to comment:

No eLetters have been published for this article.
Back to top

In this issue

eneuro: 6 (6)
eNeuro
Vol. 6, Issue 6
November/December 2019
  • Table of Contents
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Temporary Visual Deprivation Causes Decorrelation of Spatiotemporal Population Responses in Adult Mouse Auditory Cortex
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Temporary Visual Deprivation Causes Decorrelation of Spatiotemporal Population Responses in Adult Mouse Auditory Cortex
Krystyna Solarana, Ji Liu, Zac Bowen, Hey-Kyoung Lee, Patrick O. Kanold
eNeuro 19 November 2019, 6 (6) ENEURO.0269-19.2019; DOI: 10.1523/ENEURO.0269-19.2019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Temporary Visual Deprivation Causes Decorrelation of Spatiotemporal Population Responses in Adult Mouse Auditory Cortex
Krystyna Solarana, Ji Liu, Zac Bowen, Hey-Kyoung Lee, Patrick O. Kanold
eNeuro 19 November 2019, 6 (6) ENEURO.0269-19.2019; DOI: 10.1523/ENEURO.0269-19.2019
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • auditory cortex
  • cross-modal
  • dark exposure
  • Plasticity
  • visual deprivation

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • Long-term effects of preterm birth on children’s brain structure: an analysis of the Adolescent Brain Cognitive Development (ABCD) Study
  • Target-distractor competition modulates saccade trajectories in space and object-space
  • Modulation of visual contrast sensitivity with tRNS across the visual system, evidence from stimulation and simulation
Show more New Research

Sensory and Motor Systems

  • The Nature and Origin of Synaptic Inputs to Vestibulospinal Neurons in the Larval Zebrafish
  • Target-distractor competition modulates saccade trajectories in space and object-space
  • Event-Related Desynchronization induced by Tactile Imagery: an EEG Study
Show more Sensory and Motor Systems

Subjects

  • Sensory and Motor Systems

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.