Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleNew Research, Cognition and Behavior

Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding

Megan L. Shipman, Gregory C. Johnson, Mark E. Bouton and John T. Green
eNeuro 11 September 2019, 6 (5) ENEURO.0125-19.2019; https://doi.org/10.1523/ENEURO.0125-19.2019
Megan L. Shipman
1Department of Psychological Science
2Neuroscience Graduate Program, University of Vermont, Burlington, VT 05405
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory C. Johnson
1Department of Psychological Science
2Neuroscience Graduate Program, University of Vermont, Burlington, VT 05405
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark E. Bouton
1Department of Psychological Science
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John T. Green
1Department of Psychological Science
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John T. Green
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Operant (instrumental) conditioning is a laboratory analog for voluntary behavior and involves learning to make a response for a reinforcing outcome. The prelimbic cortex (PL), a region of the rodent medial prefrontal cortex, and the dorsomedial striatum (DMS), have been separately established as important in the acquisition of minimally-trained operant behavior. Despite dense anatomical connections between the two regions, experimenters have only recently linked projections from the PL to the posterior DMS (pDMS) in the acquisition of an operant response. Yet, it is still unknown if these projections mediate behavioral expression, and if more anterior regions of the DMS (aDMS), which receive dense projections from the PL, are also involved. Therefore, we utilized designer receptors exclusively activated by designer drugs (DREADDs) to test whether or not projections from the PL to the aDMS influence the expression of operant behavior. Rats underwent bilateral PL-targeted infusions of either a DREADD virus (AAV8-hSyn-hM4D(Gi)-mCherry) or a control virus (AAV8-hSyn-GFP). In addition, guide cannulae were implanted bilaterally in the aDMS. Rats were tested with both clozapine-N-oxide (CNO) (DREADD ligand) and vehicle infusions into the aDMS. Animals that had received the DREADD virus, but not the control virus, showed attenuated responding when they received CNO microinfusions into the aDMS, compared to vehicle infusions. Patch clamp electrophysiology verified the inhibitory effect of CNO on DREADDs-expressing PL neurons in acute brain slices. GFP-expressing control PL neurons were unaffected by CNO. The results add to the recent literature suggesting that connections between the PL and aDMS are important for the expression of minimally-trained operant responding.

  • action
  • dorsomedial striatum
  • DREADD
  • instrumental conditioning
  • operant conditioning
  • prelimbic cortex

Footnotes

  • The authors declare no competing financial interests.

  • This work was supported by a University of Vermont College of Arts and Sciences Seed Grant Award.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Back to top

In this issue

eneuro: 6 (5)
eNeuro
Vol. 6, Issue 5
September/October 2019
  • Table of Contents
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding
Megan L. Shipman, Gregory C. Johnson, Mark E. Bouton, John T. Green
eNeuro 11 September 2019, 6 (5) ENEURO.0125-19.2019; DOI: 10.1523/ENEURO.0125-19.2019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding
Megan L. Shipman, Gregory C. Johnson, Mark E. Bouton, John T. Green
eNeuro 11 September 2019, 6 (5) ENEURO.0125-19.2019; DOI: 10.1523/ENEURO.0125-19.2019
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
    • Author Response
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • action
  • dorsomedial striatum
  • DREADD
  • instrumental conditioning
  • operant conditioning
  • prelimbic cortex

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching
  • TrkB Signaling Influences Gene Expression in Cortistatin-Expressing Interneurons
  • Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity
Show more New Research

Cognition and Behavior

  • A progressive ratio task with costly resets reveals adaptive effort-delay tradeoffs
  • Luminance matching in cognitive pupillometry is not enough: The curious case of orientation
  • Prefrontal and subcortical c-Fos mapping of reward responses across competitive and social contexts
Show more Cognition and Behavior

Subjects

  • Cognition and Behavior
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.