Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro

eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleNew Research, Sensory and Motor Systems

Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb

Annie Liu and Nathaniel N. Urban
eNeuro 25 September 2017, 4 (5) ENEURO.0129-17.2017; DOI: https://doi.org/10.1523/ENEURO.0129-17.2017
Annie Liu
1Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
2Center for the Neural Basis of Cognition, Pittsburgh, PA
4Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Annie Liu
Nathaniel N. Urban
1Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
2Center for the Neural Basis of Cognition, Pittsburgh, PA
3Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
4Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    Odor-evoked calcium responses in the MC layer. A, Odorized food exposure lasted through the entirety of gestation and the postnatal period until imaging. Virus injection into the dorsal OB was done at P12-P30. Imaging was performed two to three weeks after virus injection. B, The dorsal OB was imaged during stimulus presentation using a custom-built 2-channel olfactometer with airflow provided by an aquarium pump. C, The MC layer was imaged with manual ROI selection. Four cells are labeled, with corresponding odor-evoked responses shown in D. White scale bar: 25 µm. Black bar indicates 1-s odor stimulus.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    Response characteristics. A, Integrated ΔF/F and baseline fluorescence are not correlated. B, Peak ΔF/F and baseline fluorescence are not correlated. C, Peak and integrated ΔF/F are strongly correlated. D, Kernel density estimation (KDE) describing response distribution across all cells and odorants in control, hexanal-exposed, and mint-exposed mice (statistically significant distributions between groups). E, KDE describing response distribution across cells in control, hexanal-exposed, and mint-exposed male mice. F, KDE describing response distribution across cells in control, hexanal-exposed, and mint-exposed female mice. Gray asterisk, statistically significant difference between mint and control groups; blue asterisk, statistically significant difference between hexanal and control; red asterisk, statistically significant difference between hexanal and mint.

  • Figure 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3.

    Odor exposure increases median Peak ΔF/F of MC response to odorants at 1% concentration by volume. A, Boxplot describing distribution of peak odor-evoked ΔF/F of MC response to odorants at 1% concentration by volume. B, Median peak ΔF/F across all odorants at 1% concentration by volume. Gray asterisk, statistically significant difference between mint and control groups; blue asterisk, statistically significant difference between hexanal and control; red asterisk, statistically significant difference between hexanal and mint.

  • Figure 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4.

    Odor exposure increases median Peak ΔF/F of MC response to odorants across concentrations. Mint-exposed and hexanal-exposed MCs have higher medians of peak ΔF/F across all concentrations of MS (A), IAA (B), and hexanal (C). There were no significant differences in response distribution between concentrations for any exposure group.

  • Figure 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 5.

    Odor exposure increases number of excitatory MC responses. A--D, Ratio of above-threshold excitatory responses to all odor presentation trials across odorants. Odor-exposure groups had significantly higher ratio of excitatory responses as compared to control groups for odors at 1% concentration (A) and multiple concentrations (B--D). E, MCs in all groups responded to a high number of odorants (median number of odorants: control, 13; mint exposed, 14; hexanal exposed, 14). Gray asterisk, statistically significant difference between mint and control groups; blue asterisk, statistically significant difference between hexanal and control groups.

  • Figure 6.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 6.

    Odor exposure increases the rate of successful responses to odorant presentation. A--D, Ratio of successful trials above threshold (3 SD above baseline) to total trials of odorant presentation increases in odor-exposed groups across specific odorants at 1% concentration (A) and multiple concentrations of MS (B) and IAA (C), but not hexanal (D). E, Summed across all trials, odor-exposed groups had higher overall ratio of successful trials. Gray asterisk, statistically significant difference between mint and control groups; blue asterisk, statistically significant difference between hexanal and control; red asterisk, statistically significant difference between hexanal and mint.

  • Figure 7.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 7.

    Odor ranking changes for specific odorants following odor exposure. A, Response rank for each odor calculated on a cell-by-cell basis. Odorants at 1% concentration displayed. B--D, Response rank for multiple concentrations of MS (B), IAA (C), and hexanal (D). E, Table of significant differences in odorant ranks for each group comparison. Gray asterisk, statistically significant difference between mint and control groups; blue asterisk, statistically significant difference between hexanal and control; red asterisk, statistically significant difference between hexanal and mint.

  • Figure 8.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 8.

    MCs display acute habituation following repeated short odor pulses. A, Odor stimulus (hexanal at 1% concentration) was presented for 50 s followed by 5 min of room air, with stimulus repeated four times. MC odor-evoked response was captured before stimulus presentation, 5 min after final 50-s odor stimulus, and 30 min after final 50-s odor stimulus. B, Normalized change in odor response between prestimulus and 5-min or 30-min poststimulus. Significant decrease in odor response was observed at both time points poststimulus; * indicates statistically significant comparison.

Tables

  • Figures
    • View popup
    Table 1.

    Comparisons of excitatory response amplitude, 1% odorant concentration

    ComparisonTestp valueSignificantMedian control (C)Median mint (M)Median hexanal (H)
    Peak ΔF/F amplitudeC; N = 225M; N = 268H; N = 369
    IAA 10%
    all groups
    Kruskal--Wallis<0.0001Yes0.2160.35470.3697
    IAA 10%; C vs MDunn's<0.0001Yes0.2160.3547
    IAA 10%; C vs HDunn's<0.0001Yes0.2160.3697
    IAA 10%; H vs MDunn's0.0967No0.35470.3697
    IAA 1%; all groupsKruskal--Wallis<0.0001Yes0.20180.23890.3306
    IAA 1%; C vs MDunn's0.0745No0.20180.2389
    IAA 1%; C vs HDunn's<0.0001Yes0.20180.3306
    IAA 1%; H vs MDunn's0.0001Yes0.23890.3306
    AP all groupsKruskal--Wallis<0.0001Yes0.10810.18370.2822
    AP; C vs MDunn's<0.0001Yes0.10810.1837
    AP; C vs HDunn's<0.0001Yes0.10810.2822
    AP; H vs MDunn's<0.0001Yes0.18370.2822
    MS 10%
    all groups
    Kruskal--Wallis<0.0001Yes0.10260.19610.2566
    MS 10%; C vs MDunn's<0.0001Yes0.10260.1961
    MS 10%; C vs HDunn's<0.0001Yes0.10260.2566
    MS 10%; H vs MDunn's0.0143Yes0.19610.2566
    IAA 5%; all groupsKruskal--Wallis<0.0001Yes0.14040.23860.2973
    IAA 5%; C vs MDunn's<0.0001Yes0.14040.2386
    IAA 5%; C vs HDunn's<0.0001Yes0.14040.2973
    IAA 5%; H vs MDunn's0.0023Yes0.23860.2973
    Hexanal 1%; all groupsKruskal--Wallis<0.0001Yes0.24090.34210.4718
    Hexanal 1%; C vs MDunn's<0.0001Yes0.24090.3421
    Hexanal 1%; C vs HDunn's<0.0001Yes0.24090.4718
    Hexanal 1%; H vs MDunn's0.0001Yes0.34210.4718
    EB all groupsKruskal--Wallis<0.0001Yes0.22620.32540.3204
    EB; C vs MDunn's<0.0001Yes0.22620.3254
    EB; C vs HDunn's<0.0001Yes0.22620.3204
    EB; H vs MDunn's0.6847No0.32540.3204
    MS 1%; all groupsKruskal--Wallis<0.0001Yes0.11670.16410.1933
    MS 1%; C vs MDunn's0.0028Yes0.11670.1641
    MS 1%; C vs HDunn's<0.0001Yes0.11670.1933
    MS 1%; H vs MDunn's0.0026Yes0.16410.1933
    PA all groupsKruskal--Wallis<0.0001Yes0.07330.20040.2511
    PA; C vs MDunn's<0.0001Yes0.07330.2004
    PA; C vs HDunn's<0.0001Yes0.07330.2511
    PA; H vs MDunn's0.0244Yes0.20040.2511
    MS 5%; all groupsKruskal--Wallis<0.0001Yes0.07770.17960.2503
    MS 5%; C vs MDunn's<0.0001Yes0.07770.1796
    MS 5%; C vs HDunn's<0.0001Yes0.07770.2503
    MS 5%; H vs MDunn's<0.0001Yes0.17960.2503
    Hexanone; all groupsKruskal--Wallis<0.0001Yes0.31850.41610.421
    Hexanone; C vs MDunn's<0.0001Yes0.31850.4161
    Hexanone; C vs HDunn's<0.0001Yes0.31850.421
    Hexanone; H vs MDunn's0.8052No0.41610.421
    Hexanal 10%; all groupsKruskal--Wallis<0.0001Yes0.24380.37680.3778
    Hexanal 10%; C vs MDunn's<0.0001Yes0.24380.3768
    Hexanal 10%; C vs HDunn's<0.0001Yes0.24380.3778
    Hexanal 10%; H vs MDunn's0.9975No0.37680.3778
    THA all groupsKruskal--Wallis<0.0001Yes0.11710.21830.2415
    THA; C vs MDunn's<0.0001Yes0.11710.2183
    THA; C vs HDunn's<0.0001Yes0.11710.2415
    ThA; H vs MDunn's0.2795No0.21830.2415
    Hexanal 5%; all groupsKruskal--Wallis<0.0001Yes0.27580.35340.5212
    Hexanal 5%; C vs MDunn's0.0001Yes0.27580.3534
    Hexanal 5%; C vs HDunn's<0.0001Yes0.27580.5212
    Hexanal 5%; H vs MDunn's<0.0001Yes0.35340.5212
    • Statistical test results of excitatory response amplitudes of cells from control, mint-, and hexanal-exposed groups in response to odorants at 1% concentration. Data shown in Figure 3.

    • View popup
    Table 2.

    Comparisons of excitatory response amplitude, multiple concentrations

    ComparisonTestp valueSignificantMedian control (C)Median mint (M)Median hexanal (H)
    Peak ΔF/F amplitudeC; N = 225M; N = 268H; N = 369
    Control group
    MS all conc.Kruskal--Wallis0.0586No0.11670.07770.1026
    MS; 1% vs 5%Dunn's0.0508Yes0.11670.0777
    MS; 1% vs 10%Dunn's0.4478No0.11670.1026
    MS; 5% vs 10%Dunn's0.4695No0.07770.1026
    IAA all conc.Kruskal--Wallis<0.0001Yes0.20180.14040.216
    IAA; 1% vs 5%Dunn's0.0028Yes0.20180.1404
    IAA; 1% vs 10%Dunn's0.768No0.20180.216
    IAA; 5% vs 10%Dunn's0.0001Yes0.14040.216
    Hexanal; all conc.Kruskal--Wallis0.0214Yes0.24090.27580.2438
    Hexanal; 1% vs 5%Dunn's0.1657No0.24090.2758
    Hexanal; 1% vs 10%Dunn's0.8025No0.24090.2438
    Hexanal; 5% vs 10%Dunn's0.0206Yes0.27580.2438
    Mint group
    MS; all conc.Kruskal--Wallis0.206No0.16420.17960.1961
    MS; 1% vs 5%Dunn's0.0194Yes0.16420.1796
    MS; 1% vs 10%Dunn's0.1692No0.16420.1961
    MS; 5% vs 10%Dunn's0.7856No0.17960.1961
    IAA; all conc.Kruskal--Wallis<0.000A1Yes0.23890.23860.3547
    IAA; 1% vs 5%Dunn's0.9991No0.23890.2386
    IAA; 1% vs 10%Dunn's0.0001Yes0.23890.3547
    IAA; 5% vs 10%Dunn's0.0001Yes0.23860.3547
    Hexanal; all conc.Kruskal--Wallis0.3426No0.34210.35340.3768
    Hexanal; 1% vs 5%Dunn's0.7615No0.34210.3534
    Hexanal; 1% vs 10%Dunn's0.3775No0.34210.3768
    Hexanal; 5% vs 10%Dunn's0.9178No0.35340.3768
    Hexanal group
    MS; all conc.Kruskal--Wallis0.0184Yes0.19330.25030.2566
    MS; 1% vs 5%Dunn's0.0146Yes0.19330.2503
    MS; 1% vs 10%Dunn's0.2718No0.19330.2566
    MS; 5% vs 10%Dunn's0.5645No0.25030.2566
    IAA; all conc.Kruskal--Wallis0.0433Yes0.33060.29730.3697
    IAA; 1% vs 5%Dunn's0.8326No0.33060.2973
    IAA; 1% vs 10%Dunn's0.2488No0.33060.3697
    IAA; 5% vs 10%Dunn's0.0425Yes0.29730.3697
    Hexanal; all conc.Kruskal--Wallis<0.0001Yes0.47180.52120.3778
    Hexanal; 1% vs 5%Dunn's0.3105No0.47180.5212
    Hexanal; 1% vs 10%Dunn's0.0137Yes0.47180.3778
    Hexanal; 5% vs 10%Dunn's<0.0001Yes0.52120.3778
    • Statistical test results of excitatory response amplitudes of cells from control, mint-, and hexanal-exposed groups in response to odorants at 1%, 5%, and 10% concentration. Data shown in Figure 4.

    • View popup
    Table 3.

    Proportion of excitatory responses

    ComparisonTestp valueSignificantMedian control (C)Median mint (M)Median hexanal (H)
    Ratio of excitatory responsesC; N = 14M; N = 14H; N = 14
    All odorsANOVAp < 0.0001Yes0.880.92350.9377
    All odors; C vs MTukey'sp < 0.0001Yes0.880.9235
    All odors; C vs HTukey'sp < 0.0001Yes0.880.9377
    All odors; H vs MTukey'sp = 0.1313No0.92350.9377
    Ratio of activating
    odorants
    C; N = 225M; N = 268H; N = 369
    All groupsKruskal--Wallisp < 0.0001Yes131414
    C vs MTukey'sp < 0.0001Yes1314
    C vs HTukey'sp < 0.0001Yes1314
    H vs MTukey'sp>0.9999No1414
    • Comparisons of proportion of excitatory odor-evoked responses from control, mint-, and hexanal-exposed groups. Data shown in Figure 5.

    • View popup
    Table 4.

    Reliability of excitatory responses

    ComparisonTestp valueMedian control (C)Median mint (M)Median hexanal (H)
    Ratio of successful trialsC; N = 225M; N = 268H; N = 369
    All odors combined; all groupsKruskal--Wallis<0.0001111
    All odors combined; C vs MDunn's<0.000111
    All odors combined; C vs HDunn's<0.000111
    All odors combined; H vs MDunn's0.083611
    AP all groupsKruskal--Wallis<0.00010.7511
    AP; C vs MDunn's<0.00010.751
    AP; C vs HDunn's<0.00010.751
    AP; H vs MDunn's0.002911
    EB all groupsKruskal--Wallis0.0181111
    EB; C vs MDunn's0.015111
    EB; C vs HDunn's0.547611
    EB; H vs MDunn's0.235111
    Hexanal 1%; all groupsKruskal--Wallis0.0596111
    Hexanal 1%; C vs MDunn's0.782111
    Hexanal 1%; C vs HDunn's0.056211
    Hexanal 1%; H vs MDunn's0.646411
    Hexanone; all groupsKruskal--Wallis0.1165111
    Hexanone; C vs MDunn's0.127711
    Hexanone; C vs HDunn's0.366811
    Hexanone; H vs MDunn's>0.999911
    IAA 1% all groupsKruskal--Wallis0.0902111
    IAA 1%; C vs MDunn's0.443111
    IAA 1%; C vs HDunn's0.086711
    IAA 1%; H vs MDunn's>0.999911
    MS 1%
    all groups
    Kruskal--Wallis0.01390.7511
    MS 1%; C vs MDunn's0.06210.751
    MS 1%; C vs HDunn's0.01440.751
    MS 1%; H vs MDunn's>0.999911
    PA all groupsKruskal--Wallis<0.00010.7511
    PA; C vs MDunn's<0.00010.751
    PA; C vs HDunn's<0.00010.751
    PA; H vs MDunn's0.001911
    THA all groupsKruskal--Wallis<0.00010.7511
    THA; C vs MDunn's<0.00010.751
    THA; C vs HDunn's<0.00010.751
    THA; H vs MDunn's0.958811
    MS 5%; all groupsKruskal--Wallis<0.00010.7511
    MS 5%; C vs MDunn's<0.00010.751
    MS 5%; C vs HDunn's<0.00010.751
    MS 5%; H vs MDunn's>0.999911
    MS 10%; all groupsKruskal--Wallis<0.00010.7511
    MS 10%; C vs MDunn's<0.00010.751
    MS 10%; C vs HDunn's<0.00010.751
    MS 10%; H vs MDunn's>0.999911
    Hexanal 5%; all groupsKruskal--Wallis0.0016111
    Hexanal 5%; C vs MDunn's0.481511
    Hexanal 5%; C vs HDunn's0.001411
    Hexanal 5%; H vs MDunn's0.103111
    Hexanal 10%; all groupsKruskal--Wallis0.0001111
    Hexanal 10%; C vs MDunn's0.000111
    Hexanal 10%; C vs HDunn's0.002911
    Hexanal 10%; H vs MDunn's0.8111
    IAA 5%; all groupsKruskal--Wallis<0.0001111
    IAA 5%; C vs MDunn's0.002611
    IAA 5%; C vs HDunn's<0.000111
    IAA 5%; H vs MDunn's0.495611
    IAA 10%; all groupsKruskal--Wallis0.0007111
    IAA 10%; C vs MDunn's0.000711
    IAA 10%; C vs HDunn's0.0111
    IAA 10%; H vs MDunn's0.837411
    • Comparisons of excitatory response reliability from control, mint-, and hexanal-exposed groups. Data shown in Figure 6.

    • View popup
    Table 5.

    Comparison of odor ranks

    ComparisonTestp valueSignificantMedian control (C)Median mint (M)Median hexanal (H)
    Response rankC; N = 225M; N = 268H; N = 369
    AP all groupsKruskal--Wallis<0.0001Yes546
    AP; C vs MDunn's0.417No54
    AP; C vs HDunn's0.0002Yes56
    AP; H vs MDunn's<0.0001Yes46
    EB all groupsKruskal--Wallis0.0176Yes101011
    EB; C vs MDunn's0.2086No1010
    EB; C vs HDunn's0.0138Yes1011
    EB; H vs MDunn's>0.9999No1011
    Hexanal 1%; all groupsKruskal--Wallis<0.0001Yes101012
    Hexanal 1%; C vs MDunn's>0.9999No1010
    Hexanal 1%; C vs HDunn's<0.0001Yes1012
    Hexanal 1%; H vs MDunn's<0.0001Yes1012
    Hexanone; all groupsKruskal--Wallis<0.0001Yes131111
    Hexanone; C vs MDunn's<0.0001Yes1311
    Hexanone; C vs HDunn's<0.0001Yes1311
    Hexanone; H vs MDunn's0.0001Yes1111
    IAA 1% all groupsKruskal--Wallis<0.0001Yes967
    IAA 1%; C vs MDunn's<0.0001Yes96
    IAA 1%; C vs HDunn's0.0004Yes97
    IAA 1%; H vs MDunn's0.0065Yes67
    MS 1% all groupsKruskal--Wallis<0.0001Yes533
    MS 1%; C vs MDunn's<0.0001Yes53
    MS 1%; C vs HDunn's<0.0001Yes53
    MS 1%; H vs MDunn's0.0391Yes33
    PA all groupsKruskal--Wallis<0.0001Yes457
    PA; C vs MDunn's<0.0001Yes45
    PA; C vs HDunn's<0.0001Yes47
    PA; H vs MDunn's0.0908No57
    THA all groupsKruskal--Wallis0.0028Yes554
    THA; C vs MDunn's>0.9999No55
    THA; C vs HDunn's0.0234Yes54
    THA; H vs MDunn's0.0071Yes54
    MS 5%; all groupsKruskal--Wallis<0.0001Yes465
    MS 5%; C vs MDunn's<0.0001Yes46
    MS 5%; C vs HDunn's0.0001Yes45
    MS 5%; H vs MDunn's0.4328No65
    MS 10%; all groupsKruskal--Wallis0.0731No554
    MS 10%; C vs MDunn's>0.9999No55
    MS 10%; C vs HDunn's0.1503No54
    MS 10%; H vs MDunn's0.1864No54
    IAA 5%; all groupsKruskal--Wallis0.1561No776
    IAA 5%; C vs MDunn's0.3965No77
    IAA 5%; C vs HDunn's0.1912No76
    IAA 5%; H vs MDunn's>0.9999No76
    IAA 10%; all groupsKruskal--Wallis0.3245No1099
    IAA 10%; C vs MDunn's0.6739No109
    IAA 10%; C vs HDunn's0.4643No109
    IAA 10%; H vs MDunn's>0.9999No99
    Hexanal 5%; all groupsKruskal--Wallis<0.0001Yes121212
    Hexanal 5%; C vs MDunn's>0.9999No1212
    Hexanal 5%; C vs HDunn's0.0012Yes1212
    Hexanal 5%; H vs MDunn's<0.0001Yes1212
    Hexanal 10%; all groupsKruskal--Wallis<0.0001Yes9129
    Hexanal 10%; C vs MDunn's<0.0001Yes912
    Hexanal 10%; C vs HDunn's0.7317No99
    Hexanal 10%; H vs MDunn's<0.0001Yes129
    • Statistical test results of odor ranks between control, mint-, and hexanal-exposed groups. Data shown in Figure 7.

    • View popup
    Table 6.

    Statistical values

    Statistical valuesData structureType of testPower
    For all multiple comparisons tests, reported p is adjusted p value
    Figure 2
    Distribution of responses; all groups; p = 6.65E-199Non-normalKruskal--WallisKW statistic: 912.64
    Distribution of responses; C vs M; p approximates 0Non-normalTukey's95% CI: -1.8211 to -1.4263
    Distribution of responses; C vs H; p approximates 0Non-normalTukey's95% CI: -2.5607 to -2.1911
    Distribution of responses; H vs M; p approximates 0Non-normalTukey's95% CI: -0.9273 to -0.577
    Figure 3
    Excitation amplitude; IAA 10%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; IAA 10%; C (med: 0.216) vs M (0.3547); p < 0.0001Non-normalTukey's
    Excitation amplitude; IAA 10%; C vs H (med: 0.3697); p < 0.0001Non-normalTukey's
    Excitation amplitude; IAA 10%; H vs M; p = 0.0842Non-normalTukey's
    Excitation amplitude; IAA 1%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; IAA 1%; C (med: 0.2018) vs M (0.2389); p = 0.0656Non-normalTukey's
    Excitation amplitude; IAA 1%; C vs H (0.3306); p < 0.0001Non-normalTukey's
    Excitation amplitude; IAA 1%; H vs M; p = 0.0001Non-normalTukey's
    Excitation amplitude; AP; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; AP; C (med: 0.1081) vs M (0.1837); p < 0.0001Non-normalTukey's
    Excitation amplitude; AP; C vs H (med: 0.2822); p < 0.0001Non-normalTukey's
    Excitation amplitude; AP; H vs M; p < 0.0001Non-normalTukey's
    Excitation amplitude; MS 10%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; MS 10%; C (med: 0.1026) vs M (0.1961); p < 0.0001Non-normalTukey's
    Excitation amplitude; MS 10%; C vs H (med: 0.2566); p < 0.0001Non-normalTukey's
    Excitation amplitude; MS 10%; H vs M; p = 0.0022Non-normalTukey's
    Excitation amplitude; IAA 5%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; IAA 5%; C (med: 0.1404) vs M (0.2386); p < 0.0001Non-normalTukey's
    Excitation amplitude; IAA 5%; C vs H (med: 0.2973); p < 0.0001Non-normalTukey's
    Excitation amplitude; IAA 5%; H vs M; p = 0.0022Non-normalTukey's
    Excitation amplitude; Hexanal 1%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; Hexanal 1%; C (med: 0.2409) vs M (0.3421); p < 0.0001Non-normalTukey's
    Excitation amplitude; Hexanal 1%; C vs H (med: 0.4718); p < 0.0001Non-normalTukey's
    Excitation amplitude; Hexanal 1%; H vs M; p = 0.0001Non-normalTukey's
    Excitation amplitude; EB; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; EB; C (med: 0.2262) vs M (0.3254); p < 0.0001Non-normalTukey's
    Excitation amplitude; EB; C vs H (0.3204); p < 0.0001Non-normalTukey's
    Excitation amplitude; EB; H vs M; p = 0.5796Non-normalTukey's
    Excitation amplitude; MS 1%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; MS 1%; C (med: 0.1167) vs M (0.1641); p = 0.0027Non-normalTukey's
    Excitation amplitude; MS 1%; C vs H (med: 0.1933); p < 0.0001Non-normalTukey's
    Excitation amplitude; MS 1%; H vs M; p = 0.0224Non-normalTukey's
    Excitation amplitude; PA; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; PA; C (med: 0.0733) vs M (0.2004); p < 0.0001Non-normalTukey's
    Excitation amplitude; PA; C vs H (med: 0.2511); p < 0.0001Non-normalTukey's
    Excitation amplitude; PA; H vs M; p = 0.0224Non-normalTukey's
    Excitation amplitude; MS 5%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; MS 5%; C (med: 0.0777) vs M (0.1796); p < 0.0001Non-normalTukey's
    Excitation amplitude; MS 5%; C vs H (med: 0.2503); p < 0.0001Non-normalTukey's
    Excitation amplitude; MS 5%; H vs M; p = 0.6994Non-normalTukey's
    Excitation amplitude; Hexanone; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; Hexanone; C (med: 0.3185) vs M (0.4161); p < 0.0001Non-normalTukey's
    Excitation amplitude; Hexanone; C vs H (med: 0.421); p < 0.0001Non-normalTukey's
    Excitation amplitude; Hexanone; H vs M; p = 0.6994Non-normalTukey's
    Excitation amplitude; Hexanal 10%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; Hexanal 10%; C (med: 0.2438) vs M (0.3768); p < 0.0001Non-normalTukey's
    Excitation amplitude; Hexanal 10%; C vs H (med: 0.3778); p < 0.0001Non-normalTukey's
    Excitation amplitude; Hexanal 10%; H vs M; p = 0.9842Non-normalTukey's
    Excitation amplitude; THA; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; THA; C (med: 0.1171) vs M (0.2183); p < 0.0001Non-normalTukey's
    Excitation amplitude; THA; C vs H (med: 0.2415); p < 0.0001Non-normalTukey's
    Excitation amplitude; THA; H vs M; p = 0.2338Non-normalTukey's
    Excitation amplitude; Hexanal 5%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; Hexanal 5%; C (med: 0.2758) vs M (0.3534); p = 0.0001Non-normalTukey's
    Excitation amplitude; Hexanal 5%; C vs H (med: 0.5212); p < 0.0001Non-normalTukey's
    Excitation amplitude; Hexanal 5%; H vs M; p < 0.0001Non-normalTukey's
    Figure 4, concentration comparisonsNon-normal
    Control groupNon-normal
    Excitation amplitude; MS; all conc.; p = 0.0586Non-normalKruskal--Wallis
    Excitation amplitude; MS; 1% (med: 0.1167) vs 5% (0.0777); p = 0.0454Non-normalTukey's
    Excitation amplitude; MS; 1% vs 10% (med: 0.1026); p = 0.4478Non-normalTukey's
    Excitation amplitude; MS; 5% vs 10%; p = 0.4695Non-normalTukey's
    Excitation amplitude; IAA; all conc.; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; IAA; 1% (med: 0.2018) vs 5% (0.1404); p = 0.0027Non-normalTukey's
    Excitation amplitude; IAA; 1% vs 10% (med: 0.216); p = 0.6607Non-normalTukey's
    Excitation amplitude; IAA; 5% vs 10%; p = 0.0001Non-normalTukey's
    Excitation amplitude; hexanal; all conc.; p = 0.0214Non-normalKruskal--Wallis
    Excitation amplitude; hexanal; 1% (med: 0.2409) vs 5% (0.2758); p = 0.1412Non-normalTukey's
    Excitation amplitude; hexanal; 1% vs 10% (med: 0.2438); p = 0.6965Non-normalTukey's
    Excitation amplitude; hexanal; 5% vs 10%; p = 0.0189Non-normalTukey's
    Mint group
    Excitation amplitude; MS; all conc.; p = 0.206Non-normalKruskal--Wallis
    Excitation amplitude; MS; 1% (med: 0.1641) vs 5% (0.1796); p = 0.0179Non-normalTukey's
    Excitation amplitude; MS; 1% vs 10% (med: 0.1961); p = 0.1441Non-normalTukey's
    Excitation amplitude; MS; 5% vs 10%; p = 0.6787Non-normalTukey's
    Excitation amplitude; IAA; all conc.; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; IAA; 1% (med: 0.2389) vs 5% (0.2386); p = 0.9919Non-normalTukey's
    Excitation amplitude; IAA; 1% vs 10% (med: 0.3547); p = 0.0001Non-normalTukey's
    Excitation amplitude; IAA; 5% vs 10%; p = 0.0001Non-normalTukey's
    Excitation amplitude; hexanal; all conc.; p = 0.3426Non-normalKruskal--Wallis
    Excitation amplitude; hexanal; 1% (med: 0.3421) vs 5% (0.3534); p = 0.6541Non-normalTukey's
    Excitation amplitude; hexanal; 1% vs 10% (med: 0.3768); p = 0.3137Non-normalTukey's
    Excitation amplitude; hexanal; 5% vs 10%; p = 0.8335Non-normalTukey's
    Hexanal group
    Excitation amplitude; MS; all conc.; p = 0.0184Non-normalKruskal--Wallis
    Excitation amplitude; MS; 1% (med: 0.1933) vs 5% (0.2503); p = 0.0136Non-normalTukey's
    Excitation amplitude; MS; 1% vs 10% (med: 0.2566); p = 0.2275Non-normalTukey's
    Excitation amplitude; MS; 5% vs 10%; p = 0.4712Non-normalTukey's
    Excitation amplitude; IAA; all conc.; p = 0.0433Non-normalKruskal--Wallis
    Excitation amplitude; IAA; 1% (med: 0.3306) vs 5% (0.2973); p = 0.7292Non-normalTukey's
    Excitation amplitude; IAA; 1% vs 10% (0.3697); p = 0.2089Non-normalTukey's
    Excitation amplitude; IAA; 5% vs 10%; p = 0.0382Non-normalTukey's
    Excitation amplitude; hexanal; all conc.; p < 0.0001Non-normalKruskal--Wallis
    Excitation amplitude; hexanal; 1% (0.4718) vs 5% (0.5212); p = 0.2589Non-normalTukey's
    Excitation amplitude; hexanal; 1% vs 10% (0.3778); p = 0.0127Non-normalTukey's
    Excitation amplitude; hexanal; 5% vs 10%; p < 0.0001Non-normalTukey's
    Figure 5
    Ratio of excitatory events; all odors; p < 0.0001NormalANOVA
    Ratio of excitatory events; all odors: C (med: 0.88) vs M (0.9235); p < 0.0001NormalTukey's
    Ratio of excitatory events; all odors: C vs H (med: 0.9377); p < 0.0001NormalTukey's
    Ratio of excitatory events; all odors: H vs M; p = 0.1313NormalTukey's
    Ratio of activating odors; all groups; p < 0.0001Non-normalKruskal--Wallis
    Ratio of activating odors; C (med: 13) vs, M (14); p < 0.0001Non-normalDunn's
    Ratio of activating odors; C vs H (med: 14); p < 0.0001Non-normalDunn's
    Ratio of activating odors; H vs M; p>0.9999Non-normalDunn's
    Figure 6
    Successes; AP; all groups; p < 0.0001Non-normalKruskal--Wallis
    Successes; AP; C (med: 0.75) vs M (1); p < 0.0001Non-normalDunn's
    Successes; AP; C vs H (med: 1); p < 0.0001Non-normalDunn's
    Successes; AP; H vs M; p = 0.0029Non-normalDunn's
    Successes; EB; all groups; p = 0.0181Non-normalKruskal--Wallis
    Successes; EB; C (med: 1) vs M (1); p = 0.0151Non-normalDunn's
    Successes; EB; C vs H (1); p = 0.5476Non-normalDunn's
    Successes; EB; H vs M; p = 0.2351Non-normalDunn's
    Successes; Hexanal 1%; all groups; p = 0.0596Non-normalKruskal--Wallis
    Successes; Hexanal 1%; C (med: 1) vs M (med: 1); p = 0.7821Non-normalDunn's
    Successes; Hexanal 1%; C vs H (med: 1); p = 0.0562Non-normalDunn's
    Successes; Hexanal 1%; H vs M; p = 0.6464Non-normalDunn's
    Successes; Hexanone; all groups; p = 0.1165Non-normalKruskal--Wallis
    Successes; Hexanone; C (med: 1) vs M (1); p = 0.1277Non-normalDunn's
    Successes; Hexanone; C vs H (1); p = 0.3668Non-normalDunn's
    Successes; Hexanone; H vs M; p>0.9999Non-normalDunn's
    Successes; IAA 1%; all groups; p = 0.0902Non-normalKruskal--Wallis
    Successes; IAA 1%; C (med: 1) vs M (1); p = 0.4431Non-normalDunn's
    Successes; IAA 1%; C vs H (1); p = 0.0867Non-normalDunn's
    Successes; IAA 1%; H vs M; p > 0.9999Non-normalDunn's
    Successes; MS 1%; all groups; p = 0.0139Non-normalKruskal--Wallis
    Successes; MS 1%; C (med: 0.75) vs M (1); p = 0.0621Non-normalDunn's
    Successes; MS 1%; C vs H (1); p = 0.0144Non-normalDunn's
    Successes; MS 1%; H vs M; p > 0.9999Non-normalDunn's
    Successes; PA; all groups; p < 0.0001Non-normalKruskal--Wallis
    Successes; PA; C (med: 0.75) vs M (1); p < 0.0001Non-normalDunn's
    Successes; PA; C vs H (1); p < 0.0001Non-normalDunn's
    Successes; PA; H vs M; p = 0.0019Non-normalDunn's
    Successes; THA; all groups; p < 0.0001Non-normalKruskal--Wallis
    Successes; THA; C (med: 0.75); vs M (1); p < 0.0001Non-normalDunn's
    Successes; THA; C vs H (1); p < 0.0001Non-normalDunn's
    Successes; THA; H vs M; p = 0.9588Non-normalDunn's
    Successes; MS 5%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Successes; MS 5%; C (med: 0.75) vs M (1); p < 0.0001Non-normalDunn's
    Successes; MS 5%; C vs H (med: 1); p < 0.0001Non-normalDunn's
    Successes; MS 5%; H vs M; p > 0.9999Non-normalDunn's
    Successes; MS 10%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Successes; MS 10%; C (med: 0.75) vs M (1); p < 0.0001Non-normalDunn's
    Successes; MS 10%; C vs H (med: 1); p < 0.0001Non-normalDunn's
    Successes; MS 10%; H vs M; p > 0.9999Non-normalDunn's
    Successes; Hexanal 5%; all groups; p = 0.0016Non-normalKruskal--Wallis
    Successes; Hexanal 5%; C (med: 1) vs M (1); p = 0.4815Non-normalDunn's
    Successes; Hexanal 5%; C vs H (med: 1); p = 0.0014Non-normalDunn's
    Successes; Hexanal 5%; H vs M; p = 0.1031Non-normalDunn's
    Successes; Hexanal 10%; all groups; p = 0.0001Non-normalKruskal--Wallis
    Successes; Hexanal 10%; C (med: 1) vs M (1); p = 0.0001Non-normalDunn's
    Successes; Hexanal 10%; C vs H (med: 1); p = 0.0029Non-normalDunn's
    Successes; Hexanal 10%; H vs M; p = 0.81Non-normalDunn's
    Successes; IAA 5%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Successes; IAA 5%; C (med: 1) vs M (1); p = 0.0026Non-normalDunn's
    Successes; IAA 5%; C vs H (med: 1); p < 0.0001Non-normalDunn's
    Successes; IAA 5%; H vs M; p = 0.4956Non-normalDunn's
    Successes; IAA 10%; all groups; p = 0.0007Non-normalKruskal--Wallis
    Successes; IAA 10%; C (med: 1) vs M (1); p = 0.0007Non-normalDunn's
    Successes; IAA 10%; C vs H (med: 1); p = 0.01Non-normalDunn's
    Successes; IAA 10%; H vs M; p = 0.8374Non-normalDunn's
    Successes; All odors combined; all groups; p < 0.0001Non-normalKruskal--Wallis
    Successes; All odors combined; C (med: 1) vs M (1); p < 0.0001Non-normalDunn's
    Successes; All odors combined; C vs H (med: 1); p < 0.0001Non-normalDunn's
    Successes; All odors combined; H vs M, p = 0.0836Non-normalDunn's
    Figure 7
    Comparison of ranks; AP; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; AP; C (med: 5) vs M (4); p = 0.4176Non-normalDunn's
    Comparison of ranks; AP; C vs H (med: 6); p = 0.0002Non-normalDunn's
    Comparison of ranks; AP; H vs M; p < 0.0001Non-normalDunn's
    Comparison of ranks; EB; all groups; p = 0.0176Non-normalKruskal--Wallis
    Comparison of ranks; EB; C (med: 10) vs M (10); p = 0.2086Non-normalDunn's
    Comparison of ranks; EB; C vs H (med: 11); p = 0.0138Non-normalDunn's
    Comparison of ranks; EB; H vs M; p>0.9999Non-normalDunn's
    Comparison of ranks; Hex 1%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; Hex 1%; C (med: 10) vs M (10); p>0.9999Non-normalDunn's
    Comparison of ranks; Hex 1%; C vs H (med: 12); p < 0.0001Non-normalDunn's
    Comparison of ranks; Hex 1%; H vs M; p < 0.0001Non-normalDunn's
    Comparison of ranks; Hexanone; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; Hexanone; C (med: 13) vs M (11); p < 0.0001Non-normalDunn's
    Comparison of ranks; Hexanone; C vs H (med: 11); p < 0.0001Non-normalDunn's
    Comparison of ranks; Hexanone; H vs M; p = 0.0001Non-normalDunn's
    Comparison of ranks; IAA 1%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; IAA 1%; C (med: 9) vs M (6); p < 0.0001Non-normalDunn's
    Comparison of ranks; IAA 1%; C vs H (med: 7); p = 0.0004Non-normalDunn's
    Comparison of ranks; IAA 1%; H vs M; p = 0.0065Non-normalDunn's
    Comparison of ranks; MS 1%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; MS 1%; C (med: 5) vs M (3); p < 0.0001Non-normalDunn's
    Comparison of ranks; MS 1%; C vs H (med: 3); p < 0.0001Non-normalDunn's
    Comparison of ranks; MS 1%; H vs M; p = 0.0391Non-normalDunn's
    Comparison of ranks; PA; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; PA; C (med: 4) vs M (5); p < 0.0001Non-normalDunn's
    Comparison of ranks; PA; C vs H (med: 7); p < 0.0001Non-normalDunn's
    Comparison of ranks; PA; H vs M; p = 0.0908Non-normalDunn's
    Comparison of ranks; THA; all groups; p = 0.0028Non-normalKruskal--Wallis
    Comparison of ranks; THA; C (med: 5) vs M (5); p>0.9999Non-normalDunn's
    Comparison of ranks; THA; C vs H (med: 4); p = 0.0234Non-normalDunn's
    Comparison of ranks; THA; H vs M; p = 0.0071Non-normalDunn's
    Comparison of ranks; MS 5%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; MS 5%; C (med: 4) vs M (6); p < 0.0001Non-normalDunn's
    Comparison of ranks; MS 5%; C vs H (med: 5); p = 0.0001Non-normalDunn's
    Comparison of ranks; MS 5%; H vs M; p = 0.4328Non-normalDunn's
    Comparison of ranks; MS 10%; all groups; p = 0.0731Non-normalKruskal--Wallis
    Comparison of ranks; MS 10%; C (med: 5) vs M (5); p>0.999Non-normalDunn's
    Comparison of ranks; MS 10%; C vs H (4); p = 0.1503Non-normalDunn's
    Comparison of ranks; MS 10%; H vs M; p = 0.1864Non-normalDunn's
    Comparison of ranks; IAA 5%; all groups; p = 0.1561Non-normalKruskal--Wallis
    Comparison of ranks; IAA 5%; C (med: 7) vs M (7); p = 0.3965Non-normalDunn's
    Comparison of ranks; IAA 5%; C vs H (med: 6); p = 0.1912Non-normalDunn's
    Comparison of ranks; IAA 5%; H vs M; p>0.9999Non-normalDunn's
    Comparison of ranks; IAA 10%; all groups; p = 0.3245Non-normalKruskal--Wallis
    Comparison of ranks; IAA 10%; C (med: 10) vs M (9); p = 0.6739Non-normalDunn's
    Comparison of ranks; IAA 10%; C vs H (med: 9); p = 0.4643Non-normalDunn's
    Comparison of ranks; IAA 10%; H vs M; p > 0.999Non-normalDunn's
    Comparison of ranks; Hex 5%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; Hex 5%; C (med: 12) vs M (12); p > 0.9999Non-normalDunn's
    Comparison of ranks; Hex 5%; C vs H (med: 12); p = 0.0012Non-normalDunn's
    Comparison of ranks; Hex 5%; H vs M; p < 0.0001Non-normalDunn's
    Comparison of ranks; Hex 10%; all groups; p < 0.0001Non-normalKruskal--Wallis
    Comparison of ranks; Hex 10%; C (med: 9) vs M (12); p < 0.0001Non-normalDunn's
    Comparison of ranks; Hex 10%; C vs H (9); p = 0.7317Non-normalDunn's
    Comparison of ranks; Hex 10%; H vs M; p < 0.0001Non-normalDunn's
    Figure 8
    Habituation; all groups; p < 0.0001Non-normalFriedman TestFriedman statistic: 46.52
    Habituation; Pre vs 5 min Post; p < 0.0001Non-normalTukey's
    Habituation; Pre vs 30 min Post; p < 0.0001Non-normalTukey's
    Habituation; 5 vs 30 min Post; p > 0.9999Non-normalTukey's
Back to top

In this issue

eneuro: 4 (5)
eNeuro
Vol. 4, Issue 5
September/October 2017
  • Table of Contents
  • Index by author
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb
Annie Liu, Nathaniel N. Urban
eNeuro 25 September 2017, 4 (5) ENEURO.0129-17.2017; DOI: 10.1523/ENEURO.0129-17.2017

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb
Annie Liu, Nathaniel N. Urban
eNeuro 25 September 2017, 4 (5) ENEURO.0129-17.2017; DOI: 10.1523/ENEURO.0129-17.2017
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • mitral cells
  • olfaction
  • olfactory bulb
  • Plasticity

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • Target-distractor competition modulates saccade trajectories in space and object-space
  • Modulation of visual contrast sensitivity with tRNS across the visual system, evidence from stimulation and simulation
  • Neuronal representation of a working memory-based decision strategy in the motor and prefrontal cortico-basal ganglia loops
Show more New Research

Sensory and Motor Systems

  • Target-distractor competition modulates saccade trajectories in space and object-space
  • Modulation of visual contrast sensitivity with tRNS across the visual system, evidence from stimulation and simulation
  • Neuronal representation of a working memory-based decision strategy in the motor and prefrontal cortico-basal ganglia loops
Show more Sensory and Motor Systems

Subjects

  • Sensory and Motor Systems

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.