Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro

eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleNew Research, Sensory and Motor Systems

Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury

Yuichi Takeuchi, Hironobu Osaki, Yuki Yagasaki, Yoko Katayama and Mariko Miyata
eNeuro 23 March 2017, 4 (2) ENEURO.0345-16.2017; DOI: https://doi.org/10.1523/ENEURO.0345-16.2017
Yuichi Takeuchi
1Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yuichi Takeuchi
Hironobu Osaki
1Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hironobu Osaki
Yuki Yagasaki
1Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
2Division of Women Health Care Professionals and Researchers Support, TWMU Career Development Center for Medical Professionals, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoko Katayama
1Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mariko Miyata
1Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM. This anatomical remodeling with somatotopic reorganization was highly correlated with the rewiring of lemniscal fibers. Origins of the non-PrV2-origin lemniscal fibers in the V2 VPM included the mandibular subregion of trigeminal nuclei and the dorsal column nuclei (DCNs), which normally represent body parts other than whiskers. The transection also resulted in ectopic receptive fields of V2 VPM neurons and extraterritorial pain behavior on the uninjured mandibular region of the face. The anatomical remodeling, emergence of ectopic receptive fields, and extraterritorial pain behavior all concomitantly developed within a week and lasted more than three months after the transection. Our findings, thus, indicate a strong linkage between these plastic changes after peripheral sensory nerve injury, which may provide a neural circuit basis underlying large-scale reorganization of somatotopic representation and abnormal ectopic sensations.

  • nerve injury
  • thalamus

Footnotes

  • The authors declare no competing financial interests.

  • This study was supported by Grants-in-Aid for Scientific Research (18500316, 20021029, 22800063, 23500400, 25870757, 26290010, 09J00032, and 15K21387), Grants-in-Aid for Scientific Research on Innovative Areas (15H01667 and 16H01344), The Uehara Memorial Foundation, Aya Irisawa Memorial Promotion Award, SHISEIKAI Scholarship Fund for basic researcher of medical science, Keiko Watanabe Award, and Research grant for Support Center for Women Health Care Professionals and Researchers, Tokyo Women’s Medical University.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Back to top

In this issue

eneuro: 4 (2)
eNeuro
Vol. 4, Issue 2
March/April 2017
  • Table of Contents
  • Index by author
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury
Yuichi Takeuchi, Hironobu Osaki, Yuki Yagasaki, Yoko Katayama, Mariko Miyata
eNeuro 23 March 2017, 4 (2) ENEURO.0345-16.2017; DOI: 10.1523/ENEURO.0345-16.2017

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury
Yuichi Takeuchi, Hironobu Osaki, Yuki Yagasaki, Yoko Katayama, Mariko Miyata
eNeuro 23 March 2017, 4 (2) ENEURO.0345-16.2017; DOI: 10.1523/ENEURO.0345-16.2017
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • nerve injury
  • thalamus

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • PLCβ-mediated depletion of PIP2 and ATP-sensitive K+ channels are involved in arginine vasopressin-induced facilitation of neuronal excitability and LTP in the dentate gyrus
  • Ultrasensitive quantification of multiple estrogens in songbird blood and microdissected brain by LC-MS/MS
  • Differential Effects of the G Protein-Coupled Estrogen Receptor (GPER) on Rat Embryonic (E18) Hippocampal and Cortical Neurons
Show more New Research

Sensory and Motor Systems

  • Efferent Activity Controls Hair Cell Response to Mechanical Overstimulation
  • A behavioral receptive field for ocular following in monkeys: Spatial summation and its spatial frequency tuning
  • Optoception: Perception of Optogenetic Brain Perturbations
Show more Sensory and Motor Systems

Subjects

  • Sensory and Motor Systems

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.