Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro

eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleNew Research, Sensory and Motor Systems

Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics

Davide Raccuglia, Li Yan McCurdy, Mahmut Demir, Srinivas Gorur-Shandilya, Michael Kunst, Thierry Emonet and Michael N. Nitabach
eNeuro 25 July 2016, 3 (4) ENEURO.0080-16.2016; DOI: https://doi.org/10.1523/ENEURO.0080-16.2016
Davide Raccuglia
1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Davide Raccuglia
Li Yan McCurdy
1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
2Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Li Yan McCurdy
Mahmut Demir
3Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Srinivas Gorur-Shandilya
2Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Kunst
1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thierry Emonet
3Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
4Department of Physics, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thierry Emonet
Michael N. Nitabach
1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
5Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
6Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Published eLetters

Guidelines

As a forum for professional feedback, submissions of letters are open to all. You do not need to be a subscriber. To avoid redundancy, we urge you to read other people's letters before submitting your own. Name, current appointment, place of work, and email address are required to send a letter, and will be published with your review. We also require that you declare any competing financial interests. Unprofessional submissions will not be considered or responded to.

Submit a Response to This Article
Compose eLetter

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
13 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Vertical Tabs

Jump to comment:

No eLetters have been published for this article.
Back to top

In this issue

eneuro: 3 (4)
eNeuro
Vol. 3, Issue 4
July/August 2016
  • Table of Contents
  • Index by author
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics
Davide Raccuglia, Li Yan McCurdy, Mahmut Demir, Srinivas Gorur-Shandilya, Michael Kunst, Thierry Emonet, Michael N. Nitabach
eNeuro 25 July 2016, 3 (4) ENEURO.0080-16.2016; DOI: 10.1523/ENEURO.0080-16.2016

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics
Davide Raccuglia, Li Yan McCurdy, Mahmut Demir, Srinivas Gorur-Shandilya, Michael Kunst, Thierry Emonet, Michael N. Nitabach
eNeuro 25 July 2016, 3 (4) ENEURO.0080-16.2016; DOI: 10.1523/ENEURO.0080-16.2016
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Abstract
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
    • Synthesis
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

New Research

  • Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) of the Bed Nucleus of the Stria Terminalis Mediates Heavy Alcohol Drinking in Mice
  • Internet-connected cortical organoids for project-based stem cell and neuroscience education
  • Modeling synaptic integration of bursty and beta oscillatory inputs in ventromedial motor thalamic neurons in normal and parkinsonian states
Show more New Research

Sensory and Motor Systems

  • Origin of Discrete and Continuous Dark Noise in Rod Photoreceptors
  • Putting a Pause on Pain: Chemogenetic Silencing of NaV1.8-Positive Sensory Neurons
  • A Somatosensory Computation That Unifies Limbs and Tools
Show more Sensory and Motor Systems

Subjects

  • Sensory and Motor Systems

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.