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Abstract
Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether
a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions
regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether
a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-
grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences
as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual
differences, this manipulation did not affect the efficiency of how auditory information was integrated over time
to form a decision. Instead, the grouping manipulation affected subjects’ speed�accuracy trade-offs. These
results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be
invariant to manipulations that affect the perceptual grouping of the evidence.
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Introduction
Auditory perception depends on both perceptual group-
ing and decision-making. Perceptual grouping is a form of

feature-based stimulus segmentation that determines
whether acoustic events are grouped into a single sound
or segregated into distinct sounds (Bregman, 1990). Au-
ditory decision-making involves the brain’s interpretation
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Significance Statement

Auditory perception depends on perceptual grouping cues, which relate to how the brain parses the
auditory scene into distinct perceptual units, and auditory decisions, which relate to how the brain identifies
a sound. These two processes are not independent; both rely on the temporal structure of the acoustic
stimulus. However, the effects of this temporal structure on perceptual grouping and decision-making are
not known. Here, we combined psychophysical testing with computational modeling to test the interaction
of temporal perceptual grouping cues with the temporal processes that underlie perceptual decision-
making. We found that temporal grouping cues do not affect the efficiency by which sensory evidence is
accumulated to form a decision. Instead, the grouping cues modulate a subject’s speed�accuracy
trade-off.
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of information within and across discrete stimuli to detect,
discriminate, or identify their source or content.

Auditory perceptual grouping and decision-making
each depend critically on the temporal structure of incom-
ing acoustic events. For instance, when a person is walk-
ing, each step is a unique acoustic event, but our auditory
system groups these events together to form a stream of
footsteps. However, if the time between events is long,
the auditory system segregates these events into unique,
discrete sounds. Decision-making can also depend on the
temporal structure of a sound because decision-making is
a deliberative process in which listeners often accumulate
and interpret auditory information over time to form cat-
egorical judgments (Green et al., 2010; Brunton et al.,
2013; Mulder et al., 2013).

Although we know that perceptual grouping can affect
some forms of decision-making (Bey and McAdams,
2002; Roberts et al., 2002; Micheyl and Oxenham, 2010;
Borchert et al., 2011; Thompson et al., 2011), the interplay
between the temporal properties of an auditory stimulus,
perceptual grouping, and decision-making is not known.
We cannot infer this interplay from visual studies because
analogous manipulations in the visual domain (Kiani et al.,
2013) do not relate directly to auditory perceptual group-
ing. Further, because temporal processing is fundamen-
tally different for audition than for vision (Bregman, 1990;
Griffiths and Warren, 2004; Shinn-Cunningham, 2008;
Shamma et al., 2011; Bizley and Cohen, 2013), it is rea-
sonable to hypothesize that this interplay may be different
in these two sensory systems. Thus, it remains an open
and fundamental question whether and how grouping
temporal information interacts with auditory grouping and
decision-making.

To examine this question, we measured the perfor-
mance of human subjects who participated in a series of
auditory tasks in which they reported whether a sequence
of tone bursts was increasing or decreasing in frequency.
Temporal information was manipulated by changing the
interval between the onsets of consecutive tone bursts.
This manipulation affected the subjects’ perceptual
grouping of the tone-burst sequence: they heard one
sound when the interval was short but a series of discrete
sounds when it was long. The quality of the sensory
evidence was manipulated by changing the proportion of
tone bursts that linearly increased or decreased in fre-
quency. We found that subjects accumulated sensory
evidence over time to form their decisions. However, the
time interval between consecutive tone bursts did not
affect how this incoming stimulus was accumulated to
form the decision about the change in frequency. Instead,
the time between the tone bursts affected how the sub-
jects balanced the speed and accuracy of their decisions,

which fundamentally trade-off for certain decisions like
this one that require incoming, noisy information to be
accumulated over time (Gold and Shadlen, 2007; Bogacz
et al., 2010). Specifically, for our task, longer time intervals
between tone bursts (i.e., slower rates of incoming sen-
sory information) led to a higher premium on speed at the
expense of accuracy. Overall, these findings indicate that
temporal manipulations that affect the perceptual group-
ing of sounds do not necessarily affect how information
from those sounds are accumulated over time to form a
decision, even when the temporal manipulations have
clear effects on the trade-off between the speed and
accuracy of the decision.

Materials and Methods
Prior to their participation, subjects provided informed

consent. Human subjects were recruited at the University
of Pennsylvania. All subjects (age range: 25-48 years)
reported normal hearing; three of the subjects were au-
thors on the study.

Experimental setup
All experimental sessions took place in a single-walled

acoustic chamber (Industrial Acoustics) that was lined
with echo-absorbing foam. Each subject was seated with
his or her chin in a chin rest that was approximately 2 ft
from a calibrated Yamaha (model MSP7) speaker. Audi-
tory stimuli were generated using the RX6 digital-signal-
processing platform (TDT Inc.). The task structure was
controlled through the Snow Dots toolbox (http://
code.google.com/p/snow-dots) that ran in the Matlab
(Mathworks) programming environment. Subjects indi-
cated their responses by pressing a button on a gamepad
(Microsoft Sidewinder). Tasks instructions and feedback
were presented on a LCD flat-panel monitor (Dell E171FP)
that was placed above the speaker.

Auditory stimuli
The auditory stimulus was a sequence of tone bursts

(duration: 30 ms with a 5 ms cos2 gate; level: 65 dB SPL).
The interburst interval (IBI) was the time between the
offset of one tone burst and the onset of the next tone
burst (range: 10-150 ms).

At the beginning of each trial, the frequency of a se-
quence’s first tone burst was randomly sampled from a
uniform distribution (500-3500 Hz). Next, we generated a
monotonically increasing or decreasing sequence by add-
ing or subtracting a 7.5 Hz to the previous tone-burst
frequency. Finally, on a trial-by-trial basis, we perturbed
the temporal order of the tone bursts. This perturbation
changed the quality of the sensory evidence. In particular,
for each trial, we defined a sequence’s coherence, which
was the proportion of tone bursts in a sequence whose
frequency value changed by a fixed increment relative to
the previous tone burst. If the coherence was 100%, all of
the tone bursts monotonically increased or decreased.
If the coherence was �100%, the temporal order of a
subset of tone bursts was randomly shuffled. For exam-
ple, if the coherence was 50%, half of the tone bursts
were shuffled. If the coherence was 0%, all of the tone
bursts in the sequence were shuffled.
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This stimulus design ensured that the frequency range
of the sequences overlapped and that, on average, each
sequence contained the same frequency values (but in a
different temporal order). This procedure also minimized
the possibility that subjects based their decisions on the
specific frequency content of a sequence rather than its
sequence direction.

Overall, each tone-burst sequence could be character-
ized by three parameters (Fig. 1): (1) direction, which
indicated whether a sequence of tone bursts increased or
decreased in frequency; (2) IBI; and (3) coherence. The
values of each of these three parameters were determined
on a trial-by-trial basis depending on the constraints of
each auditory task; see Behavioral tasks, below.

Behavioral tasks
Subjects participated in three versions of the discrimina-
tion task. For all three versions, subjects reported the
direction (increasing or decreasing) of the tone-burst se-
quence and received visual feedback, via the LCD moni-
tor, regarding their report on every trial. The time between
trials was �2 s and was independent of the subjects’
report.

Response-time task
For this task, subjects reported their perceptual decision
at any time following sequence onset (Fig. 2A). They were
instructed to respond as quickly as possible but not to
sacrifice accuracy. We tested six subjects (5 male and 1
female) in four weekly 1.5 h sessions. Each session con-
tained four blocks of trials; a short break was provided
between blocks. In each block, we varied sequence di-
rection (increasing or decreasing), IBI (10, 60, or 150 ms),
and coherence (0, 10, 25, 50, or 100%) on a trial-by-trial
basis. Each combination of these sequence parameters
was presented five times within a block for a total of 150
trials/block. The maximum response-time (RT) (and,
hence, maximum sequence duration) was 5000 ms; a trial
was aborted if a subject did not respond by the end of the
sequence. The stimulus was terminated as soon as the
subject reported the decision.

Four subjects participated in additional sessions (four
blocks of trials in each of four sessions per subject) of the

RT task to test for effects of changes in the speed�ac-
curacy trade-off. For these sessions, the IBI was held
constant at 60 ms and subjects were instructed to “em-
phasize speed” or “emphasize accuracy” in alternating
blocks. Stimulus tone-sequence direction (increasing or

Figure 1 Example auditory sequences characterized in terms of coherence and different interburst intervals. A, Frequency direction
(i.e., increasing) is easiest to discriminate when the stimulus is 100% coherent. As coherence gets smaller (60% in B and 0% in C),
frequency direction becomes more ambiguous and, thus, can lead to more errors. In A�C, we show increasing auditory sequences.
Decreasing sequences are analogous but with negative coherence values. D shows a 100% coherence auditory sequence at three
different IBIs: 10 ms (red), 60 ms (green), and 150 ms (blue).

Figure 2 Task design. A, For the RT task, subjects indicated their
choice (i.e., sequence direction) any time after onset of the
sequence. B, For the variable-duration task, subjects indicated
their choice after sequence offset. C, For the hybrid task, sub-
jects indicated sequence direction and whether they heard the
sequence as one sound or discrete sounds after sequence offset
in separate response periods. For all three tasks, subjects were
provided feedback regarding frequency direction at the end of
each trial (not shown).
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decreasing) and coherence (0, 10, 25, 50, or 100%) were
varied on a trial-by-trial basis.

Variable-duration task
For this task, the experimenter controlled listening dura-
tion: subjects reported their direction decision following
offset of the auditory sequence (Fig. 2B). Five of the six
subjects tested in the RT task (4 male and 1 female) also
participated in six weekly 1.5 h sessions of the variable-
duration task. On each trial, we chose the duration of the
sequence by sampling from a truncated exponential dis-
tribution (rate parameter � 2000 ms for all IBIs); choosing
the sequence duration from this distribution minimized the
possibility that subjects could anticipate the end of the
sequence (Gold and Shadlen, 2003). The upper- and
lower-stimulus durations were a function of IBI: for IBI �
10 ms, min � 160, max � 1400 ms; for IBI � 60 ms, min �
360, max � 3150 ms; and for IBI � 150 ms, min � 720,
max � 6300 ms. These limits were chosen so that each
sequence, independent of IBI, contained 4-35 tone
bursts. At the end of each sequence, a response cue was
flashed on the LCD monitor and subjects had 800 ms to
respond. Each session contained four blocks of trials; a
short break was provided between blocks. In each block,
we varied sequence direction (increasing or decreasing),
IBI (10, 60, or 150 ms), and coherence (0, 10, 25, 50, or
100%) on a trial-by-trial basis. Each combination of these
sequence parameters was presented five times within a
block, for a total of 150 trials per block.

Hybrid task
For this task, subjects participated in a version of the
variable-duration task that also required them to report,
on each trial, whether they heard the sequence as one
sound or as a series of discrete sounds (Fig. 2C). Four of
the six subjects tested in the RT task plus one new
subject (3 male and 2 female) participated in four weekly
1.25 h sessions of the hybrid task. Sequence duration was
sampled from a truncated exponential distribution and the
limits of the stimulus durations were set to ensure that
each sequence had 4-35 tone bursts. Subjects reported
their two decisions during two separate 800 ms response
periods. Prior to each sequence’s onset, a colored cue,
which was presented on the LCD monitor, indicated the
temporal order in which subjects were to report their
decisions; this order alternated on a block-by-block basis.

For this task, we set both IBI and coherence to values
that were centered on each subject’s psychophysical
threshold. IBI threshold was the IBI value rated as one
sound 50% of the time. Because the subjects’ 50%-IBI
threshold varied on a day-by-day basis, we measured this
threshold daily, prior to their participation in the hybrid
task. IBI threshold was measured using a one-up/one-
down adaptive procedure (Treutwein, 1995; García-Pérez,
1998). The sequence always had 16 tone bursts and used
a 50% coherence stimulus.

Coherence threshold was defined to be 70.7% correct
performance, which corresponds to a d= of 0.77. Because
preliminary experiments indicated that coherence thresh-
old was constant across experimental sessions, it was
measured once for each subject. Coherence threshold

was calculated using a two-up/one-down adaptive pro-
cedure (Treutwein, 1995; García-Pérez, 1998). During this
procedure, the sequence’s IBI was set to the IBI thresh-
old.

For the hybrid task, each session contained four blocks
of trials; a short break was provided between blocks. We
varied IBI, on a trial-by-trial basis, between three different
values: (1) IBI threshold minus 15 ms (20 trials per block),
(2) IBI threshold (80 trials per block), and (3) IBI threshold
plus 15 ms (20 trials per block). Coherence was set to
each subject’s coherence threshold.

Fitting of behavioral data to sequential-sampling
models
Behavioral data were fit to variants of sequential-sampling
models related to the drift diffusion model (DDM) (Ratcliff
et al., 2004; Smith and Ratcliff, 2004; Gold and Shadlen,
2007; Green et al., 2010; Brunton et al., 2013; Mulder
et al., 2013) to quantify the effects of sequence coherence
and IBI on the decision-making process. These models
describe the process of converting incoming sensory ev-
idence, which is represented in the brain as the noisy
spiking activity of populations of relevant sensory neu-
rons, into a decision variable that can guide behavior.

RT task
For the RT task, a key benefit of these sequential-
sampling models is that they make quantitative predic-
tions about both choice and RT as a function of the
coherence of the auditory sequence. In other words,
these models simultaneously fit: (1) the psychometric
function, which describes accuracy versus sequence co-
herence; and (2) the chronometric function, which de-
scribes RT versus sequence coherence. We used several
model variants.

Model variant #1
The first variant was a standard, symmetric DDM in which
a perceptual decision is based on an accumulation over
time of noisy evidence to a fixed bound, a process that is
mathematically equivalent to the one-dimensional move-
ment of a particle undergoing Brownian motion to a
boundary (Ratcliff et al., 1999; Gold and Shadlen, 2002;
Shadlen et al., 2006; Eckhoff et al., 2008; Green et al.,
2010; Ding and Gold, 2012; Brunton et al., 2013; Mulder
et al., 2013). In brief, this version had seven free param-
eters: one drift rate (k) per IBI; one symmetric bound for
either increasing or decreasing (�A or �A; i.e., the height
of the bound was the same for both choices but with an
opposite sign) choices per IBI; and a single non-decision
time (TND) that accounts for sensory-processing and
motor-preparation time. Drift rate governs sensitivity and
is implemented in terms of the moment-by-moment sen-
sory evidence, which has a Gaussian distribution N(�,1)
with a mean � that scales with sequence coherence (C):
� � kC. The decision variable is the temporal accumula-
tion of this momentary sensory evidence. A decision (i.e.,
the subject reports that the sequence is increasing or
decreasing) occurs when this decision variable reaches a
decision bound (�A or �A, respectively). The decision
time is operationally defined as the time between
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auditory-sequence onset and the cross of either bound.
RT is the sum of the decision time and the associated
non-decision time. The probability that the decision vari-

able first crosses the �A bound is
e2�A � 1

e2�A � e�2�A
. The mean

decision time is
2A
�

coth�2�A� �
A
�

coth��A� for increasing

choices and
2A
�

coth�2�A� �
A
�

coth��A� for decreasing
choices.

Model variant #2
The second variant was a leaky accumulator, in the form
of a stable Ornstein�Uhlenbeck process (Busemeyer and
Townsend, 1993; Bogacz et al., 2006), in which positive
values of the leak term imply that a given decision is
influenced most strongly by the most recent samples of
sensory evidence. Because these processes do not have
simple, exact analytic solutions for both the psychometric
and chronometric functions, we conducted simulations to
fit the data. For each fit, we simulated 40,000 trials per
iteration, with the decision variable computed in 1 ms
steps.

Model variant #3
The final variant was an accumulate-to-bound model with
non-leaky drift and bounds that can collapse (decrease
towards zero) as a function of time within a trial (Ditterich,
2006b; Drugowitsch et al., 2012; Thura et al., 2012; Hawk-
ins et al., 2015). The dynamics of the collapsing process
were governed by a two-parameter Weibull function
(Hawkins et al., 2015). These fits were also obtained using
simulations like the leaky-accumulator model, above.

All model fits were computed by first using a pattern-
search algorithm to find suitable initial conditions (“pat-
ternsearch” in the Matlab programming environment) and
then a gradient descent to find the best-fitting parameters
(“fmincon” in Matlab) that minimized the negative log-
likelihood of the data, given the model fits (Palmer et al.,
2005). The likelihood function for subjects’ choices was
modeled as binomial errors and the mean response times
were modeled as Gaussian errors.

Variable-duration and hybrid tasks
For these tasks, the experimenter, not the subject, con-
trolled listening duration. Therefore, we used models that
had a different stopping rule than those used for the RT
tasks. Specifically, these models assumed that the decision
was made based on the sign of the accumulated evidence at
the end of the stimulus presentation. These models included
two basic parameters: (1) a coherence-scaling term (k),
which governed the relationship between sequence coher-
ence and the strength of the evidence to accumulate; and (2)
accumulation leak (�), which governed the efficiency of the
accumulation process. We computed the probability (p) of a
correct response as a function of sequence coherence (C)
and listening duration (D) as: p�C, D� � 0.5 � �1 � �1 �

L� � ��� kC�2�e�D � 1� / ��e�D � 1���, where � is the normal
standard cumulative distribution function. The lapse rate (L)
was set to a small value (0.01) to provide better fits (Klein,
2001; Wichmann and Hill, 2001). The models were fit using
Matlab’s “fmincon” function to minimize the log-likelihood of

the data, given the parameters, and assuming binomial er-
rors.

Fitting of RT task data to the LATER model
RT distributions from the RT task were also analyzed
using the LATER (Linear Approach to Threshold in Ergodic
Rate) model. This model assumes that RT distributions
are distributed as an inverse Gaussian because they re-
sult from a process with a linear rate of rise, which are
distributed across trials as a Gaussian, that trigger a
movement when reaching a fixed threshold (Carpenter
and Williams, 1995; Reddi et al., 2003). We used
maximum-likelihood methods to fit RT distributions to a
model with two free parameters that represented the
mean rate-of-rise and the threshold. We tested if and how
each parameter varied with IBI for each subject, direction,
and stimulus coherence.

Calculating psychophysical kernels from the RT data
Finally, we calculated the subjects’ psychophysical ker-
nels from the RT task to further support the idea that the
subjects were using a process akin to bounded accumu-
lation. The kernels were computed directly from the data
by taking, from each 0% coherence trial, the mean-
subtracted stimulus sequence and then computing the
mean (and standard error) value of these time-dependent
sequences separately for trials leading to increasing or
decreasing choices. We fit these kernels to a model that
sorted the 0%-coherence trials into two categories based
on the sign of the slope of a linear regression of frequency
versus burst number. We used a grid search to find the
values of two parameters—one governing the number of
tone bursts from stimulus onset that is used to compute
the linear regression and a second that scales the
stimulus-frequency values used to compute the kernel—
that maximized the likelihood of obtaining the IBI-specific
kernels measured from the data given the model.

Results
We used human psychophysics to test if and how the time
course of evidence accumulation for an auditory-
discrimination task was affected by a temporal manipula-
tion that modified the perceptual grouping of the sensory
evidence. The task required subjects to report whether
the frequency direction of a tone-burst sequence was
increasing or decreasing (Fig. 1A). Task difficulty was
manipulated by controlling the coherence of the se-
quence, which corresponded to the fraction of tone bursts
whose frequencies increased or decreased systematically
(Fig. 1A�C).

The temporal manipulation was a change in the IBI of
the stimulus sequence, which affected perceptual group-
ing. For short IBIs (��30 ms), subjects tended to report
that the sequence was one sound. For medium IBIs (�30-
100 ms), subjects alternated trial-by-trial between reports
that the sequence was one sound or a series of discrete
sounds. For long IBIs (��100 ms), subjects reliably re-
ported that the sequence was a series of discrete sounds
(Fig. 3). To test how this grouping manipulation affected
the temporal dynamics of the perceptual decision (i.e., the
frequency direction of the tone-burst sequence), we used
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three versions of a discrimination task: an RT task in
which subjects controlled listening duration; a variable-
duration task in which the experimenter controlled listen-
ing duration; and a hybrid task that combined the
variable-duration task with an explicit grouping judgment
about whether the sound was one sound or a series of
discrete sounds. Results from each task are presented
below.

Response time task
Both accuracy and RT depended systematically on co-
herence and IBI. Figure 4 summarizes the behavioral per-

formance of all six subjects. Choices tended to be more
accurate and faster when stimulus coherence was high
than when it was low.

Subjects’ choices were clearly based on the direction of
frequency change and not simply the absolute frequency
value of the sequence. Specifically, when we analyzed
behavior relative to the beginning, mean, and ending fre-
quency value of the sequence, performance was near
chance: the median (full range) percent correct of all six
subjects’ choices, when collapsed across coherences
and IBIs, was 56.9% (55.3-58.0), 50.6% (50.2-51.9), and
55.4% (54.6-56.6), respectively.

We also found that the relationships between choice,
RT, and coherence were modulated by IBI. Longer IBIs
led to shallower psychometric functions (i.e., lower sen-
sitivity; Fig. 4A) and longer RTs (Fig. 4B). When we
considered the portion of the RT that only included pre-
sentation of the tone bursts and not the silent periods by
subtracting out the cumulative IBIs (which we refer to as
“signal RT” and which treats the cumulative IBIs, like
sensory and motor processing, as part of the non-
decision time on a given trial), the effects of IBI on RT were
reversed: the longest signal RTs corresponded to the
shortest IBIs (Fig. 4C).

We quantified the effects of coherence and IBI on the
time-dependent decision process by fitting the choice
and RT data for each subject and from pooled data across
subjects to several variants of models that are related to
the DDM. All of the models had the same basic form. They
assumed that the decision was based on the temporal
accumulation of noisy evidence until reaching one of two
prespecified boundaries. The signal-to-noise ratio of this
decision variable was governed by a drift rate, which was
proportional to stimulus coherence and, in some cases,
was also subject to leaky accumulation (Busemeyer and
Townsend, 1993; Usher and McClelland, 2001; Tsetsos
et al., 2012). Choice was governed by the identity of the
reached boundary, which, in some cases, could change
as a function of time within a trial to reflect an increasing

Figure 3 Influence of IBI on reports of perceived grouping.
Subjects reported whether they perceived the stimulus as one
sound or discrete sounds. The graph shows proportion of trials
in which each subject chose one sound as a function of IBI. The
points indicate each subject’s performance. Each curve repre-
sents a logistic function that was fit to each subject’s reports
across four sessions. The gray line indicates 50% of trials re-
ported as “one sound”, which was IBI threshold. Colors repre-
sent different subjects.
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urgency to respond (Ditterich, 2006b; Drugowitsch et al.,
2012; Thura et al., 2012; Hawkins et al., 2015). RT was
governed by the time to reach the boundary plus extra
non-decision time. The height of the boundary governed
the trade-off between speed and accuracy: higher bound-
aries provided longer decision times and higher accuracy,
whereas lower boundaries increased speed at the ex-
pense of accuracy (Gold and Shadlen, 2007). Because
performance tended to be symmetric for the two choices
[across all subjects and IBIs and using balanced stimulus
presentations, the median (interquartile range) absolute
value of the difference in the fraction of increasing vs
decreasing choices was only 0.001 (0.000–0.004)], we
used an unbiased model with seven parameters: one
non-decision time, three parameters representing drift
rate per each of the three IBI conditions, and three pa-
rameters representing the bound height per IBI.

Fits of this model to choice data and either raw or signal
RTs were consistent with a decision variable that was
based on the signal portion of the stimulus sequence but
not the time between bursts (the IBI). Drift rate has units of
change of standardized evidence per unit time. Therefore,
converting from raw to signal RT affects the (linear) scal-
ing of this value, which is governed by the duty cycle
associated with the given IBI: b/(IBI � b), where b is burst
duration of 30 ms. Accordingly, best-fitting values of the
DDM parameters that were fit to choices and raw RT were
scaled versions of those fit to choices and signal RTs, with
the scale factors approximately equal to the IBI-specific
duty cycles [slopes of linear regressions of subject-
specific signal vs raw drift rates � 0.80 (duty cycle �
0.75), 0.43 (0.33), and 0.23 (0.17) for IBI � 10, 60, and 150
ms, respectively]. Furthermore, best-fitting signal drift
rates that were rescaled and expressed in units of the
change in evidence per unit of raw time (i.e., multiplied by
the duty cycle) were strongly correlated with the associ-
ated, best-fitting raw drift rates across IBIs and subjects
(r � 0.98, p � 0.01a; Table 1). These results imply that the
IBI manipulation affected only the duty-cycle-dependent

scaling of drift rates. Therefore, we used signal RTs for the
model fits, which corresponded to drift rates that had the
same temporal scaling and thus could be compared di-
rectly across IBI conditions.

We found that the effects of IBI on choice and signal RT
primarily reflected changes in the decision boundary but
not the drift rate (Fig. 5). The height of a symmetric, fixed
decision boundary (i.e., the same height for both increas-
ing and decreasing choices) declined systematically with
increasing IBI for all six subjects and for data combined
across subjects (likelihood-ratio test comparing a seven-
parameter model with separate values of drift rate and
bound height per IBI plus a non-decision time to a five-
parameter model with a single value of drift rate shared
across IBIs, p � 0.001b in all cases; Bonferroni-corrected
for three parameters; Fig. 5A). In contrast, drift rate de-
pended on IBI for only one of the six subjects (p � 0.01c;
Bonferroni-corrected for three parameters) and not for the
other subjects or combined data (Fig. 5B). These model
fits were not improved by adding to the model either leaky
accumulation (likelihood-ratio test, p � 0.24d across sub-
jects and for all data combined) or collapsing bounds
(likelihood-ratio test, p � 0.1e for five of the six subjects
and for all data combined). There also was little evidence
for slow errors that can be expected in models with
collapsing bounds, with only eight of 216 conditions sep-
arated by subject/coherence/IBI showing such an effect
(Mann�Whitney test comparing median correct vs error
RTs, p � 0.01; Ditterich, 2006a)f. Likewise, there was little
evidence for fast errors that can be expected in models
with variable bounds, with only three conditions showing
such an effect (Ratcliff and Rouder, 1998). Thus, changes
in IBI, which affected perceptual grouping and the rate of
arrival of decision-relevant signals, caused systematic,
robust changes in the speed�accuracy trade-off gov-
erned by a fixed, time-independent bound. In contrast,
the changes in IBI did not cause systematic changes in
the efficiency with which sensory evidence was accumu-
lated over time to form the decision.

Table 1 Statistical table

Data structure Statistical test Power
a Normal distribution Pearson Correlation p � 0.01
b Normal distribution Likelihood-ratio test; Bonferroni-corrected for three parameters p � 0.001
c Normal distribution Likelihood-ratio test; Bonferroni-corrected for three parameters p � 0.01
d Normal distribution Likelihood-ratio test p � 0.24
e Normal distribution Likelihood-ratio test p � 0.1
f Normality not assumed Mann�Whitney test p � 0.01
g Normality not assumed Kruskal�Wallis test p � 0.001
h Normal distribution Likelihood-ratio test, Bonferroni-corrected for two parameters p � 0.01
i Normality not assumed Kruskal�Wallis test p � 0.05
j Normal distribution Likelihood-ratio test, Bonferroni-corrected for two parameters p � 0.01
k Normal distribution Likelihood-ratio test p � 0.2838
l Normality not assumed Kruskal�Wallis test p � 0.011
m Normality not assumed Kruskal�Wallis test p � 0.125
n Normal distribution Likelihood-ratio test p � 0.05
o Normality not assumed Kruskal�Wallis test p � 0.05
p Normality not assumed Mann�Whitney test p � 0.05
q Normal distribution Likelihood-ratio test, Bonferroni-corrected for two parameters p � 0.01
r Normal distribution Likelihood-ratio test, Bonferroni-corrected for two parameters p � 0.01
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These results were supported by independent analyses
of the signal-RT distributions. A useful way to assess
possible changes in drift rate and/or bound height in a
simple accumulate-to-bound framework is to use the
LATER model (Carpenter and Williams, 1995; Reddi et al.,
2003). According to this model, a decision variable rises
linearly to a threshold (bound) in order to trigger a motor
response. Assuming a fixed bound, but a noisy decision
variable with a rate of rise that is normally distributed
across trials, RT is distributed as an inverse Gaussian.
This distribution can be plotted as a straight line on
“reciprobit” axes (i.e., percent cumulative frequency on a
probit scale vs the reciprocal of RT from 0%-coherence
trials; Fig. 6A). Horizontal shifts of these lines imply
changes in the mean rate-of-rise of the decision variable,
whereas swivels about a fixed point at infinite RT imply
changes in the bound height (Reddi et al., 2003). When we
fit the LATER model to signal-RT data separately for each
subject, coherence, and IBI (correct trials only), we found
that increasing IBI caused systematic decreases in the
bound (Kruskal�Wallis test for H0: equal median values
per IBI, across subjects and coherences, p � 0.001g; 34
of 36 individual subject�coherence pairs had a significant
dependence of bound height on IBI, all of which had a

lower bound for the longest vs the shortest IBI, p � 0.01h,
likelihood-ratio test, Bonferroni-corrected for two param-
eters; Fig. 6B). In contrast, increasing IBI did not cause a
systematic change in the best-fitting mean rate-of-rise
(Kruskal�Wallis test, p � 0.05i; 13 of 36 individual sub-
ject�coherence pairs had a significant dependence of
rate-of-rise on IBI, of which seven showed an increasing
rate-of-rise and six showed a decreasing rate-of-rise; p �
0.01j, likelihood-ratio test, Bonferroni-corrected for two
parameters; Fig. 6C).

These results were also supported by correlation anal-
yses that related choices to the noisy auditory stimulus
(Knoblauch and Maloney, 2008; Murray, 2012). We com-
puted two kernels per IBI condition, one for increasing
choices and the other for decreasing choices, from the
0%-coherence trials from all six subjects. Each kernel
represented the mean, within-trial time course of the
mean-subtracted, stochastic auditory sequence that led
to the given choice (Fig. 7). Subjects made increasing
choices when the frequency tended to increase through-
out most of the trial, with average kernels that started
below the within-trial mean, then increased steadily to a
peak value above the within-trial mean around the time of
the median RT, then reverted back towards the mean.

Figure 5 Parameter values from fits of the basic DDM to the RT-task data. Each panel shows best-fitting values of bound height (A)
or drift rate (B) plotted as a function of IBI for fits to data from individual subjects (black) or combined across all subjects (red). Dark
lines/symbols indicate that the model fits were improved significantly by fitting the given parameter separately for each IBI condition
(likelihood-ratio test, p � 0.01, Bonferroni-corrected for three parameters).

Figure 6 LATER model fits to signal RT data. A, Distributions of signal RT from 0%-coherence trials for one subject are plotted on
a reciprobit plot: reciprocal RT versus percentage of cumulative frequency on a probit scale (Reddi et al., 2003), separately per IBI.
Best-fitting values of the bound height (B) and mean rate-of-rise (C) of the LATER model (see Results and Materials and Methods for
details) are plotted as a function of IBI for each subject and coherence (black/gray lines and data points). The data in black indicate
that the model fits were improved significantly by fitting the given parameter separately for each IBI condition (likelihood-ratio test,
p � 0.01, Bonferroni-corrected for two parameters). Shaded lines/symbols indicate that the model fits were not improved significantly.
Red data points/lines represent the median values across all conditions.
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Likewise, subjects made decreasing choices on trials in
which the frequency progression of the stochastic stimu-
lus moved in the opposite direction, starting relatively high
and then decreasing for much of the trial.

These kernels were consistent with a DDM-like decision
process that had lower bounds for longer IBIs, corre-
sponding to an increasing emphasis on speed at the
expense of accuracy. Specifically, the choice selectivity of
these kernels (i.e., the time bins in which increasing and
decreasing kernels differed from each other), measured in
terms of tone bursts within a stimulus sequence and thus
consistent with the signal RT analyses described above,
was longest for the shortest IBI and shortest for the
longest IBI (compare asterisks in Fig. 7A�C). We found a
similar effect when using just the 60 ms IBI but providing
explicit instructions to the subjects about the speed�ac-
curacy trade-off, with relatively longer choice selectivity
under an “emphasize accuracy” condition (Fig. 7D) and
relatively shorter choice selectivity under an “emphasize
speed” condition (Fig. 7E). These kernels were also qual-
itatively consistent with an evidence-accumulation pro-
cess with little or no leak because choice selectivity was
strongest at the beginning of a trial; if leak was present, it

would tend to show up as less choice selectivity at the
beginning of a trial.

To more quantitatively relate these kernels to the un-
derlying decision process, we fit them to a simple, two-
parameter model that assumed that choices were based
on particular frequency progressions within the given
stimulus. One parameter governed the time course of the
relevant progression, which could range from just the first
two bursts to the full sequence; i.e., simulated increasing
or decreasing choices occurred when the slope of a linear
regression of frequency versus burst number for the first n
bursts in a sequence was �0 or �0, respectively. The
second parameter scaled the contribution of each stimu-
lus sequence to the final kernel, akin to the signal-to-noise
ratio (SNR) of the internal stimulus representation. We
found that the best-fitting value of the integration time
decreased systematically with increasing IBI (and for the
“emphasize speed” relative to the “emphasize accuracy”
instruction), in each case closely matching the IBI-specific
median RTs (compare solid and dashed vertical lines in
Fig. 7). In contrast, the best-fitting scale factor did not
differ as a function of IBI (likelihood-ratio test, p � 0.28k),
implying a consistent SNR across conditions (like the

Figure 7 Psychophysical kernels. Kernels represent the average of the stimulus sequence (mean subtracted on each trial) presented
on all 0%-coherence trials across subjects for increasing (red) and decreasing (blue) choices. A�C, Kernels computed per IBI
condition, as indicated, and smoothed using a 21-sample moving mean. D, E, Kernels for the 60 ms IBI condition when subjects were
told to emphasize accuracy or speed, respectively. Thick and broken lines are mean and standard error, respectively. Data are aligned
relative to onset of the sequence. Asterisks indicate that the increasing and decreasing kernels were significantly different from one
another for a given time bin (Mann�Whitney test, p � 0.05p, using the raw, unsmoothed kernels). Black lines indicate best-fitting
simulated kernels (see text for details). Solid vertical lines indicate median RT. Dashed vertical lines indicate the end of the integration
time from the best-fitting simulated kernels.
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IBI-independent drift rate in Fig. 5). Thus, like the DDM-
and LATER-based analyses described above, these ker-
nel analyses implied that the IBI manipulation affected the
speed�accuracy trade-off on the RT task but not how
information was accumulated over time to form the deci-
sion.

Variable-duration task
Because the psychometric and chronometric data from
the RT task depended on each subject’s individual speed-
�accuracy tradeoff, it is possible that the DDM-model fits
reflected complex interactions between the rate of
sensory-evidence accumulation and bound heights
across IBI conditions (Ratcliff and Tuerlinckx, 2002). To
directly test the relationship between IBI and the rate of
evidence accumulation, subjects participated in the
variable-duration task. During this task, we experimentally
controlled the duration of the auditory sequence and,
hence, the amount of sensory evidence (Fig. 2B). Analo-
gous to the RT task, we analyzed performance as a
function of signal time to standardize the sequence dura-
tion with respect to the rate of tone-burst presentation.

Mean performance accuracy for all five subjects im-
proved systematically as a function of both coherence
and signal time, in a manner that was qualitatively similar

for all three IBI conditions (Fig. 8A�C). For each condi-
tion, accuracy tended to reach an upper asymptote of
�99% correct in �1000 ms of signal time for the highest
coherences; accuracy rose steadily at longer listening
times for lower coherences.

We again quantified these effects by fitting the choice
data to DDM-like models (Fig. 8D,E). Like the DDM de-
scribed in the Response time task section (above), all of
these models assumed that the decision was based on
the value of a decision variable, which represented the
accumulation of noisy sensory evidence over time. Like
the RT fits, we assumed a drift rate that scaled linearly
with coherence and an accumulation process that might
include a leak. However, unlike bounded diffusion in the
DDM when it was applied to RT data, these models
assumed that the accumulation process continued until
the stimulus was turned off, at which point the decision
was based on the current sign of the decision variable
(Gold and Shadlen, 2003; Bogacz et al., 2006). Therefore,
these models did not have parameters representing
bounds or non-decision times and were fit to psychomet-
ric data only (percent correct as a function of both coher-
ence and listening duration).

The model-fitting results suggested only modest, if any,
dependence of drift rate or leak on IBI. Drift rate was

Figure 8 Performance on the variable-duration task. A�C, Psychometric data are plotted as a function of listening duration for
different coherences and IBIs, as indicated. Each data point reflects mean performance for all five subjects as a function of coherence
and signal time (plotted in 0.2 s bins, up to 1.0 s, but fit using unbinned data). The solid curves are fits from the best-fitting model with
two parameters: drift rate and accumulation leak. D, E, Best-fitting values of drift rate (D) and accumulation leak (E) plotted as a
function of IBI for fits to data from individual subjects (black) or combined across all subjects (red). Dark lines and symbols indicate
that the model fits were improved significantly by fitting the given parameter separately for each IBI condition (likelihood-ratio test,
p � 0.01q, Bonferroni-corrected for two parameters). Shaded lines and symbols indicate that the model fits were not improved
significantly.
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independent of IBI for all five subjects and depended
non-monotonically on IBI for data combined across sub-
jects (Fig. 8D). There was also a slight trend for the
best-fitting values of drift rate to depend systematically on
IBI across subjects (Kruskal�Wallis test for H0: equal
median values per IBI, across subjects, p � 0.011l). Ac-
cumulation leak was not significantly affected by IBI for
any of the individual subjects or the data combined across
subjects (Kruskal�Wallis test for H0: equal median values
per IBI, across subjects p � 0.125m; Fig. 8E). Thus, the
subjects’ decisions improved systematically as a function
of the number of tone bursts but were largely independent
of the time between bursts.

Hybrid task
To test directly the relationship between perceptual
grouping and the decision process, subjects participated
in the hybrid task, which is a variant of the variable-
duration task (Fig. 2C). In this task, on each trial, tone-
burst sequence was set to each subject’s coherence
threshold and IBI threshold (see Materials and Methods,
above). At the end of each trial, the subject gave two
sequential responses to indicate: (1) perceptual grouping
(i.e., one sound or a series of discrete sounds) and (2)
sequence direction (i.e., increasing or decreasing). Figure
9 shows psychometric data pooled across all of the sub-
jects, separated into trials in which the subject reported
perceiving the sequence as one sound (Fig. 9A) or a series
of discrete sounds (Fig. 9B). Accuracy tended to increase

steadily as a function of listening duration in a similar
manner for the RT and variable-duration tasks.

To quantify these effects, we fit the data to the same
models as those described for the variable-duration task
but applied to one sound versus discrete conditions in-
stead of different IBIs (Fig. 9C,D). These fits indicted that
the grouping report did not have any effect on the
perceptual decision. For both the drift-rate and
accumulation-leak parameters, the data from individual
subjects and across subjects were better fit by models
that used a single parameter for all trials, as opposed to
separate parameters for one sound and discrete reports
(likelihood-ratio test, p � 0.05n). Moreover, when the data
were fit separately for the two grouping reports, the re-
sulting best-fitting values did not differ from each other
across subjects (Kruskal�Wallis test for H0: equal median
values per grouping judgment, across subjects, p � 0.05o

for both drift and leak). Thus, the perceptual-grouping
judgment did not appear to have a substantial effect on
the accumulation efficiency of the sensory evidence.

Discussion
We examined the relationship between auditory percep-
tual grouping and decision-making. Our focus was on the
role of time in both processes. Specifically, does the
temporal manipulation of a stream of acoustic events,
which affects its perceptual grouping (Bregman, 1990),
affect decisions about its identity? We found that the time
interval between sequentially presented tone bursts had

Figure 9 Performance on the hybrid task. A, B, Psychometric data are plotted as a function of listening duration for trials in which the
subject reported that the sequence was one sound (A) or a series of discrete sounds (B). The solid curves are fits from the best-fitting
model with two parameters: drift rate and accumulation leak. C, D, Best-fitting values of drift rate (C) and accumulation leak (D) plotted
as a function of perceptual grouping for fits to data from individual subjects (black) or combined across all subjects (red). The model
fits were not improved by fitting the given parameter separately for each IBI condition (likelihood-ratio test, p � 0.1r in all cases,
Bonferroni-corrected for two parameters).
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strong effects on whether the tone bursts were perceptu-
ally grouped as a single sound or heard as discrete
sounds (Fig. 3). In contrast, this manipulation did not
systematically affect how subjects accumulated informa-
tion to form a decision about whether frequencies of the
tone bursts were increasing or decreasing (Figs. 4-9).
Thus, for this task and stimulus, the temporal accumula-
tion of sensory evidence is invariant to the temporal in-
tervals (gaps) between pieces of evidence that affects
perceptual grouping.

The effect of time gaps on the time-course of evidence
accumulation has also been studied in the visual system
(Kiani et al., 2013). In that study, the accumulation of
visual evidence was invariant to the temporal gap be-
tween pulses of motion evidence for a visual motion
direction-discrimination task. We extended those findings
by demonstrating that this accumulation invariance is
accompanied by a change in the speed�accuracy trade-
off that accounts for the different time intervals between
the tone bursts. Our results also show that similar princi-
ples may govern the temporal dynamics of auditory and
visual decisions, despite differences in how the underlying
sensory mechanisms process temporal information (Carr
and Friedman, 1999; Schnupp and Carr, 2009; Raposo
et al., 2012). Below, we discuss the relationships between
auditory perceptual grouping and decision-making and
then discuss potential neural bases for our findings.

Temporal dynamics of auditory perceptual grouping
and decision-making
Perceptual-grouping cues can affect auditory judgments
(Bey and McAdams, 2002; Roberts et al., 2002; Micheyl
and Oxenham, 2010; Borchert et al., 2011; Thompson
et al., 2011). For example, judgments about the timing
differences between auditory stimuli are more accurate
when stimuli are grouped into the same auditory stream
versus when they are segregated into different auditory
streams (Roberts et al., 2002). Similarly, a listener’s ability
to detect a deviant tone burst improves when the tone
burst is segregated (e.g., by frequency) into a separate
auditory stream (Rahne and Sussman, 2009; Sussman
and Steinschneider, 2009). In other situations, stream
segregation enhances a listener’s ability to identify a tone
sequence (Bey and McAdams, 2002).

However, despite evidence for the roles of temporal
cues in both auditory grouping and decision-making, little
is known about how those roles interact. We addressed
this issue by building upon on the rich history of auditory
psychophysics and quantitative modeling (Green et al.,
1957; Green, 1960; Greenwood, 1961; Luce and Green,
1972; Green and Luce, 1973). Specifically, we applied
sequential-sampling models, in particular the DDM, to
assess how auditory information presented sequentially
over time was used to form a decision about the direction
of change of the stimulus frequency.

We used a series of complementary approaches to
demonstrate that subjects’ decisions were consistent
with a DDM-like process that accumulates sensory evi-
dence over time. First, we fit choice and mean RT data
from the RT task directly to several variants of the DDM,

all of which effectively described the relationships be-
tween stimulus coherence (strength), IBI, and the sub-
jects’ speed�accuracy trade-offs (Figs. 4, 5) (Green and
Luce, 1973; Wickelgren, 1977; Palmer et al., 2005; Ratcliff
and McKoon, 2008). Second, the subjects’ full RT distri-
butions were also consistent with a rise-to-bound process
(Fig. 6), which we fit using a simplified version of DDM
models (i.e., the LATER model) that assumes that the
rising process is stochastic across trials (as opposed to
within trials, for the DDM) and is effective at describing RT
distributions across a range of conditions (Carpenter and
Williams, 1995; Reddi et al., 2003). Third, analyses of our
noisy auditory stimulus indicated that, at least on average,
subjects were using information that extended from the
beginning of the trial until around the time of the response
(Fig. 7). That is, choice selectivity was strongest at the
beginning of a trial. Fourth, performance on the variable-
duration task increased systematically as a function of
listening duration, in a manner consistent with the
evidence-accumulation process described by the DDM
(Figs. 8, 9).

Our primary result from these analyses was that the
accumulation process was invariant to the IBI manipula-
tion. In particular, we found that there was no systematic
leak associated with the accumulation process in any of
the tested task conditions. Further, the psychophysical
kernels were consistent with an evidence-accumulation
process with little leak: choice selectivity was strongest at
the beginning of a trial and not at the end (which would be
expected of a leaky process; Fig. 7). Thus, decisions were
consistent with a lossless form of information accumula-
tion (Brunton et al., 2013; Kiani et al., 2013). Moreover, the
rate of information accumulation—which was measured
in our models as a drift rate and represents the average
rate of change of the underlying decision variable—de-
pended only on the coherence of the tone bursts and not
the temporal gaps between them. The temporal gaps,
instead, affected the speed�accuracy trade-off of the
decision (Figs. 5–7). Thus, the evidence-accumulation
process was able to use the signals as they arrived with-
out losing information in the intervening gaps, regardless
of their duration.

This result was particularly striking in light of the fact
that the temporal gaps had a strong effect on the sub-
jects’ percept of the tone-burst stimulus: short gaps gave
rise to the percept of a single, grouped sound, whereas
longer gaps gave rise to the percept of discrete sounds
(Fig. 3). Our findings are, therefore, somewhat surprising,
given that previous work has noted an interaction be-
tween perceptual grouping and auditory judgments (Bey
and McAdams, 2002; Roberts et al., 2002; Micheyl and
Oxenham, 2010; Borchert et al., 2011; Thompson et al.,
2011). Further work is needed to fully explore these inter-
actions and their relationship to temporal processing. For
example, it might be interesting to add nonuniform tem-
poral manipulations to each stimulus sequence (e.g., vari-
able IBIs or tone-burst durations) to get a better sense of
how specific timing cues presented at specific times in
the stimulus sequence affect both grouping and decision-
making.
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Neural basis
Much of auditory perceptual grouping is pre-attentive and
has substantive neural signatures in the auditory midbrain
and auditory cortex (Carlyon et al., 2001; Fishman et al.,
2004; Micheyl et al., 2007; Sussman et al., 2007; Press-
nitzer et al., 2008; Shinn-Cunningham, 2008; Winkler
et al., 2009). In contrast, auditory decision-making is gen-
erally associated with neural mechanisms that are found
in the ventral auditory pathway of cortex (Romanski et al.,
1999; Romanski and Averbeck, 2009; Rauschecker, 2012;
Bizley and Cohen, 2013). In primates, this pathway in-
cludes the core and belt fields of the auditory cortex,
which project directly and indirectly to regions of the
frontal lobe. Because neural activity in these regions,
particularly in the belt fields, is not modulated by subjects’
choices, it is thought that this activity represents the
sensory evidence used to form an auditory decision but
not the decision itself (Tsunada et al., 2011; Tsunada
et al., 2012; Bizley and Cohen, 2013; but see Niwa et al.,
2012; Bizley et al., 2013). In contrast, frontal lobe activity
is modulated by subjects’ choices, consistent with the
notion that neural activity in this part of the brain reflects
a transition from a representation of sensory evidence to
a representation of choice (Binder et al., 2004; Kaiser
et al., 2007; Russ et al., 2008; Lee et al., 2009). This
hierarchy of information processing is qualitatively similar
to that seen in the visual and somatosensory systems
(Shadlen and Newsome, 1996; Parker and Newsome,
1998; Gold and Shadlen, 2001; Romo and Salinas, 2001;
Romo et al., 2002; Gold and Shadlen, 2007; Hernández
et al., 2010).

Thus, our results imply that frontal-mediated decision-
making can temporally accumulate evidence from the
auditory cortex, independent of how that evidence has
been parsed into temporally continuous or distinct groups
earlier in the auditory pathway. One possible explanation
for our invariance to grouping is that the decision com-
putations use information that is processed separately
from the grouping percept. Unfortunately, whereas sev-
eral studies have reported signatures of grouping in the
core auditory cortex (Fishman et al., 2004; Micheyl et al.,
2005; Brosch et al., 2006; Selezneva et al., 2006; Elhilali
et al., 2009; Shamma and Micheyl, 2010; Fishman et al.,
2013; Noda et al., 2013) and representations of the group-
ing percept in non-core regions of the human auditory
cortex (Gutschalk et al., 2005; Gutschalk et al., 2008),
neurophysiological studies elucidating where and how
perceptual-grouping cues interact with decisions have yet
to be conducted. Taken together, however, these afore-
mentioned studies predict that the grouping percept may
be mediated in the auditory cortex and frontal activity
represents the decision process. A second, alternative
explanation is that the decision process may be very
flexible and able to efficiently accumulate different forms
of noisy evidence under different conditions (Brunton
et al., 2013; Kaufman and Churchland, 2013). The degree
of this flexibility might depend on the type and quality of
the sensory information, memory load, the nature of the
environment in which the subject is making the decisions,
and other task demands.
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