Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Review, Integrative Systems

Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target

Martin Wellman and Alfonso Abizaid
eNeuro 14 April 2015, 2 (2) ENEURO.0053-14.2015; https://doi.org/10.1523/ENEURO.0053-14.2015
Martin Wellman
Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfonso Abizaid
Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The growth hormone secretagogue receptor (GHSR1a), the target of the ghrelin peptide, is widely distributed throughout the brain, and, while studies have often reported very low or absent levels of central ghrelin, it is now known that GHSR1a, even in the absence of a natural ligand, has physiological roles. Not only do these roles originate from the receptor’s constitutive activity, but recent data indicate that GHSR1a dimerizes with a wide array of other receptors. These include the dopamine 1 receptor (D1R), the dopamine 2 receptor (D2R), the melanocortin-3 receptor (MC3R), the serotonin 2C receptor (5-HT2C), and possibly the cannabinoid type 1 receptor (CB1). Within these dimers, signaling of the protomers involved are modified through facilitation, inhibition, and even modification of signaling pathways resulting in physiological consequences not seen in the absence of these dimers. While in some cases the ghrelin peptide is not required for these modifications to occur, in others, the presence is necessary for these changes to take effect. These heterodimers demonstrate the broad array of roles and complexity of the ghrelin system. By better understanding how these dimers work, it is hoped that improved treatments for a variety of disorders, including Parkinson’s disease, schizophrenia, addiction, obesity, diabetes, and more, can be devised. In this review, we examine the current state of knowledge surrounding GHSR heterodimers, and how we can apply this knowledge to various pharmacological treatments.

  • G protein-coupled receptor
  • ghrelin
  • growth hormone secretagogue receptor
  • pharmacology
  • receptor dimerization

Footnotes

  • ↵1 The authors report no financial conflicts of interest.

  • ↵3 This work was supported by the Natural Sciences and Engineering Research Council of Canada, Ontario Graduate Scholarship (M.W.) and the Canadian Institutes of Health Research, Canada Foundation for Innovation (A..A.).

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Back to top

In this issue

eneuro: 2 (2)
eNeuro
Vol. 2, Issue 2
March/April 2015
  • Table of Contents
  • Index by author
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target
Martin Wellman, Alfonso Abizaid
eNeuro 14 April 2015, 2 (2) ENEURO.0053-14.2015; DOI: 10.1523/ENEURO.0053-14.2015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target
Martin Wellman, Alfonso Abizaid
eNeuro 14 April 2015, 2 (2) ENEURO.0053-14.2015; DOI: 10.1523/ENEURO.0053-14.2015
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • A Short History of GPCR Oligomerization
    • Detecting Oligomerization
    • Possible Dimerization with the Cannabinoid Receptor Type 1
    • Conclusion
    • Footnotes
    • References
    • Synthesis
    • Author Response
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • G protein-coupled receptor
  • ghrelin
  • growth hormone secretagogue receptor
  • pharmacology
  • receptor dimerization

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Review

  • My 50 Year Odyssey to Develop Behavioral Methods to Let Me See Quickly How Well Kittens See
  • A Systematic Review and Meta-Analysis Assessing the Accuracy of Blood Biomarkers for the Diagnosis of Ischemic Stroke in Adult and Elderly Populations
  • Neuroscientist’s Behavioral Toolbox for Studying Episodic-Like Memory
Show more Review

Integrative Systems

  • Functional connectome correlates of laterality preferences: Insights into Hand, Foot, and Eye Dominance Across the Lifespan
  • Alpha-Frequency Stimulation Enhances Synchronization of Alpha Oscillations with Default Mode Network Connectivity
  • Characteristics of Spontaneous Anterior–Posterior Oscillation-Frequency Convergences in the Alpha Band
Show more Integrative Systems

Subjects

  • Integrative Systems
  • Reviews
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.