Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro

eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleNegative Results, Disorders of the Nervous System

The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice

David N. Hauser, Christopher T. Primiani, Rebekah G. Langston, Ravindran Kumaran and Mark R. Cookson
eNeuro 24 February 2015, 2 (1) ENEURO.0075-14.2015; DOI: https://doi.org/10.1523/ENEURO.0075-14.2015
David N. Hauser
Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David N. Hauser
Christopher T. Primiani
Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rebekah G. Langston
Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ravindran Kumaran
Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark R. Cookson
Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mutations in the DJ-1 gene cause autosomal recessive parkinsonism in humans. Several mouse models of DJ-1 deficiency have been developed, but they do not have dopaminergic neuron cell death in the substantia nigra pars compacta (SNpc). Mitochondrial DNA (mtDNA) damage occurs frequently in the aged human SNpc but not in the mouse SNpc. We hypothesized that the reason DJ-1-deficient mice do not have dopaminergic cell death is due to an absence of mtDNA damage. We tested this hypothesis by crossing DJ-1-deficient mice with mice that have similar amounts of mtDNA damage in their SNpc as aged humans (Polg mutator mice). At 1 year of age, we counted the amount of SNpc dopaminergic neurons in the mouse brains using both colorimetric and fluorescent staining followed by unbiased stereology. No evidence of dopaminergic cell death was observed in DJ-1-deficient mice with the Polg mutator mutation. Furthermore, we did not observe any difference in dopaminergic terminal immunostaining in the striatum of these mice. Finally, we did not observe any changes in the amount of GFAP-positive astrocytes in the SNpc of these mice, indicative of a lack of astrogliosis. Altogether, our findings demonstrate the DJ-1-deficient mice, Polg mutator mice, and DJ-1-deficient Polg mutator mice have intact nigrastriatal pathways. Thus, the lack of mtDNA damage in the mouse SNpc does not underlie the absence of dopaminergic cell death in DJ-1-deficient mice.

  • DJ-1
  • mtDNA
  • neurodegeration
  • parkinsonism
  • Polg mutator
  • substantia nigra

Footnotes

  • ↵1 The authors declare no competing financial interests.

  • ↵3 This work was supported entirely by the Intramural Research Program of the NIH, National Institute on Aging.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Back to top

In this issue

eneuro: 2 (1)
eNeuro
Vol. 2, Issue 1
January/February 2015
  • Table of Contents
  • Index by author
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice
David N. Hauser, Christopher T. Primiani, Rebekah G. Langston, Ravindran Kumaran, Mark R. Cookson
eNeuro 24 February 2015, 2 (1) ENEURO.0075-14.2015; DOI: 10.1523/ENEURO.0075-14.2015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice
David N. Hauser, Christopher T. Primiani, Rebekah G. Langston, Ravindran Kumaran, Mark R. Cookson
eNeuro 24 February 2015, 2 (1) ENEURO.0075-14.2015; DOI: 10.1523/ENEURO.0075-14.2015
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
    • Synthesis
    • Author Response
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • DJ-1
  • mtDNA
  • Neurodegeration
  • Parkinsonism
  • Polg mutator
  • substantia nigra

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Negative Results

  • Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance
  • Cyfip1 Haploinsufficiency Does Not Alter GABAA Receptor δ-Subunit Expression and Tonic Inhibition in Dentate Gyrus PV+ Interneurons and Granule Cells
  • Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs
Show more Negative Results

Disorders of the Nervous System

  • Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance
  • Cyfip1 Haploinsufficiency Does Not Alter GABAA Receptor δ-Subunit Expression and Tonic Inhibition in Dentate Gyrus PV+ Interneurons and Granule Cells
  • Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs
Show more Disorders of the Nervous System

Subjects

  • Disorders of the Nervous System

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.