Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Research ArticleResearch Article: Methods/New Tools, Novel Tools and Methods

A Method for Evaluating Hunger and Thirst in Monkeys by Measuring Blood Ghrelin and Osmolality Levels

Yuki Suwa, Jun Kunimatsu, Akua Kamata, Masayuki Matsumoto and Hiroshi Yamada
eNeuro 16 July 2024, 11 (8) ENEURO.0481-23.2024; https://doi.org/10.1523/ENEURO.0481-23.2024
Yuki Suwa
1Academic Service Office for the Medical Science Area, University of Tsukuba, Tsukuba 305-8577, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Kunimatsu
2Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
3Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jun Kunimatsu
Akua Kamata
4Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masayuki Matsumoto
2Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
3Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Yamada
2Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
3Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hiroshi Yamada
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hunger and thirst drive animals’ consumption behavior and regulate their decision-making concerning rewards. We previously assessed the thirst states of monkeys by measuring blood osmolality under controlled water access and examined how these thirst states influenced their risk-taking behavior in decisions involving fluid rewards. However, hunger assessment in monkeys remains poorly performed. Moreover, the lack of precise measures for hunger states leads to another issue regarding how hunger and thirst states interact with each other in each individual. Thus, when controlling food access to motivate performance, it remains unclear how these two physiological needs are satisfied in captive monkeys. Here, we measured blood ghrelin and osmolality levels to respectively assess hunger and thirst in four captive macaques. Using an enzyme-linked immunosorbent assay, we identified that the levels of blood ghrelin, a widely measured hunger-related peptide hormone in humans, were high after 20 h of no food access (with ad libitum water). This reflects a typical controlled food access condition. One hour after consuming a regular dry meal, the blood ghrelin levels in three out of four monkeys decreased to within their baseline range. Additionally, blood osmolality measured from the same blood sample, the standard hematological index of hydration status, increased after consuming the regular dry meal with no water access. Thus, ghrelin and osmolality may reflect the physiological states of individual monkeys regarding hunger and thirst, suggesting that these indices can be used as tools for monitoring hunger and thirst levels that mediate an animal's decision to consume rewards.

  • hunger
  • monkey
  • reward
  • satiety
  • thirst

Footnotes

  • The authors declare no competing financial interests.

  • We express our appreciation to Yoshiko Yabana, Masafumi Nejime, and Shiho Nishino for their technical assistance. We appreciate the comments of Akira Suwa. Monkeys were provided by National Bioresource Project (NBRP) “Japanese Monkeys” through the NBRP of Ministry of Education, Culture, Sports, Science and Technology, Japan. This study was supported by Japan Society for the Promotion of Science KAKENHI (Grant Number JP19H05007) and Moonshot Research and Development JPMJMS2294 (H.Y.).

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Back to top

In this issue

eneuro: 11 (8)
eNeuro
Vol. 11, Issue 8
August 2024
  • Table of Contents
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Method for Evaluating Hunger and Thirst in Monkeys by Measuring Blood Ghrelin and Osmolality Levels
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
A Method for Evaluating Hunger and Thirst in Monkeys by Measuring Blood Ghrelin and Osmolality Levels
Yuki Suwa, Jun Kunimatsu, Akua Kamata, Masayuki Matsumoto, Hiroshi Yamada
eNeuro 16 July 2024, 11 (8) ENEURO.0481-23.2024; DOI: 10.1523/ENEURO.0481-23.2024

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
A Method for Evaluating Hunger and Thirst in Monkeys by Measuring Blood Ghrelin and Osmolality Levels
Yuki Suwa, Jun Kunimatsu, Akua Kamata, Masayuki Matsumoto, Hiroshi Yamada
eNeuro 16 July 2024, 11 (8) ENEURO.0481-23.2024; DOI: 10.1523/ENEURO.0481-23.2024
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Data Availability
    • Footnotes
    • References
    • Synthesis
    • Author Response
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • hunger
  • monkey
  • reward
  • satiety
  • thirst

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Article: Methods/New Tools

  • CalTrig: A GUI-based Machine Learning Approach for Decoding Neuronal Calcium Transients in Freely Moving Rodents
  • Spiking neural network models of interaural time difference extraction via a massively collaborative process
  • Adapt-A-Maze: An Open-Source Adaptable and Automated Rodent Behavior Maze System
Show more Research Article: Methods/New Tools

Novel Tools and Methods

  • CalTrig: A GUI-based Machine Learning Approach for Decoding Neuronal Calcium Transients in Freely Moving Rodents
  • Spiking neural network models of interaural time difference extraction via a massively collaborative process
  • Adapt-A-Maze: An Open-Source Adaptable and Automated Rodent Behavior Maze System
Show more Novel Tools and Methods

Subjects

  • Novel Tools and Methods
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.