Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT

User menu

Search

  • Advanced search
eNeuro
eNeuro

Advanced Search

 

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Blog
    • Collections
    • Podcast
  • TOPICS
    • Cognition and Behavior
    • Development
    • Disorders of the Nervous System
    • History, Teaching and Public Awareness
    • Integrative Systems
    • Neuronal Excitability
    • Novel Tools and Methods
    • Sensory and Motor Systems
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • For the Media
    • Privacy Policy
    • Contact Us
    • Feedback
  • SUBMIT
PreviousNext
Review, Disorders of the Nervous System

A Systematic Review and Meta-Analysis Assessing the Accuracy of Blood Biomarkers for the Diagnosis of Ischemic Stroke in Adult and Elderly Populations

Suebsarn Ruksakulpiwat, Wendie Zhou, Lalipat Phianhasin, Chitchanok Benjasirisan, Tingyu Su, Heba M. Aldossary, Aaron Kudlowitz, Abhilash K. Challa, Jingshu Li and Kulsatree Praditukrit
eNeuro 11 November 2024, 11 (11) ENEURO.0302-24.2024; https://doi.org/10.1523/ENEURO.0302-24.2024
Suebsarn Ruksakulpiwat
1Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok 10700, Thailand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Suebsarn Ruksakulpiwat
Wendie Zhou
2School of Nursing, Peking University, Beijing 100191, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lalipat Phianhasin
1Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok 10700, Thailand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chitchanok Benjasirisan
1Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok 10700, Thailand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tingyu Su
3The Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heba M. Aldossary
4Department of Nursing, Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Heba M. Aldossary
Aaron Kudlowitz
5The College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Abhilash K. Challa
6Rocky Vista University College of Osteopathic Medicine, Ivins, Utah 84738
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jingshu Li
7Hemodialysis Center, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kulsatree Praditukrit
8Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kulsatree Praditukrit
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    PRISMA flow chart.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    Risk of bias summary using the QUADAS-2. Zhang et al. 2020_a refers to L. J. Zhang et al., 2020, Zhang et al. 2020_b refer to H. T. Zhang et al., 2020.

  • Figure 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3.

    SROC for all studies. AUC, 0.89. SROC, summary receiver operating characteristic; AUC, area under the curve.

  • Figure 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4.

    Forest plots of sensitivity and specificity of blood biomarkers for diagnosis of IS. The pooled sensitivity is 0.76 (0.74–0.78); the pooled specificity is 0.84 (0.83–0.86).

  • Figure 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 5.

    Univariable meta-regression and subgroup analyses for the heterogeneity.

  • Figure 6.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 6.

    Deek's funnel plot to estimate publication bias.

  • Figure 7.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 7.

    Fagan nomogram to evaluate the clinical utility of blood biomarkers for diagnosis of IS.

Tables

  • Figures
    • View popup
    Table 1.

    Inclusion and exclusion criteria

    Inclusion criteria
    • Human participants of age ≥18 years old (both male and female)

    • Original studies primarily aimed to investigate blood biomarkers for the diagnosis of IS, including prospective comparative studies, cohort, case control, case series or case reports (≥10 patients), and diagnostic randomized controlled trials. Case series and case reports were excluded from the meta-analysis and included only in the review

    • Original studies reporting the following result: TP, FP, TN, FN, sensitivity, specificity, PLR, NLR, the AUC, or DOR, or data suffice to construct two-by-two contingency tables to compute the diagnostic accuracy

    • Included participants diagnosed with IS, including IS (thrombotic strokes or embolic strokes) or TIA

    • All types of settings are acceptable, including inpatient, outpatient, community, or home

    • Described in the English language

    • Full-text availability

    Exclusion criteria
    • The study did not include the population of interest or concerned animal subjects

    • Conference proceedings, abstracts, review articles, theoretical papers, pilot studies, protocols, dissertations, letters to the editor, opinions (viewpoint), statement papers, government documents, or working papers

    • View popup
    Table 2.

    The summary data

    - Reference - Published Year - CountryStudy design- Study setup - Setting- Sample size (total) (IS/C)) (n)a - Target IS population - Comorbidities - Age (median or mean) (range) (in a year) - Male/female (n/n)Prevalence
    of IS (%)
    All included blood biomarkersBlood biomarker with
    optimal performance
    Blood biomarker with optimal performance
    TPFPTNFNSen (95% CI)Spe (95% CI)AUC (95% CI)
    • - (Fan et al., 2018)

    • - 2018

    • - China

    Prospective study
    • - Single-center

    • - Inpatient

    • - 389 (133/144)

    • - Acute lacunar infarction

    • - Comorbidities: Hypertension, diabetes mellitus, hyperlipidemia, CAD, and atrial fibrillation

    • - Acute lacunar infarction 69 (59.5–75.5), control 66.5 (59.25–71)

    • - 227/112

    34.19%
    • - Homocysteine (Hcy)

    • - Fibrinogen

    Hcy1280192690.65 (0.58–0.72)1.00 (0.98–1.00)0.88 (0.84–0.92)
    • - (Q. X. Qin et al., 2018)

    • - 2018

    • - China

    Retrospective study
    • - Multicenter

    • - Inpatient

    • - 228 (114/114)

    • - AIS with active colorectal cancer (CRCIS)

    • - Comorbidities: Colorectal cancer

    • - CRCIS 65.33 ± 12.45, healthy control (HC) 63.67 ± 9.18

    • - 156/72

    50.00%
    • - D-dimer

    • - Neutrophil count (NC)

    • - Carcinoembryonic antigen (CEA)

    • - Cancer antigen 125 (CA125)

    D-dimer + CEA + NC982391160.86 (0.78–0.92)0.80 (0.71–0.87)0.89 (0.85–0.93)
    • - (Fang et al., 2018)

    • - 2018

    • - China

    Retrospective, case-control study
    • - Single-center

    • - Inpatient

    • - 462 (262/200)

    • - AIS

    • - Comorbidities: Hypertension, diabetes, hyperlipidemia

    • - AIS 62.5 ± 11.5, HC 61.8 ± 10.8

    • - 261/201

    56.71%
    • - S100 calcium-binding protein B (S100B)

    • - C-reactive protein (CRP)

    • - IL-6

    • - Plasminogen activator inhibitor-1 (PAI-1)

    • - Matrix metallopeptidase 9 (MMP-9)

    • - P-selectin

    • - Intercellular adhesion molecule 1 (ICAM-1)

    • - Tumor necrosis factor α (TNF-α)

    • - Low-density lipoprotein cholesterol

    • - IL-10

    • - Nitric oxide (NO)

    • - Glial fibrillary acidic protein

    CRPNANANANANANA0.99 (0.98–1.00)
    IL-6NANANANANANA0.96 (0.94–0.98)
    PAI-1NANANANANANA0.99 (0.98–1.00)
    P-selectinNANANANANANA0.91 (0.88–0.94)
    TNF-αNANANANANANA0.99 (0.98–1.00)
    • - (Mohamed et al., 2019)

    • - 2019

    • - Egypt

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 96 (48/48)

    • - CES

    • - Comorbidities: N/A

    • - NA

    • - NA

    50.00%
    • - Brain natriuretic peptide (BNP)

    • - D-dimer

    • - Creatine–kinase-MB (CK-MB)

    • - CRP

    • - Globulin/albumin ratio

    BNP361830120.75 (0.60–0.86)0.63 (0.47–0.76)0.80 (0.71–0.89)
    D-dimer44163240.91 (0.79–0.97)0.66 (0.51–0.79)0.79 (0.70–0.88)
    CK-MB41123670.85 (0.71–0.93)0.75 (0.60–0.86)0.91 (0.85–0.97)
    • - (Zuo et al., 2020)

    • - 2020

    • - China

    A prospective, cohort study
    • - Dual-center

    • - Inpatient

    • - 300 (200/100)

    • - AIS

    • - Comorbidities: N/A

    • - AIS 72 (61–82), HC 64 (59–71)

    • - 188/112

    66.67%
    • - circFUNDC1

    • - circPDS5B

    • - circCDC14A

    • - Combination of the above three circRNAs

    Combination of three circRNAs (circFUNDC1, circPDS5B, circCDC14A)144991560.72 (0.65–0.78)0.91 (0.83–0.96)0.88 (0.84–0.91)
    • - (O'Connell et al., 2017)

    • - 2017

    • - USA

    Prospective study
    • - Single-center

    • - Inpatient

    • - 63 (43/20)

    • - AIS

    • - Comorbidities: Hypertension, dyslipidemia, diabetes, atrial fibrillation

    • - AIS 72.5 ± 15.5, mimic stroke 58.0 ± 17.0

    • - 29/31

    68.25%Peripheral blood cell-free DNA (cfDNA)cfDNA3751560.86 (0.72–0.95)0.75 (0.51–0.91)0.90 (0.72–0.95)
    • - (Nezu et al., 2022)

    • - 2022

    • - Japan

    Prospective study
    • - Multicenter

    • - Inpatient

    • - 120 (47/73)

    • - CAS

    • - Comorbidities: Hypertension, diabetes mellitus, dyslipidemia, chronic kidney disease, atrial fibrillation, cancer

    • - AIS patients with active cancer and CAS 72.4 ± 11.5, AIS patients with active cancer 76.3 ± 10.2

    • - 74/46

    39.17%
    • - Carbohydrate antigen (CA) 125

    • - CEA

    • - CA 19–9

    CA 125351657120.75 (0.59–0.86)0.78 (0.67–0.87)0.81 (0.72–0.88)
    • - (Comertpay et al., 2020)

    • - 2020

    • - Turkey

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 72 (36/36)

    • - AIS

    • - Comorbidities: N/A

    • - AIS 66.06 ± 14.59 (23–94), HC 66.1 ± 14.4 (25–94)

    • - 46/26

    50.00%Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK)sTWEAK2833380.78 (0.60–0.89)0.92 (0.76–0.98)0.84 (0.74–0.94)
    • - (C. Tian et al., 2022)

    • - 2022

    • - China

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 78 (39/39)

    • - AIS

    • - Comorbidities: Diabetes mellitus, hypertension, hyperlipidemia, coronary heart disease

    • - AIS 74, control 76.62 ± 10.34

    • - 36/42

    50.00%
    • - nc-KRTCAP3-2:1

    • - Inc-OSBPL10

    • - nc-OSBPL10-2:1

    • - NR_120420

    • - Inc-AP002414.1.1

    • - nc-AP002414.1.1-5:8

    • - nc-GCH1-2:3

    • - NR_003529.

    • - Inc-DENR

    • - nc-DENR-2:3

    • - nc-CMPK2-5:39

    NR_120420 (total anterior circulation infarction subgroup)3463350.86 (0.69–0.94)0.85 (0.69–0.94)0.86 (0.73–0.99)
    • - (P. F. Liu et al., 2017)

    • - 2017

    • - China

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 49 (26/23)

    • - AIS

    • - Comorbidities: hypertension, hyperlipidemia

    • - AIS 59.08 ± 8.51, control 56.96 ± 2.70

    • - 33/16

    53.06%
    • - Ornithine

    • - Proline

    • - Acetylcarnitine

    • - Threonine

    • - PC (1:0/16:0)

    • - LysoPC (16:0)

    • - LysoPE (20:4)

    • - Carnitine

    • - Lysine

    • - Aspartic acid

    • - LysoPE (18:2)

    • - Betaine

    • - Isoleucine

    • - Serine

    • PC (5:0/5:0)

    Combination of five biomarkers (serine, isoleucine, betaine, PC (5:0/5:0), LysoPE (18:2))NANANANANANA0.97 (0.92–1.02)
    • - (Cheng et al., 2018)

    • - 2018

    • - China

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 119 (77/42)

    • - AIS

    • - Comorbidities: Hypertension, diabetes mellitus

    • - AIS 61 ± 10.4, control 59 ± 4.7

    • - 35–79 (61)

    • - 83/36

    64.71%
    • - miR-148b-3p

    • - miR-151b

    • - miR-27b-3p

    Combination of miR-148b-3p and miR-27b-3p52339250.67 (0.46–0.67)0.93 (0.70–0.97)0.81 (0.70–0.92)
    • - (H. Tian et al., 2021)

    • - 2021

    • - China

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 140 (76/64)

    • - AIS

    • - Comorbidities: Hypertension, diabetes, hyperlipidemia

    • - AIS 57.0 ± 6.4, control 56.4 ± 6.2

    • - 87/53

    54.29%
    • - miR-210

    • - miR-137

    • - miR-153

    miR-210461462180.72 (0.59–0.82)0.82 (0.71–0.89)0.82 (0.76–0.91)
    miR-137451165190.70 (0.57–0.81)0.86 (0.75–0.92)0.84 (0.78–0.91)
    miR-153522056120.81 (0.69–0.90)0.74 (0.62–0.83)0.84 (0.78–0.91)
    • - (Wang et al., 2017)

    • - 2017

    • - China

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 69 (40/29)

    • - AIS

    • - Comorbidities: Hypertension, diabetes mellitus, atrial fibrillation

    • - AIS 65.7, control 61.0

    • - 38/31

    57.97%
    • - Alanine

    • - Citrate

    • - Glycine

    • - Leucine

    • - Isoleucine

    • - Serine

    • - Tyrosine

    • - Methionine

    • - Tryptophan

    • - Erythronic acid

    • - Urea

    • - Purine

    • - Proline

    • - Hypoxanthine

    Tyrosine, lactate, and tryptophan panelNANANANANANANA
    • - (D. Lu et al., 2020)

    • - 2020

    • - China

    Phase 1: Experimental design

    Phase 2: Bioinformatics analysis, case-control study

    • - Multicenter

    • - Inpatient

    • - 16 (8/8)

    • - AIS

    • - Comorbidities: N/A

    • - AIS 55.4 ± 12.3, control 54.11 ± 10.1

    • - 14/2

    50.00%140,732 out of 140,790 human circRNAs
    • - circPHKA2

    • - circBBS2

    NANANANANANANA
    • - (Augello et al., 2018)

    • - 2018

    • - USA

    A prospective, case-control study
    • - Single-center

    • - Inpatient and outpatient

    • - 50 (24/26)

    • - AIS

    • - Comorbidities: Hypertension, CAD, CAD, diabetes mellitus, atrial fibrillation

    • - AIS 58 (51–74), control 61 (51–76)

    • - 31/19

    48.00%
    • - Gp130/sIL-6Rb

    • - IFN-β

    • - IL-28A/IFN-λ2

    • - MMP-2

    • - Osteopontin (OPN)

    • - sTNF-R1

    • - sTNF-R2

    • - TSL

    IL-28A/IFN-λ2, MMP-2, sTNF-R2, and TSLP panel2112530.88 (0.67–0.97)0.96 (0.78–1.00)0.96 (0.89–1.02)
    • - (Guo et al., 2018)

    • - 2018

    • - China

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 20 (10/10)

    • - AIS

    • - Comorbidities: N/A

    • - AIS 63.2 ± 10.7, control 69.3 ± 5.9

    • - 14/6

    50.00%560 upregulated and 690 downregulated differentially expressed lncRNAsCombination of lncRNAs (lncRNA-ENST00000568297, lncRNA-ENST00000568243, and lncRNA-NR_046084)82820.83 (0.44–0.96)0.80 (0.44–0.96)0.84 (0.66–1.02)
    • - (Huang et al., 2021)

    • - 2021

    • - China

    A prospective, cohort study
    • - Single-center

    • - Inpatient

    • - 305 (155/150)

    • - AIS

    • - Comorbidities: Hypertension

    • - AIS 56.0 (median), control 55.0 (median)

    • - AIS 84/71, control 76/74

    50.82%
    • - Serum Interleukin-34 (IL-34)

    • - Glycosylated hemoglobin (HbA1c)

    IL-341065145490.68 (0.60–0.75)0.97 (0.92–0.98)0.87 (0.83–0.91)
    • - (L. J. Zhang et al., 2020)

    • - 2020

    • - China

    Prospective study
    • - NA

    • - NA

    • - 78 (48/30)

    • - Fist-ever IS (FS) and recurrent IS (RS)

    • - Comorbidities: High blood pressure, coronary heart disease, valvular disease of the heart, heart failure, atrial fibrillation

    • - FS 64.2 ± 8.9, RS 75.8 ± 9.4, HC 65.5 ± 8.2

    • - FS 21/17, RS 7/3, HC 17/13

    61.54%
    • - Model 1: fatty acid metabolite levels including DHA, 8-iso-PGF3α, arachidonic acid, 8-iso-15-keto-PGF2a, 13-HODE, and 14,15-DHET

    • - Model 2: clinical biochemical parameter levels, including HDL, blood glucose, and TG

    • - Model 3: both fatty acid metabolites and clinical biochemical parameters: arachidonic acid, DHA, 13-HODE, 8-iso-15-keto-PGF2a, and HDL

    Model 3: both fatty acid metabolites and clinical biochemical parameters: arachidonic acid, DHA, 13-HODE, 8-iso-15-keto-PGF2a, and HDL4822801.00 (0.91–1.00)0.93 (0.77–0.99)0.99 (0.98–1.00)
    • - (Rahmati et al., 2021)

    • - No. 22

    • - 2021

    • - Iran

    Prospective study
    • - Single-center

    • - Inpatient

    • - 104 (52/52)

    • - IS

    • - Comorbidities: N/A

    • - NA

    • - NA

    50.00%
    • - micronRNA-210 (miR-210)

    • - Hypoxia inducible factor-1α (HF-1α)

    HF-1α342032180.65 (0.50–0.78)0.62 (0.47–0.75)0.73 (0.64–0.82)
    • - (Zhao et al., 2021)

    • - 2021

    • - China

    Prospective study
    • - Single-center

    • - Inpatient

    • - 100 (50/50)

    • - IS

    • - Comorbidities: Hypertension, diabetes mellitus

    • - IS 66.76 (median), control 66.74 (median)

    • - IS 31/19, control 30/20

    50.00%
    • - microRNA-148a (has-miR-148a)

    • - microRNA-342-3p (has-miR-342-3p)

    • - microRNA-19a (has-miR-19a)

    • - microRNA-320d (has-miR320d)

    • - has-miR-148a + has-miR-342-3p

    • - has-miR148a + has-miR-342-3p + has-miR-19a

    • - has-miR148a + has-miR-342-3p + has-miR-19a + has-miR-320d

    has-miR148a + has-miR-342-3p + has-miR-19a + has-miR-320d4794130.94 (0.83–0.98)0.82 (0.68–0.91)0.89 (0.77–1.00)
    • - (Park et al., 2018)

    • - 2017

    • - USA

    A prospective, case-control study
    • - Multicenter

    • - Inpatient and outpatient

    • - 305 (172/133)

    • - AIS

    • - Comorbidities: Hypertension, diabetes mellitus, hyperlipidaemia, CAD, atrial fibrillation

    • - AIS 68.8 ± 14.7, control 71.0 ± 10.5

    • - 147/158

    56.39%
    • - Glycogen phosphorylase isoenzyme BB (GPBB)

    Glycogen phosphorylase isoenzyme BB (GPBB)1609124120.93 (0.88–0.96)0.93 (0.87–0.97)0.96 (0.94–0.98)
    • - (H. T. Zhang et al., 2020)

    • - 2020

    • - China

    Case-control study
    • - Single-center

    • - Inpatient

    • - 163 (93/70)

    • - IS

    • - Comorbidities: Hypertension, diabetes mellitus

    • - IS 67.5 ± 11.2, control 66.2 ± 10.8

    • - 96/67

    57.06%
    • - Endothelial microvesicles (EMVs)

    • - EMVs carrying miRNA-155

    EMVs + EMVs-miR-15570885230.75 (0.65–0.83)0.91 (0.83–0.96)0.89 (0.84–0.94)
    • - (Sun et al., 2017)

    • - 2017

    • - China

    Case-control study
    • - Single-center

    • - Inpatient and outpatient

    • - 60 (30/30)

    • - IS

    • - Comorbidities: N/A

    • - IS 59.77 ± 12.41, control 57.83 ± 11.08

    • - 34/26

    50.00%12 Metabolites
    • - Uric acid

    • - LysoPE (0:0/18:3)

    • - LysoPC (18:2)

    • - Bilirubin

    • - Sphinganine

    • - Linoelaidyl carnitine

    • - LysoPC (16:0)

    • - Adrenoyl ethanolamide

    • - PE (15:0/22:1)

    • - PS (14:1/22:6)

    • - PC (14:0/20:4)

    • - PC (16:0/22:6)

    Uric acid2272380.73 (0.54–0.87)0.77 (0.57–0.89)0.78 (0.66–0.90)
    Sphinganine2152590.70 (0.50–0.85)0.83 (0.65–0.94)0.75 (0.63–0.88)
    Adrenoyl ethanolamide2372370.77 (0.57–0.89)0.77 (0.57–0.89)0.81 (0.70–0.92)
    • - (C. Qin et al., 2019)

    • - 2019

    • - China

    • - A retrospective, case-control study

    • - Single-center

    • - Inpatient

    • - 66 (33/33)

    • - AIS due to large-vessel occlusion (LVO)

    • - Comorbidities: Hypertension, diabetes mellitus, coronary heart disease, hypercholesterolemia

    • - AIS due to LVO 54 (46–59), HC 55 (45–62)

    • - 41/25

    50.00%
    • - IGF2

    • - LYVE1

    • - PPBP, THBS1

    The 4-protein panel (IGF2, LYVE1, PPBP, THBS1)NANANANANANA0.95 (0.90–1.01)
    • - (Lee et al., 2020)

    • - 2020

    • - South Korea

    A prospective, case-control study
    • - Single-center

    • - Inpatient

    • - 61 (30/31)

    • - AIS

    • - Comorbidities: Cardiovascular disease, hypertension, diabetes, atrial fibrillation

    • - AIS 59.9 ± 10.9, HC 56.12 ± 5.6

    • - 30/31

    49.18%
    • - Prothrombin (F2)

    • - Plasminogen (PLG)

    • - Fibrinogen alpha chain (FGA)

    • - Histidine-rich glycoprotein (HRG)

    F22642740.87 (0.68–0.96)0.87 (0.69–0.96)0.92 (0.84–0.99)
    PLG2913010.97 (0.81–1.00)0.97 (0.82–1.00)0.98 (0.94–1.02)
    FGA2722930.90 (0.72–0.97)0.93 (0.77–0.99)0.92 (0.85–0.99)
    HRG2913010.97 (0.81–1.00)0.97 (0.815–1.00)0.98 (0.944–1.02)
    • - (Tiedt et al., 2017)

    • - 2017

    • - Germany

    Case-control study
    • - Single-center

    • - Inpatient

    • - 300 (200/100)

    • - IS

    • - Comorbidities: Hypertension, hypercholesterolemia, diabetes mellitus

    • - IS 74.1 ± 13.4, HC 65.6 ± 13.4

    • - 148/152

    66.67%
    • - 33 microRNAs (miRNAs)

    A set of miR-125a-5p, miR-125b-5p and miR-143-3p1712476290.86 (0.80–0.90)0.76 (0.66–0.84)0.90 (0.87–0.93)
    • - (L. S. Dolmans et al., 2019)

    • - 2019

    • - the Netherlands

    Cross-sectional study
    • - NA

    • - Outpatient and home

    • - 206 (126/80)

    • - TIA

    • - Comorbidities: Hypertension, diabetes mellitus, hyperlipidemia, cerebrovascular disease, renal insufficiency, migraine, epilepsy

    • - TIA 71.4 ± 12.0, control 62.0 ± 14.2

    • - 122/84

    61.17%
    • - NR2

    • - NR2Ab

    • - B-FABP

    • - H-FABP

    • - NDKA

    • - UFD1

    • - PARK7

    H-FABP442852820.35 (0.27–0.44)0.65 (0.53–0.75)NA
    • - (J. Liu et al., 2020)

    • - 2020

    • - China

    Prospective study
    • - Single-center

    • - Inpatient

    • - 137 (72/65)

    • - AIS

    • - Comorbidities: Hypertension, diabetes mellitus, dyslipidemia, cervical artery plaques

    • - AIS 58.7 ± 9.7, control 56.6 ± 8.5

    • - 81/56

    52.55%
    • - Sphingosine 1-phosphate (S1P)

    • - High-density lipoprotein cholesterol (HDL-C)

    S1P442540280.61 (0.49–0.72)0.62 (0.49–0.73)0.62 (0.53–0.72)
    S1P within 24 h of symptom onset49857230.68 (0.56–0.78)0.87 (0.77–0.94)0.83 (0.74–0.92)
    • - (Z. Z. Chen et al., 2018)

    • - 2018

    • - China

    Prospective study
    • - NA

    • - Inpatient

    • - 230 (128/102)

    • - AIS

    • - Comorbidities: Hypertension, diabetes, coronary disease, dyslipidemia

    • - AIS 68.42 ± 17.26, control 65.36 ± 16.32

    • - 109/19

    55.65%
    • - Plasma hs-CRP

    • - Serum miR-146b, miR-21, miR-145, miR-29b, miR-221

    • - Interleukin (IL-6)

    Combination of hs-CRP, IL-6 and miR-146bNANANANANANA0.87 (0.80–0.93)
    • IS, ischemic stroke group; C, control group; TP, true positive; FP, false positive; TN, true negative; FN, false negative; Sen, sensitivity; Spe, specificity; AUC, area under the curve; N/A, not applicable.

    • ↵a The one generated the final diagnostic value.

    • View popup
    Table 3.

    Summarized results of the meta-analysis

    SubgroupNumber of included studiesTotal sample sizeAUCSen (95% CI)Spe (95% CI)PLR (95% CI)NLR (95% CI)DOR (95% CI)
    All combined233,4940.890.76 (0.74–0.78)0.84 (0.83–0.86)4.91 (3.69–6.53)0.26 (0.20–0.32)23.14 (14.15–37.84)
    Setting
     Inpatient182,7950.880.76 (0.74–0.78)0.84 (0.83–0.86)4.85 (3.64–6.45)0.28 (0.23–0.33)21.66 (14.15–33.16)
     Othersa46210.910.71 (0.66–0.75)0.83 (0.78–0.87)4.40 (1.54–12.60)0.27 (0.09–0.83)16.95 (2.41–119.25)
    Sample size
     <10095780.920.86 (0.82–0.88)0.82 (0.79–0.86)4.95 (3.44–7.12)0.20 (0.14–0.27)30.87 (16.31–58.42)
     ≥100142,9160.860.73 (0.71–0.75)0.85 (0.83–0.87)4.73 (3.11–7.19)0.31 (0.23–0.41)17.57 (8.84–34.91)
    Target IS population
     IS68050.870.82 (0.78–0.85)0.80 (0.76–0.84)4.07 (2.65–6.27)0.26 (0.17–0.40)17.74 (7.85–40.10)
     AIS121,6500.910.77 (0.75–0.80)0.88 (0.85–0.90)6.78 (4.40–10.44)0.24 (0.19–0.31)32.72 (17.38–61.60)
     Othersb51,0390.840.68 (0.64–0.72)0.81 (0.78–0.84)3.00 (1.66–5.42)0.31 (0.17–0.56)12.91 (3.69–45.16)
    Blood biomarker profiling
     Single142,1360.880.73 (0.71–0.75)0.84 (0.82–0.86)4.52 (3.15–6.47)0.27 (0.21–0.36)19.74 (10.56–36.89)
     Multiple91,3580.910.81 (0.78–0.83)0.86 (0.83–0.88)5.89 (4.23–8.20)0.22 (0.16–0.30)30.20 (19.44–46.91)
    Ethnicity
     Asian172,4740.890.75 (0.73–0.77)0.86 (0.85–0.88)5.55 (4.00–7.68)0.29 (0.25–0.35)23.92 (14.81–38.64)
     Caucasian59240.900.77 (0.73–0.80)0.81 (0.77–0.85)4.53 (1.56–13.14)0.21 (0.06–0.77)23.52 (2.93–188.62)
     African1960.750.84 (0.77–0.90)0.68 (0.60–0.76)2.59 (1.92–3.50)0.23 (0.12–0.46)11.76 (4.52–30.56)
    Comorbidities
     With comorbidities162,5370.920.77 (0.75–0.79)0.85 (0.83–0.87)5.56 (3.82–8.09)0.22 (0.16–0.31)31.55 (16.00–62.20)
     N/A79570.840.74 (0.70–0.77)0.82 (0.79–0.85)3.99 (2.55–6.25)0.32 (0.27–0.39)14.21 (7.71–26.19)
    • Sen, sensitivity; Spe, specificity; PLR, positive likelihood ratio; NLR, negative likelihood ratio; AUC, area under the curve; DOR, diagnostic odds ratio; IS, ischemic stroke; AIS, acute ischemic stroke; N/A, not applicable.

    • ↵a Inpatient and outpatient, outpatient and home.

    • ↵b Acute lacunar infarction, CRCIS, CES, CAS, TIA.

    • View popup
    Table 4.

    The characteristics of the included studies

    CharacteristicsNumber of included studies (n)aPercentage (%)
    Publication year
     2017517.24
     2018827.59
     2019310.34
     2020724.14
     2021413.79
     202226.90
    Country
     China1965.52
     USA310.34
     Egypt13.45
     Japan13.45
     Turkey13.45
     Iran13.45
     South Korea13.45
     Germany13.45
     Netherlands13.45
    Study design
     Prospective study2146.67
     Case-control study1737.78
     Retrospective study36.67
     Cohort study24.44
     Cross-sectional study12.22
     Experimental study12.22
    Study setup
     Single center2172.41
     Multicenter517.24
     N/A310.34
    Setting
     Inpatient department2784.38
     Outpatient department39.38
     Home13.13
     N/A13.13
    Total sample size (n)
     1–50413.79
     >50–1001034.48
     >100–200620.69
     >200–300517.24
     >300–400310.34
     >40013.45
    Target IS population
     AIS2068.97
     IS620.69
     Acute lacunar infraction13.45
     Cardio embolic stroke13.45
     TIA13.45
    Age of participants (mean/median in years)
     45–591027.78
     60–701644.44
     >70822.22
     NA25.56
    Prevalence of IS (%)
     >20–4026.90
     >40–602172.41
     >60–80620.69
    • N/A, not applicable.

    • ↵a One study may have ≥ 1 characteristic.

Back to top

In this issue

eneuro: 11 (11)
eNeuro
Vol. 11, Issue 11
November 2024
  • Table of Contents
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this eNeuro article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Systematic Review and Meta-Analysis Assessing the Accuracy of Blood Biomarkers for the Diagnosis of Ischemic Stroke in Adult and Elderly Populations
(Your Name) has forwarded a page to you from eNeuro
(Your Name) thought you would be interested in this article in eNeuro.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
A Systematic Review and Meta-Analysis Assessing the Accuracy of Blood Biomarkers for the Diagnosis of Ischemic Stroke in Adult and Elderly Populations
Suebsarn Ruksakulpiwat, Wendie Zhou, Lalipat Phianhasin, Chitchanok Benjasirisan, Tingyu Su, Heba M. Aldossary, Aaron Kudlowitz, Abhilash K. Challa, Jingshu Li, Kulsatree Praditukrit
eNeuro 11 November 2024, 11 (11) ENEURO.0302-24.2024; DOI: 10.1523/ENEURO.0302-24.2024

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
A Systematic Review and Meta-Analysis Assessing the Accuracy of Blood Biomarkers for the Diagnosis of Ischemic Stroke in Adult and Elderly Populations
Suebsarn Ruksakulpiwat, Wendie Zhou, Lalipat Phianhasin, Chitchanok Benjasirisan, Tingyu Su, Heba M. Aldossary, Aaron Kudlowitz, Abhilash K. Challa, Jingshu Li, Kulsatree Praditukrit
eNeuro 11 November 2024, 11 (11) ENEURO.0302-24.2024; DOI: 10.1523/ENEURO.0302-24.2024
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Background
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
    • Synthesis
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • blood biomarker
  • diagnostic test
  • ischemic stroke
  • meta-analysis

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Review

  • My 50 Year Odyssey to Develop Behavioral Methods to Let Me See Quickly How Well Kittens See
  • Neuroscientist’s Behavioral Toolbox for Studying Episodic-Like Memory
Show more Review

Disorders of the Nervous System

  • The PDGFBB-PDGFRβ Pathway and Laminins in Pericytes Are Involved in the Temporal Change of AQP4 Polarity during Temporal Lobe Epilepsy Pathogenesis
  • The Ventral Pallidum Innervates a Distinct Subset of Midbrain Dopamine Neurons
  • Rethinking Alzheimer's: Harnessing Cannabidiol to Modulate IDO and cGAS Pathways for Neuroinflammation Control
Show more Disorders of the Nervous System

Subjects

  • Disorders of the Nervous System
  • Reviews
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Latest Articles
  • Issue Archive
  • Blog
  • Browse by Topic

Information

  • For Authors
  • For the Media

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Feedback
(eNeuro logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
eNeuro eISSN: 2373-2822

The ideas and opinions expressed in eNeuro do not necessarily reflect those of SfN or the eNeuro Editorial Board. Publication of an advertisement or other product mention in eNeuro should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in eNeuro.