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Abstract

Arousal powerfully influences cortical activity, in part by modulating local inhibitory circuits. Somatostatin
(SOM)-expressing inhibitory interneurons are particularly well situated to shape local population activity in re-
sponse to shifts in arousal, yet the relationship between arousal state and SOM activity has not been charac-
terized outside of sensory cortex. To determine whether SOM activity is similarly modulated by behavioral
state across different levels of the cortical processing hierarchy, we compared the behavioral modulation of
SOM-expressing neurons in auditory cortex (AC), a primary sensory region, and posterior parietal cortex
(PPC), an association-level region of cortex, in mice. Behavioral state modulated activity differently in AC and
PPC. In PPC, transitions to high arousal were accompanied by large increases in activity across the full PPC
neural population, especially in SOM neurons. In AC, arousal transitions led to more subtle changes in overall
activity, as individual SOM and Non-SOM neurons could be either positively or negatively modulated during
transitions to high arousal states. The coding of sensory information in population activity was enhanced dur-
ing periods of high arousal in AC, but not in PPC. Our findings suggest unique relationships between activity
in local circuits and arousal across cortex, which may be tailored to the roles of specific cortical regions in
sensory processing or the control of behavior.

Key words: arousal; auditory cortex; inhibition; posterior parietal cortex; somatostatin

Significance Statement

The effects of arousal on brain networks are profound but vary across regions. Somatostatin (SOM) neurons
may carry out some of the effects of arousal on local network activity in sensory cortex, by modulating re-
sponse gain and decorrelating population activity. However, SOM neurons have not been well studied out-
side of sensory cortex, and so it is unknown whether SOM neurons are similarly affected by shifts in brain
state throughout the cortex. Here, we have revealed specialization in the relationship between arousal and
activity in SOM neurons that could contribute to the diversity of arousal-related impacts on local computa-
tion across cortical regions.

Introduction
Arousal profoundly impacts brain activity, at both local

and global scales (Livingstone and Hubel, 1981; Marrocco
et al., 1994; Cantero et al., 1999; Gould et al., 2011; Grent-
’t-Jong et al., 2011; Stringer et al., 2019), and affects sen-
sory perception by tailoring sensory processing to match
behavioral demands (Pinto et al., 2013; McGinley et al.,
2015; Dadarlat and Stryker, 2017; Kuchibhotla et al., 2017).

In sensory cortex, the response gain and signal-to-noise
ratio of responses to sensory stimuli of individual neurons
are enhanced with arousal (Niell and Stryker, 2010; Bennett
et al., 2013; Polack et al., 2013; Fu et al., 2014; McGinley et
al., 2015; Vinck et al., 2015; Mineault et al., 2016). At the
population level, activity across neurons becomes decorre-
lated (Poulet and Petersen, 2008; Zhou et al., 2014; Vinck et
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al., 2015; Lin et al., 2019), which can enhance the encoding
of sensory information by reducing redundancy and corre-
lated noise (Averbeck et al., 2006).
In sensory cortex, these effects can be triggered by the

release of neuromodulators linked to arousal, such as nor-
epinephrine and acetylcholine, which act in part through
inhibitory interneurons to influence local activity patterns
(Fu et al., 2014; Chen et al., 2015; Kuchibhotla et al.,
2017; Garcia-Junco-Clemente et al., 2019). The inhibitory
cell class can be divided into three nonoverlapping sub-
types, which express parvalbumin (PV), somatostatin
(SOM), or vasoactive intestinal peptide (VIP), and exhibit
distinct local connectivity patterns (Tremblay et al., 2016).
SOM neurons are particularly sensitive to arousal state
fluctuations, through direct activation of cholinergic and
noradrenergic receptors (Kawaguchi and Shindou, 1998;
Xiang et al., 1998; Beierlein et al., 2000; Fanselow et al.,
2008; Chen et al., 2015; Kuchibhotla et al., 2017) and inhi-
bition by VIP neurons (Pfeffer et al., 2013; Pi et al., 2013;
Fu et al., 2014; Karnani et al., 2016; Dipoppa et al., 2018).
In turn, SOM neurons can powerfully influence local net-
work activity, as they densely innervate the local excitatory
population (Fino and Yuste, 2011; Pfeffer et al., 2013; Xu et
al., 2013). When they are active, SOM neurons enhance
stimulus selectivity and response reliability (Adesnik et al.,
2012; Wilson et al., 2012; Rikhye et al., 2021), control local
population activity dynamics (Chen et al., 2015; Veit et al.,
2017), and flexibly modulate excitatory responses to stimu-
li, based on behavioral relevance (Kato et al., 2015; Wang
and Yang, 2018).
The impacts of arousal on sensory perception, and on

coding in sensory cortex, have been well studied (Fu et
al., 2014; Zhou et al., 2014; McGinley et al., 2015; Vinck et
al., 2015; Pakan et al., 2016). It is unclear though how
specialized or generalized the relationship between
arousal and local inhibitory circuit function is across the
cortical hierarchy. For example, while arousal-mediated
and attention-mediated reductions in shared variability
seem to improve sensory coding (Cohen and Maunsell,
2009; Goard and Dan, 2009), similar effects could be det-
rimental to the readout of perceptual decisions to control
behavior in higher cortex (Runyan et al., 2017; Valente et

al., 2021). The basic structure of local circuits is highly
conserved across cortical regions, yet differences in neu-
romodulatory receptor expression, the density of specific
cell types, or in the specifics of local connectivity can alter
the influence of neuromodulatory input on the pattern of
neural population activity. Indeed, the density of SOM neu-
rons is increased relative to PV neurons in association cor-
tex (Kim et al., 2017; Dienel et al., 2021), suggesting that
the population-level computations that SOM neurons par-
ticipate in, and thus the relationship between arousal state
and local network state, may differ across the cortical proc-
essing hierarchy.
Here, we hypothesized that arousal-related modulation

of SOM neurons, and of local neural activity, would be
specialized across cortical regions to match different
arousal-related demands on local computation. We ex-
amined the effects of arousal state on activity in SOM and
Non-SOM neurons in the primary auditory cortex (AC),
and in the posterior parietal cortex (PPC). AC is a primary
sensory region of the cortex, where the relationship be-
tween arousal and neural activity has been well studied
(Schneider et al., 2014; Zhou et al., 2014; McGinley et al.,
2015; Bigelow et al., 2019; Yavorska and Wehr, 2021).
PPC is an association-level region that participates in flex-
ible sensorimotor transformations (Fitzgerald et al., 2011;
Harvey et al., 2012; Morcos and Harvey, 2016; Licata et
al., 2017; Tseng et al., 2022). In PPC, task engagement is
known to impact the structure of local population activity
(Runyan et al., 2017; Pho et al., 2018; Valente et al., 2021),
though relatively little is known about the specific contri-
bution of generalized increases in arousal to the activity of
PPC. Outside of a task context, firing rates of neurons in
PPC are positively correlated with arousal level (Stitt et al.,
2018), but the effects of arousal on specific inhibitory neu-
ron types within PPC are not known. In the current study,
we have revealed different relationships among arousal
state, the structure of local population activity, and infor-
mation coding in AC and PPC, suggesting that the effects
of arousal on local processing are specialized across the
cortical hierarchy.

Materials and Methods
Experimental design and statistical analysis
All pairwise comparisons were done with two-sided

paired or unpaired permutation (i.e., randomization) tests
with 10,000 iterations as indicated, where p, 0.0001 indi-
cates the highest significance achievable given the num-
ber of iterations performed. Given that the exact p value is
unknown in these cases, p values of the highest significance
are reported as such rather than as an exact value. All permu-
tation tests were performed for differences in means. For sta-
tistical comparisons involving more than two groups, we
used Kruskal–Wallis (nonparametric ANOVA) and used un-
paired permutation tests post hoc to determine which groups
differed from each other. Data fell into natural groupings by
(1) brain area (AC or PPC) and by (2) cell-type (SOM or Non-
SOM), as indicated by expression of the red fluorophore,
tdTomato. All bar plots show the mean and bootstrapped
95% confidence intervals using 1000 iterations unless
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otherwise indicated. When multiple comparisons were made
between groups, significance thresholds were Bonferroni
corrected. Sample sizes were chosen based on previous
studies comparing population activity dynamics across brain
areas or cell types (Runyan et al., 2017; Khan et al., 2018).

Animals
All procedures were approved by the University of

Pittsburgh Institutional Animal Care and Use Committee.
Homozygous SOM-Cre mice (Sst-IRES-Cre; stock #013044)
were crossed with homozygous Ai14mice (RCL-tdT-D; stock
#007914) obtained from The Jackson Laboratory, and all ex-
periments were performed in the F1 generation, which ex-
pressed tdTomato in SOM1 neurons. Mice were group
housed in cages with between two and four mice. Adult
(8–24weeks) male and female mice were used for experi-
ments (four male, two female). Mice were housed on a re-
versed 12 h light/dark cycle, and all experiments were
performed in the dark (active) phase.
Mice were anesthetized with isoflurane (4% for induction,

and 1–2% maintenance during surgery), and mounted on a
stereotaxic frame (David Kopf Instruments). Ophthalmic oint-
ment was applied to cover the eyes (Henry Schein Medical).
Dexamethasone was injected 12–24 h before surgery, and
carprofen and dexamethasone (Covetrus) were injected sub-
cutaneously immediately before surgery for pain manage-
ment and to reduce the inflammatory response. Two circular
craniotomies, each of 2 mm diameter, were made over left
AC and PPC (centered at 2 mm posterior and 1.75 mm lat-
eral to bregma). For AC, the craniotomy was centered on the
temporal ridge, and the posterior edge was aligned with the
lambdoid suture. Two millimeter biopsy punches were used
to outline the circumference of the window before drilling.
One to four evenly spaced;60 nl injections of the AAV1-

synapsin-GCaMP6f (stock #100837, Addgene) that had
been diluted to a titer of ;1� 1012 viral genomes/ml using
sterile PBS were made in each cranial window, centered in
each craniotomy. A micromanipulator (QUAD) was used to
target injections ;250mm under the dura at each site,
where;60 nl of virus was pressure injected over 5–10min.
Pipettes were not removed until 5min postinjection to
prevent backflow. Dental cement (Parkell) sealed a glass
coverslip (3 mm) over a drop of Kwik Sil (World Precision
Instruments) over the craniotomy. Using dental cement,
a one-sided titanium headplate was attached to the right
hemisphere of the skull. After mice had recovered from
the anesthesia, they were returned to their home cages,
and received oral carprofen tablets (Bio-Serv) for 3 d
postsurgery.

Experimental setup
Two-photon microscope
Images were acquired using a resonant scanning two-

photon microscope (Ultima Investigator) at a 30Hz frame
rate and 512� 512 pixel resolution through a 16� water-im-
mersion lens (16�/0.8numerical aperture; model CF175,
Nikon). On separate days, either AC or PPC was imaged at
a depth between 150 and 300mm, corresponding to layers
2/3 of cortex. For AC imaging, the objective was rotated 35–

45° from vertical, and for PPC imaging, it was rotated to 5–
15° from vertical, matching the angle of the cranial win-
dow implant. Fields of view were 500 mm2 and contained
1876 95 neurons, 206 10 (mean 6 SD) of which were
classified as SOM neurons. Excitation light was provided
by a femtosecond infrared (IR) laser (Insight X3, Spectra-
Physics) tuned to 920 nm. Green and red wavelengths
were separated through a 565 nm low-pass filter before
passing through bandpass filters (catalog #ET525/70
and #ET595/50, Chroma). PrairieView software (version
5.5; Bruker) was used to control the microscope.

Behavioral monitoring
Running velocity was monitored on pitch and roll axes

using two optical sensors (model ADNS-98 000, Tindie)
held adjacent to the spherical treadmill. A microcon-
troller (Teensy 3.1, Adafruit) communicated with the
sensors, demixing their inputs to produce one output chan-
nel per rotational axis using custom code. Outputs con-
trolling the galvanometers were synchronized with running
velocity using a digital oscilloscope [WaveSurfer, Janelia
Research Campus, Howard Hughes Medical Institute
(HHMI)].
Pupil images were acquired at 1280� 1024 pixels, at

10Hz from an IR camera focused on one eye [Flea3 FL3-U3-
13Y3M-C one-half inch Monochrome USB 3.0 Camera, with
1.0� SilverTL Telecentric Lens (field of view, 6.74 � 5.39
mm), Edmund Optics]. The pupil was illuminated by the IR
light emitted by the two-photon laser and required no
additional IR illumination. Movies were acquired with the
MATLAB Image Acquisition Toolbox (MathWorks). Pupil
area was determined in each pupil movie frame post hoc
using custom MATLAB code (MathWorks). The pupil
was constricted by controlling ambient illumination with
an array of LCD screens (LP097QX1, LG Display) to
maintain a moderate pupil area baseline from which in-
creases and decreases in area could be measured.

Experimental protocol
Imaging began 3–5weeks postsurgery once robust ex-

pression of the GCaMP6f virus was observed. In each imag-
ing session, GCaMP6f fluorescence changes were imaged
in SOM (tdTomato1) and Non-SOM neurons, while mice ran
freely on a spherical treadmill. In the spontaneous context,
no sensory stimuli were delivered, while in the passive-
listening context, location-varying sound stimuli were pre-
sented (seeMaterials andMethods, subsection Sound stim-
uli). Spontaneous and passive listening contexts lasted
;25–50min each. Imaging alternated between AC and PPC
across days. Multiple imaging sessions were performed in
each cranial window, focusing at slightly different depths
and lateral/posterior locations within the imaging windows
across sessions. AC and PPC were each imaged in six mice
(biological replicates). Each cranial window was imaged up
to 11 times (technical replicates). Imaging from a given cra-
nial window was suspended when we observed nuclear in-
clusion in two or more cells in the field of view, which
indicates an overexpression of GCaMP6f.

Sound stimuli
Four magnetic speakers were positioned in a semicircu-

lar array (model MF1-S, Tucker-Davis), centered on the
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mouse’s head. The speakers were positioned at �90°,
�30°, 130°, and 190° from the midline in azimuth and
driven by MATLAB through a digital/analog converter
(National Instruments). Speakers were calibrated to deliv-
er similar sound levels (;70 dB) in a sound isolation
chamber using a random incidence microphone (model
4939, Brüel & Kjær). During passive listening, 1 or 2 s dy-
namic ripples (broadband stimuli created in MATLAB by
summing 32 tones spaced across 2–32 kHz, which fluctu-
ated at 10–20Hz; Elhilali et al., 2004) were presented from
one of eight locations. Four of the sound locations corre-
sponded to the locations of the four speakers (�90°,
�30°, 130°, 190°), while the other four sound locations
(�60°, �15°, 115°, 160°) were simulated using vector-
based intensity panning, where the same sound stimulus
was delivered to two neighboring speakers simultaneously,
scaled by a gain factor (Runyan et al., 2017). Dynamic rip-
ples were chosen to optimally drive populations of neurons
in auditory cortex with diverse frequency tuning preferen-
ces. Each sound repeated three times at one location be-
fore switching to another. Each ripple played from each of
the eight locations in randomized order, with a 240ms gap
between each sound. Output controlling the audio speakers
was recorded along with two-photon imaging galvo and
running velocity using WaveSurfer (Janelia Research
Campus, HHMI), and these signals were aligned offline.

Data processing
Imaging datasets from 24 AC fields of view and 20 PPC

fields of view were included from six mice. We excluded
any datasets with significant photobleaching or more than
two filled cells. We also excluded any AC or PPC dataset
from analysis if fewer than one-third of neurons that were
significantly responsive (according to our definition in sub-
section Sound responsiveness) to at least one sound loca-
tion, as we were interested in the effect of arousal on both
spontaneous and sound-evoked responses. For AC data-
sets, we analyzed single-cell responses to pure tones on a
subset of fields of view from each mouse, and then ana-
tomically aligned all fields of view from datasets collected
from each window, to ensure each field of view lay in a re-
gion representing tone frequencies in the sonic range of
the tonotopic axis of primary auditory cortex. We elimi-
nated any datasets where .50% of tone-responsive neu-
rons had a preferred frequency that was in the ultrasonic
range (.20 kHz), as well as any fields of view that were
aligned anterior to a field of view where this was observed,
to assure that we were seeing sound responses in the
range of frequencies primarily represented by our dynamic
ripples (described in subsection Sound stimuli). We col-
lected wide-field fluorescence responses to pure tones in
all AC cranial windows and observed pure-tone responses
in the sonic range for all AC windows; however, the extent
of the viral expression within windows was too spatially
limited to allow for mapping of specific regions.

Image processing
For each field of view, the raw calcium movies collected

during the spontaneous activity and passive listening con-
texts were concatenated before motion correction, cell

body identification, and fluorescence and neuropil ex-
traction. These processing steps were performed using
Suite2p 0.9.3 in Python (Pachitariu et al., 2017). Suite2p
first registered images to eliminate brain motion, and
clustered neighboring pixels with similar time courses
into regions of interest (ROIs). ROIs were manually cu-
rated using the Suite2p graphical user interface (GUI),
to ensure that only cell bodies, as opposed to dendritic
processes, were included in analysis, based on mor-
phology. Cells expressing tdTomato (SOM cells) were
identified using a threshold applied in the Suite2p GUI
based on mean fluorescence in the red channel after
bleed-through correction applied by the Suite2p cell
detection algorithm, along with manual correction. For
each ROI, Suite2p returned a raw fluorescence time se-
ries, as well as an estimate of neuropil fluorescence that
could contaminate the signal. For each cell, we scaled
the neuropil fluorescence by a factor by 0.7 and sub-
tracted this time series from the raw fluorescence time
series of the ROI to obtain a neuropil-corrected fluores-
cence signal for each selected cell.

DF/F and deconvolution
Once the neuropil corrected fluorescence was obtained

for each neuron, we calculated DF/F for each cell in each
frame by calculating (F – Fbaseline)/Fbaseline for each frame,
where F is the fluorescence of a given cell at that frame and
Fbaseline was the eighth percentile of the fluorescence of
that cell spanning 450 frames before and after (;15 s each
way, 30 s total). DF/F time series were then deconvolved to
estimate the relative spike rate in each imaging frame using
the OASIS toolbox (Friedrich et al., 2017). We used the
AR1 FOOPSI algorithm and allowed the toolbox to opti-
mize the convolution kernel, baseline fluorescence, and
noise distribution. A threshold of 0.05 a.u. was applied to
remove all events with low magnitude from deconvolved
activity time series. All analyses were performed with both
DF/F and deconvolved activity, and showed the same
trends. Outside of Figure 1F and 1H, only results using de-
convolved activity are shown.

Single-cell modulation by sound stimuli, running
behavior, and pupil size
Sound responsiveness
The deconvolved activity of each neuron was z scored

across its entire time series and trial averaged. For each
sound location, we then calculated the sound-evoked re-
sponse as the difference between the mean activity during
the sound presentation and the mean activity in the 240 ms
before sound onset. We then compared the evoked sound
responses to shuffled distributions, where the activity of each
cell was shifted randomly by at least 5 s in time relative to
sound location time series, and the sound-evoked response
was recalculated. This was repeated 1000 times. A neuron
was considered to be sound responsive if it had a sound-
evoked response in at least one sound location that was
greater than the 97.5 percentile of the shuffled distribution.

Running bouts and modulation
Running bout onsets were defined as transitions in

speed from ,10 to .10 cm/s, and required that the mean
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Figure 1. Imaging spike-related activity in SOM and Non-SOM neurons during behavioral state transitions. A, Viral injections and
cranial windows were made over AC and PPC in each SOM-tdTomato mouse. B, In imaging sessions, mice were headfixed over a
spherical treadmill and allowed to run voluntarily. Four speakers arranged around the head presented sound stimuli. An infrared
camera was used to image the pupil, and a rotating two-photon microscope was focused on either AC or PPC on a given imaging
day. C, Each imaging session included spontaneous and passive listening contexts, without or with randomly presented sound
stimuli from each of eight locations, respectively. D, Pupil area was monitored via the pupil camera; the scale bar in the bottom
image applies to top (constricted pupil) and bottom (dilated pupil). E, Example field of view from auditory cortex, with intermingled
tdTomato1/SOM1 (magenta) and tdTomato–/SOM– neurons, coexpressing GCaMP6f (green). F, Example aligned behavioral and
neural signals collected during the imaging session in E, including running speed (in cm/s), normalized pupil area, dF/F from a Non-
SOM (red) and SOM neuron (orange), each overlaid with the deconvolved estimated spike rates of the neuron. G, As in E, for an ex-
ample posterior parietal cortex field of view. H, As in F, for the PPC field of view in G. I, Proportions of Non-SOM and SOM neurons
in AC (left) and PPC (right) with significant positive (white), negative (black), or no modulation (gray) by the of the mouse running. AC
Non-SOM, N=2645; AC SOM, N=359; PPC Non-SOM, N=4719; PPC SOM, N=525. J, As in I, for pupil dilation. K, Proportion of
Non-SOM and SOM neurons in AC and PPC that were significantly sound responsive to at least one location (white) or not signifi-
cantly sound responsive (gray).
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running speed in the 1 s following the transition was three
times greater than the 1 s before running bout onset, and
that the mouse maintained a minimum speed of 15 cm/s
for the following 2 s.
Running modulation was calculated as the difference in

mean activity of a cell in the 1 s before running bout onset
and the mean activity of a cell in the 3 s window following
running bout onset. A shuffling procedure was applied to
determine which cells were positively, negatively, and not
modulated by running. The activity of each cell was
shifted randomly by at least 5 s in time relative to running
speed time series, and for 1000 time-shifted iterations,
running modulation was recalculated. Positively modu-
lated neurons had positive running modulation values
higher than the 97.5 percentile of the shuffled distribution
of that cell. Negatively modulated cells had negative run-
ning modulation values lower than the 2.5 percentile of
the shuffled distribution of that cell. All other cells were
considered to not be modulated by running speed
increases.

Pupil dilation events and modulation
Pupil area was normalized to its maximum across the

imaging session. To identify pupil dilation events, we first
identified all local maxima of the pupil area. We then
found the point before this where the derivative of pupil
area was zero. We included events where the time from
the inflection point to the local maximum was at least a
40% increase in pupil area and that the change from the
inflection point to the local maximum was ,1 s, and that
the local maximum was at least 50% of the maximum
total area by the pupil during that imaging session. We
considered each inflection point to be the onset of dilation
events.
To capture all pupil dilation-related activity, which had a

slower time course than running (see Fig. 4), we calculated
pupil modulation for each neuron as the difference between
the mean activity in the 1 s time window before dilation
event onset and the mean activity in the 5 s time window
after dilation event onset. We applied the same shuffling
procedure as described for running modulation (subsection
Running bouts and modulation) to determine which neu-
rons were positively, negatively, and not modulated by
pupil dilation events.

Arousal states
Defining low and high arousal states based on pupil area
K-means clustering was applied to the full pupil area

time series, which included both spontaneous activity and
passive listening contexts, to classify each pupil area
measurement as low, transitional, or high arousal. Each
pupil area time series was the mean normalized using the
following equation:

x��x
�x:

The Manhattan (called City Blocks) distance metric was
applied to define two centroid clusters that served as the
high arousal and low arousal groups. Transition periods
included timepoints when the absolute difference in

distance to the high arousal and low arousal centroids
was,0.05.

Arousal modulation index
The arousal modulation index (AMI) was calculated for

each neuron using the following equation:

FRhi�FRlo

FRhi1FRlo
;

where FRhi is the mean response of the neuron in the high
arousal state and FRlo is the mean response of the neuron
in the low arousal state. We first maximum normalized the
deconvolved activity trace of each neuron across the en-
tire time series. To calculate FRhi (or FRlo), we summed
the activity from the high (or low) arousal state and divided
by the total time spent in the high (or low) arousal state in
the spontaneous context. This index could vary continu-
ously between �1 and11, where negative values indicate
higher activity in the low arousal state, and positive num-
bers indicate higher activity during the high arousal state.

Encodingmodels
We used an encoding model to disentangle the contri-

butions of pupil size and running speed to the activity of
neurons in AC and PPC. In the generalized linear model
(GLM), the time-dependent effects of all measured exter-
nal variables on the activity of each neuron were esti-
mated (Pillow et al., 2008; Runyan et al., 2017). The
following three classes of predictors were used in differ-
ent combinations to quantify their contributions to neuro-
nal activity: running, pupil size, and sound stimulus
predictors. We used a Bernoulli-based GLM to weight
various combinations of predictors based on these varia-
bles to predict the binarized activity of each neuron (time
series of relative spike rates were thresholded at 0.05).
The encoding model is fully described in our previous
work (Runyan et al., 2017).

Pupil size and running predictors
Running velocity was measured at a higher time resolu-

tion than imaging and was binned to match the sampling
rate of two-photon images (30Hz). We included the veloc-
ity along the pitch and roll axes of the treadmill (relative to
the mouse body axis). Running velocity measurements
were separated into the following four channels: (1) for-
ward, (2) reverse, (3) left, and (4) right directions based on
rotation along these axes. Running velocity changes
could both precede or follow the activity of individual neu-
rons, so time series of running velocity were convolved
with four evenly spaced Gaussian basis functions (240ms
half-width at half-height) extending 1 s both forward and
backward in time (eight basis functions total for each run-
ning direction: forward, reverse, left, and right). Changes
in pupil area were modeled similarly. Because pupil area
changes on a slower timescale, the pupil area trace was
convolved with 16 evenly spaced Gaussian basis func-
tions 4 s forward and backward in time to allow for either
prediction or response to pupil area changes.
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Sound stimulus predictors
Sound stimuli were delivered from specific sound loca-

tions in the passive listening context. For sound stimulus
onsets at each of the possible sound locations, 12 evenly
spaced Gaussian basis functions (170 ms half-width at
half-height) extended 2 s forward in time from each sound
onset. First, second, and third repeats were represented
separately because of potential adaptation-related ef-
fects. This resulted in 12 basis functions per repeat per
sound location � three repeats � eight locations for 288
sound predictors.

GLM fitting and cross-validation procedures
All predictors were maximum normalized before the fit-

ting procedure. The b -coefficients for the predictors were
fitted to the activity of each neuron individually, using the
glmnet package in R (Friedman et al., 2010) with elastic-
net regularization, which smoothly interpolated between
L1 and L2 type regularization according to the value of an
interpolation parameter a, such that a = 0 corresponded
to L2 and a = 1 corresponded to L1. We selected a = 0.25.
Trials were randomly split into training (70% of trials)

and testing (remaining 30% of trials) sets, while balancing
the distribution of sound locations. Fitting was performed
on the training set, and within each training dataset, cross-
validation folds (3�) were also preselected so that sound
locations were evenly represented. Model performance
(see below, subsection GLM model performance) was as-
sessed on the test set. Each model was thus fitted and
tested on entirely separate data to prevent overfitting from
affecting results. This train/test procedure was repeated 10
times, with random subsamples of the data included in
train and test segments. The overall performance of each
model was assessed as its mean across all 10 iterations.

GLMmodel performance
Each model’s performance for each cell was defined as

the fraction of explained deviance of each model (com-
pared with the null model). In the null model, only a con-
stant (single parameter) was used to fit the neuron’s
activity and no time-varying predictors were included.
First, we calculated the deviance of the null and behavior
model variants (see Materials and Methods, subsection
Running and pupil contribution). For each model, the frac-
tion of null model deviance explained by the model (d)
was then calculated [(null deviance –model deviance)/null
deviance]. Deviance calculations were performed on a
test dataset (30% of the data), which had not been in-
cluded in the fitting procedure, and this train/test proce-
dure was repeated 10 times on randomly subsampled
segments of the data.

Running and pupil contribution
To identify the unique and separable contributions of

running and pupil area to activity of SOM and Non-SOM
neurons, we fit the following three separate models: (1) full
behavior model, (2) “no-pupil” model, and (3) “no-running”
model. In the full behavior model, all running, pupil, and
sound predictors were included to predict the activity of
each neuron. The no-pupil model did not include the pupil
predictors, and the no-running model did not include the

running predictors. Importantly, this analysis captures only
the unique ways that pupil size and running can explain
neural activity, where one cannot compensate for the con-
tribution of the other.
We estimated the contribution of pupil or running to the

activity of a neuron that could not be compensated for by
the other variables, by comparing the model performance
(fraction deviance explained, see Materials and Methods,
subsection GLM model performance) in the full behavior
versus no-pupil or no-running models. The “running con-
tribution”was calculated as the difference in fraction devi-
ance explained of the full model and fraction deviance
explained of the no-running model dfb – dnr, where dfb is
the full behavior deviance and dnr is the no-running devi-
ance. The “pupil contribution” was calculated as the differ-
ence in fraction deviance explained of the full model and
fraction deviance explained of the no-pupil model dfb – dnp,
where dnp is the no-pupil deviance.

Decoding
We used a population decoder to compare the sound lo-

cation information contained in AC and PPC population ac-
tivity, and its modulation with arousal state. The details of
the decoder that we built to estimate the information about
sound stimulus location have been previously described
(Runyan et al., 2017). Briefly, for each trial we decoded
sound stimulus location from single-trial population activity
by computing the probability of external variables (sound
location left/right category) given population activity. We
used Bayes’ theorem, relying on population response
probabilities estimated through the full behavior GLM and
its predictors in that trial, to compute the posterior proba-
bility of each possible sound location stimulus. The de-
coder was “cumulative” in time, as for each time point t, it
was based on all imaging frames from the initiation of the
trial through time t. The decoded stimulus location at each
time t was defined as the stimulus location with the maxi-
mum posterior probability, based on individual neurons or
on a population of simultaneously imaged neurons. The
population could include SOM, Non-SOM, or the “best”
neurons. Non-SOM neurons were randomly subsampled
10 times, matching the sample size of SOM neurons in
each iteration. The best neurons were selected as the n in-
dividual neurons with the best decoding performance,
where n is the number of SOM neurons simultaneously im-
aged. Decoder performance was calculated as the fraction
of correctly classified trials at each time point.
To compare decoder performance in low and high arousal

states, trials were classified as “low” or “high” arousal based
on normalized pupil area. Only the first sound repetition of
each trial was used. Trials were randomly subsampled in the
test set to ensure an even distribution of low and high arousal
trials, and sound locations. This random subsample was re-
peated 10 times.

Sound location sensitivity
To assess the location sensitivity of sound-related ac-

tivity in SOM and Non-SOM neurons in AC and PPC, trial-
averaged responses were used to calculate the “location
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sensitivity index” (LSI), based on vector averaging in the
preferred sound direction, as follows:

LSI ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

R Hið Þcos 2Hið Þ2 1
Xn
i¼1

R Hið Þsin 2Hið Þ2
 !vuut =

Xn
i¼1

Ri;

where R is the average response during the sound loca-
tion presentation, and H is the sound location from �90°
to 190°, indexed by i=1 to n (eight possible locations).
LSI can vary continuously from 0 (unselective) to 1 (selec-
tively responding to only one sound location). Datasets
that did not have a minimum of 20 trials for each of the
eight sound locations were excluded. Importantly, sounds
were played from free-field speakers located at different
angles relative to the interaural axis. A high LSI could cor-
respond to true sound location selectivity based on inter-
aural level differences, or to the specific intensity tuning of
a neuron, because of different sound intensities impinging
on the two ears.

Population-level analyses
Defining population activity axes related to sound location
and arousal
To determine to what degree sound stimuli and arousal

were driving population activity independently of each
other in AC and PPC, we computed two axes for each
imaging session: a sound location axis and a pupil axis.
The sound location axis was defined as the axis in popula-
tion activity space that connects the mean response on
�90° and 190° trials during the passive listening behav-
ioral context, while the pupil axis was defined as the axis
that connects the mean population activity during “low
arousal” and “high arousal” periods during the spontane-
ous behavioral context, as defined by our pupil-clustering
algorithm. These definitions are analogous to how the “at-
tention axis” is computed in primates (Cohen and Maunsell,
2010; Mayo et al., 2015; Cowley et al., 2020). We then
measured the angle between the two vectors with a value
from 0° to 90°, where 0° indicates linear dependence be-
tween the two subspaces and 90° indicates orthogonality.

Computing signal and noise correlations
We calculated noise correlations as fluctuations around

mean sound responses; therefore, we only included neurons
that had significant sound responses (Fig. 1K; see also
Materials and Methods, subsection Sound Responsiveness).
Because it was rare for the pupil of a mouse to remain either
in the high or low arousal cluster for the entire duration of a
trial including all three sound repeats, we focused our analy-
sis instead on the first repeat of a trial. We binned the z-
scored, deconvolved activity of each neuron into 15-frame
(;500ms) bins following sound onset. For each trial classi-
fied as high or low arousal, the mean sound response of
each cell to all matching sound location presentations (in-
cluding low, high, and unclassified trials) was subtracted and
trials were concatenated. We computed partial Pearson cor-
relations, discounting the effect of running speed (MATLAB
function partialcorr), on these traces. Because the ratio of low

to high trials was variable across imaging sessions, we sub-
sampled 10 times to balance for matching numbers of high
and low trials at each sound location. We only considered
imaging sessions in which there were at least 50 matched tri-
als in low and high arousal clusters.

Histology
After all imaging sessions had been acquired, each

mouse was transcardially perfused with saline and then 4%
paraformaldehyde. The brain was extracted, cryoprotected,
embedded, frozen, and sliced. Once slide mounted, we
stained brains with DAPI to be able to identify structure. We
used anatomic structure to verify the locations of our injec-
tions in AC and PPC.

Results
To determine whether the effects of arousal on local ac-

tivity are conserved across sensory and association corti-
ces, we compared spontaneous and sensory-evoked
activity in AC and PPC in six mice of both sexes, during
spontaneous shifts in the arousal state of the animals. We
used two-photon calcium imaging in superficial cortex to
measure the spike-related activity of neurons positive and
negative for the red fluorophore tdTomato, which was ex-
pressed transgenically in SOM-positive neurons (Madisen
et al., 2010; Taniguchi et al., 2011). We virally expressed
the genetically encoded calcium indicator GCaMP6f in all
layer 2/3 neurons of AC and PPC in each mouse (Chen et
al., 2013).

Neural activity wasmodulated by sound stimuli and by
behavioral correlates of arousal
During each imaging session, we focused the micro-

scope on either AC or PPC and imaged neural activity in
two contexts. During the “spontaneous” context, the
mouse ran freely on the spherical treadmill in the absence
of sensory stimulation. During passive listening, sounds
were presented from each of eight possible locations (Fig.
1B,C). In both contexts, mice were head fixed and al-
lowed to run voluntarily on a spherical treadmill. To track
the behavioral state, running velocity and pupil area of the
mouse were recorded throughout imaging sessions (Fig.
1A–H).
We first examined how changes in pupil area and running

speed corresponded with changes in the activity of individual
neurons during the spontaneous context. Throughout imag-
ing sessions, mice transitioned between behavioral states
that reflect different arousal states: stillness and running, and
pupil constriction and dilation (Fig. 1F,H). To quantify the ef-
fect of behavioral state transitions on the activity of individual
neurons, we identified timepoints during the spontaneous
context when either running speed or pupil area increased
(Materials and Methods, subsections Running bouts and
modulation and Pupil dilation events and modulation). The
frequency of running bouts and dilation events was similar
during PPC and AC imaging sessions (p=0.59 and p=0.65,
respectively, permutation test, here and throughout unless
otherwise noted; see Materials and Methods, subsection
Experimental design and statistical analysis). Mice initiated
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running bouts at a mean rate of 0.915 bouts/min (boot-
strapped 95% confidence interval of the mean, 0.749–
1.11, here and throughout, unless otherwise indicated),
and pupil dilations at 0.981 dilations/min (bootstrapped
95% confidence interval, 0.857–1.12). We observed no
difference between AC (N = 24) and PPC (N = 20) imag-
ing sessions when considering pupil area and running
speed during passive listening or spontaneous contexts
(passive running speed, p = 0.20; spontaneous running
speed, p = 0.52; passive pupil area, p = 0.43; spontane-
ous pupil area, p = 0.73). However, pupil area and run-
ning speed tended to be higher in general during the
passive listening context (pupil, p = 0.0020; running,
p, 0.0001; paired permutation test, N = 44 datasets;
Extended Data Fig. 1-1).
To determine how behavioral state affected neuronal

activity, we next examined the activity of individual neu-
rons during transitions from stationary to running, in the
“spontaneous context,” when no sound stimuli were pre-
sented. We compared mean activity of each neuron (de-
convolved estimated spike rates, here and throughout) in
the 3 s time window following running bout onset to the 1
s time window before running bout onset (Fig. 1I; see
Materials and Methods, subsection Running bouts and
modulation). Pupil size modulation was calculated simi-
larly, based on transitions in pupil area from constricted to
dilated (Fig. 1D,J; Materials and Methods, subsection Pupil
dilation events and modulation). We compared the running
and pupil modulation of each neuron to shuffled distributions,
where activity and behavioral data were time shifted by ran-
dom intervals, and classified each neuron as positively, nega-
tively, or not modulated by behavioral state transition. Larger
proportions of the SOM and Non-SOM populations were
positively modulated by both pupil dilations and running
bout onsets in PPC than in AC (Fig. 1I,J), suggesting that
the effects of arousal on spontaneous activity are not uni-
form across areas. Among the groups considered, the PPC
SOM population had the greatest proportion of neurons
modulated by running speed and pupil dilation (Fig. 1I,J).
In the passive listening context, sound stimuli were pre-

sented from each of eight locations, centered on the head
of the mouse (Fig. 1B,C; see Materials and Methods, sub-
section Sound stimuli). We chose to manipulate sound lo-
cation because of the role of PPC in spatial auditory
processing during active behaviors (Nakamura, 1999). To
determine whether each neuron was generally sound re-
sponsive, we computed the mean difference in activity
during sound presentations and the prestimulus periods
and compared with a shuffled distribution (Materials and
Methods, subsection Sound responsiveness). We defined
neurons as sound responsive if they responded to at least
one sound location, more than would be expected from a
random distribution obtained by shuffling. As expected, a
greater proportion of AC SOM and Non-SOM neurons
was sound responsive compared with PPC (39% of AC
SOM and 40% of AC Non-SOM; 29% of PPC SOM and
28% of PPC Non-SOM neurons; Fig. 1K). The fraction of
sound responsive neurons in AC is similar to the sparse
sound encoding population described by others in layer
2/3 of AC (Hromádka et al., 2008). Furthermore, sound-

evoked responses in AC Non-SOM neurons were lower
when mice were running than when they were stationary
(p, 0.05, Extended Data Fig. 1-2), as has been reported
on extensively by others (Schneider et al., 2014; Bigelow
et al., 2019; Yavorska and Wehr, 2021). In PPC, sound-
evoked responses were not affected by running behavior.

Sound location coding in AC and PPC
To characterize the sound location sensitivity of

responses in AC and PPC during the passive listening
context, we computed the sound Location Sensitivity
Index (LSI) of each neuron (Fig. 2A–D; Materials and
Methods, subsection Sound location sensitivity). It is
important to note that in the free-field sound stimulation
configuration, we cannot distinguish true sound location se-
lectivity from differences in sound intensity tuning. In both
AC and PPC, Non-SOM neurons were more sensitive to
sound location than SOM neurons (p, 0.0001; Fig. 2B,C).
PPC neurons overall were less sensitive than AC neu-
rons (Fig. 2D), and PPC sound responses were less reli-
able than AC sound responses (p, 0.001; Fig. 2E).
Interestingly, among neurons with sound location pref-
erences, PPC sound responses were biased toward the
lateral locations at 190° (contralateral) and �90° (ipsilat-
eral), while the distribution of sound location preferences
in AC neurons was more uniform (Fig. 2F,G). Based on these
differences in sound location sensitivity and response reliabil-
ity, we expected population activity to encode sound location
more accurately in AC than PPC.
To examine sound location coding at the level of neural

populations, we constructed population decoders to pre-
dict the most likely sound stimulus location (left vs right)
using the activity of different subsets of neurons. Each de-
coder was based on a Bayesian inversion of an encoding
model that related the activity of each neuron to sound lo-
cation and timing, running behavior, and pupil size (Fig. 3A;
Materials and Methods, subsection Decoding; Runyan et
al., 2017). The posterior probability of each stimulus loca-
tion was computed cumulatively at each time point using
population activity from all previous timepoints in the trial.
Decoder performance was quantified as the fraction of tri-
als where the stimulus with the maximal posterior probabil-
ity matched the actual presented stimulus.
First, to compare the overall ability of AC and PPC to

represent sound location, we used activity of only the
best cells (i.e., individual neurons whose activity best de-
coded sound location) regardless of cell type in the popu-
lation decoder. The number of best cells used for each
dataset was chosen to match the number of SOM neurons
imaged during that session. The performance of the “best
cell” decoder was above chance when using activity from
both AC and PPC (Fig. 3C,D; Materials and Methods, sub-
section Decoding). However, as expected based on the
sound location sensitivity of individual neurons (Fig. 2), AC
decoding accuracy was higher than that of PPC (p,
0.0001). Next, we compared the SOM and Non-SOM pop-
ulation decoders from each dataset. Within both areas,
sound location decoding was similar when using the activ-
ity of either SOM or Non-SOM populations (AC, p=0.82;
PPC, p=0.56; unpaired permutation tests; Fig. 3C), and
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both cell type populations from AC outperformed decoding
based on PPC populations (p, 0.0001, unpaired permuta-
tion test; Fig. 3C,D). All cell type-specific, subsampled pop-
ulation decoders performed worse than the decoders based
on the n-matched population of best neurons (p, 0.0001,
paired permutation test; Fig. 3D; see Materials and
Methods, subsection Decoding). To summarize, sound
location was more accurately decoded from AC popula-
tion activity than PPC, and SOM and random n-matched
Non-SOM subpopulations in both areas were similarly in-
formative about sound location. A sparse code for sound
location was especially evident in AC, as small numbers
of highly tuned best neurons more accurately encoded
sound location than the random subsamples of the popu-
lation (Table 1, full values and statistics).

Activity of SOM neurons was differently modulated
during aroused states in AC and PPC
Next, we more thoroughly characterized the activity

of SOM and Non-SOM neurons during arousal state

transitions. We focused these analyses on the spontane-
ous context, to isolate the effects of state transitions
from the effects of sound stimulation on activity. We de-
fined behavioral state transitions as the onset times
of “running bouts,” when the mouse’s running speed
rapidly increased (Materials and Methods, subsection
Running bouts and modulation). We aligned and aver-
aged the pupil area measurements to running bout on-
sets, observing that pupil area also increased during
running bouts, though with a slower time course (Fig. 4A,
gray trace; N= 44 imaging sessions). We also aligned
and averaged the activity of SOM and Non-SOM popula-
tions from AC and PPC to running bout onset (Fig. 4A,
colored traces; AC, N= 24 imaging sessions; PPC,
N= 20 imaging sessions; from six mice). In both AC and
PPC, mean activity of SOM and Non-SOM neurons in-
creased with the onset of running bouts. However, this
increase in activity was weak in AC because of the prev-
alence of both positively and negatively modulated SOM
and Non-SOM neurons in the AC population (Figs. 1I,

Figure 2. Sound location sensitivity in AC and PPC. A, Six example neurons with diverse sound location preferences, ranging from
ipsilateral (�90° to 0°) to contralateral (0° to 190°) locations. Thin lines, Mean response during sound presentation of individual tri-
als; thick lines, trial average. The LSI and response reliability are reported for each example cell. Red, Example Non-SOM neurons;
orange, example SOM neuron. B, Distribution of LSI for Non-SOM (mean, 0.20; 95% CI, 0.20, 0.21; N=2455) and SOM (mean,
0.19; 95% CI, 0.18, 0.19; N=354) neurons in AC. Triangles indicate population means. C, As in B, for PPC Non-SOM (mean, 0.20;
95% CI, 0.19, 0.20; N=2553) and SOM (mean, 0.13; 95% CI, 0.12, 0.14; N=298). D, Mean location sensitivity index in AC and
PPC. E, Cumulative distributions of response reliability, the fraction of sound-responsive trials, in AC and PPC. F, Histograms of the
preferred locations of all AC Non-SOM and SOM neurons with LSI values.0.05. G, Histograms of the preferred locations of all PPC
Non-SOM and SOM neurons with LSI values.0.05. *p, 0.05, ***p, 0.001, ****p, 0.0001. Error bars indicate the SEM.
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4B). In PPC, Non-SOM and SOM neurons more uniformly
increased activity at running onset (Figs. 1I, 4B).
Because of the slow time course of changes in pupil area

compared with the more rapid transitions in locomotion
(Fig. 4C,D), we also characterized single-neuron activity
during periods of sustained pupil constriction and dilation.
We classified pupil measurements as corresponding to low,

transitional, or high arousal states (Fig. 4E; Materials and
Methods, subsection Defining low and high arousal states
based on pupil area), and focused analyses on the low and
high arousal states. As expected from the relationship be-
tween running speed and pupil area, running speed was
higher during the pupil-defined high arousal states than low
arousal states (p, 0.0001). Mice ran at a mean 6 SEM of

Figure 3. Decoding sound location from AC and PPC population activity. A, The encoding model was trained on all trials that in-
cluded all arousal levels, and inverted using Bayes’ rule to compute the posterior probability of auditory stimuli given the activity of
the neural population in AC and PPC. B, Schematic of the discrimination being performed by the decoder, classifying sound stimuli
as occurring from the left or right of the mouse. C, Left, Mean cumulative population decoder performance (across datasets) when
classifying left versus right locations, when based on best cells, defined as individual Non-SOM cells or SOM cells with the highest
decoding performance. Best cells and Non-SOM cells in each dataset were subsampled to match the N of the SOM neuron popula-
tion within each imaging field of view. Right, Population decoder performance using PPC neurons. Chance performance is 0.5. D,
Mean decoder performance using all timepoints in the trial (equivalent to the final timepoints in C using SOM neurons, subsampled
Non-SOM neurons, and best cells in AC and PPC). Dotted line corresponds to chance performance (50%). N=24 AC datasets,
N=20 PPC datasets. Error bars indicate the SEM. ****p, 0.0001.

Table 1: Left-Right (LR) sound location decoding/full values and statistics related to Figures 3 and 6

Group n Mean SD 95% Confidence interval of the mean p value

AC best cells – LR1 24 � 10 0.86 0.11 0.85–0.87
AC Non-SOM – LR2 24 � 10 0.68 0.13 0.66–0.69
AC SOM – LR3 24 � 10 0.68 0.12 0.66–0.69
PPC best cells – LR4 20 � 10 0.65 0.10 0.64–0.67
PPC Non-SOM – LR5 20 � 10 0.53 0.09 0.52–0.53
PPC SOM – LR6 20 � 10 0.52 0.09 0.51–0.53
Kruskal–Wallis1–6 ,0.0001
Unpaired permutation1,2 ,0.0001
Unpaired permutation1,3 ,0.0001
Unpaired permutation1,4 ,0.0001
Unpaired permutation1,5 ,0.0001
Unpaired permutation1,6 ,0.0001
Unpaired permutation2,3 0.8167
Unpaired permutation2,4 0.1189
Unpaired permutation2,5 ,0.0001
Unpaired permutation2,6 ,0.0001
Unpaired permutation3,4 0.1160
Unpaired permutation3,5 ,0.0001
Unpaired permutation3,6 ,0.0001
Unpaired permutation4,5 ,0.0001
Unpaired permutation4,6 ,0.0001
Unpaired permutation5,6 0.4644
AC high arousal – LR (all cells) 24 � 10 0.83 0.16 0.81–0.85 0.0003
AC low arousal – LR (all cells) 24 � 10 0.78 0.12 0.76–0.80
PPC high arousal – LR (all cells) 20 � 10 0.54 0.13 0.53–0.55 0.060
PPC low arousal – LR (all cells) 20 � 10 0.57 0.13 0.56–0.59

The superscripts label the samples being compared in the statistics below.
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48.246 4.77 cm/s during the high arousal state, and
7.716 1.29cm/s during the low arousal state (p, 0.0001;
N=44 datasets). SOM and Non-SOM activity was elevated
overall in high arousal states (p, 0.0001 for AC Non-SOM,
PPC SOM, and Non-SOM; p=0.0029 for AC SOM neu-
rons, paired permutation test; Fig. 4E–H). To compare
arousal modulation of activity in each population of

neurons, we next computed an AMI (Materials and
Methods, subsection Arousal modulation index), which
could vary from �1 to 11, with �1 indicating greater
mean activity in the low arousal period, and 11 indicat-
ing greater activity in the high arousal period. The AMI
was higher in PPC than AC neurons (p, 0.0001; Table 2,
full values and statistics). Interestingly, the AMI differed

Figure 4. Single-cell activity changes with arousal during the spontaneous context. A, Average z-scored deconvolved activity, run-
ning speed, and pupil area aligned on running bout onset. Red, The activity of AC Non-SOM neurons (N=24 datasets); orange, AC
SOM neuron activity (N=24 datasets); dark blue, PPC Non-SOM neuron activity (N=20 datasets); light blue, PPC SOM neuron ac-
tivity (N=20 datasets); black, running speed (N=44 datasets); gray, pupil area (N=44 datasets). B, Average z-scored deconvolved
activity of individual neurons, from left to right: all AC Non-SOM, AC SOM, PPC Non-SOM, and PPC SOM neurons aligned on run-
ning bout onset (AC Non-SOM, N=2645; AC SOM, N=359; PPC Non-SOM, N=4719; PPC SOM, N=525; B–I). Neurons were
sorted by running modulation. C, Autocorrelation of pupil area and running speed, averaged across all datasets (N=44). D, Cross-
correlation between running speed and pupil area, averaged across all datasets (N=44). Black triangle indicates the time lag with
peak correlation, with running preceding pupil by 1.27 s. E, Illustration of clustering that sorted pupil area during each imaging
frame into low, transition, and high arousal states. F, Mean responses of AC Non-SOM (red solid), AC SOM (red dotted), PPC Non-
SOM (blue solid), and PPC SOM (blue dotted) neurons in low and high arousal states, as defined in E. G, Left, Mean activity of AC
Non-SOM neurons in high arousal state (classified with clustering as in E), plotted against mean activity in the low arousal state.
Right, Mean activity of AC SOM neurons in high arousal versus low arousal states. H, As in G, for PPC Non-SOM and SOM neurons.
I, Cumulative probability distribution of the arousal modulation index in AC Non-SOM (solid red), AC SOM (dotted red), PPC Non-
SOM (solid blue), and PPC SOM (dotted blue) neurons. The arousal modulation index was calculated from the values in G and H,
(High – Low)/(High 1 Low) for each neuron. J, Cumulative probability distribution of the Pearson correlation between the activity
and pupil area of each neuron; colors are as in I. K, Cumulative probability distribution of the Pearson correlation between activity
and running speed in each neuron. Significance was determined by permutation test: ****p, 0.0001. Error bars, 95% bootstrapped
confidence interval around the mean.
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by cell type in PPC but not AC. In AC, the AMI was similar
in SOM and Non-SOM neurons (p= 0.22), while in PPC,
the AMI was higher in SOM than Non-SOM neurons
(p, 0.0001; Fig. 4I).
Finally, to consider the full-time-varying relationship be-

tween ongoing neuronal activity and behavioral correlates
of arousal, we correlated the activity of each neuron to
pupil area and running speed, across the entire spontane-
ous behavioral context (Fig. 4J,K). Consistent with the
above analyses based on activity aligned on state transi-
tions, SOM and Non-SOM activity in PPC was more
strongly correlated with both running and pupil size than
in AC (p, 0.0001). Within AC, SOM, and Non-SOM activ-
ity was similarly correlated with the two behavioral meas-
ures (pupil area, p=0.063; running speed, p=0.146),
while within PPC the activity of SOM neurons was again
more strongly correlated with behavior than was the activ-
ity of Non-SOM neurons (p, 0.001 for both running and
pupil; Fig. 4J,K, Tables 3, 4, 5).
Together, our results so far indicate that in the absence

of sound stimulation, SOM and Non-SOM neurons have
heterogeneous activity relationships with arousal state in

AC, whether defined by running speed or pupil area. In
PPC, neuronal activity was positively modulated with
heightened arousal, with a stronger modulation of SOM
neurons than Non-SOM neurons.

An encodingmodel revealed different contributions of
running speed and pupil size to single cell activity in
AC and PPC
Running speed and pupil area are strongly correlated

signals but vary on different timescales (Fig. 4C,D) and
have separable effects on neuronal activity (Vinck et al.,
2015). Our analyses of ongoing spontaneous activity in
AC and PPC also hint at the possibility of separable ef-
fects of pupil area and running speed, as the activity of
AC Non-SOM neurons was more highly correlated with
pupil area than with running speed (p, 0.0001, paired
permutation test).
To disentangle the relationships among neuronal activ-

ity, running velocity, and pupil area, we used an encoding
model approach (Pillow et al., 2008; Park et al., 2014;
Runyan et al., 2017). We constructed a GLM that used

Table 2: Arousal modulation index during spontaneous context/full values and statistics related to Figure 4I

Group n Mean SD 95% Confidence interval of the mean p value

AC SOM arousal modulation index1 359 0.057 0.29 0.027–0.085
AC Non-SOM, arousal modulation index2 2645 0.035 0.28 0.025–0.046
PPC Non-SOM arousal modulation index3 4719 0.25 0.31 0.24–0.26
PPC SOM arousal modulation index4 525 0.35 0.31 0.32–0.37
Kruskal–Wallis1–4 7.2E-12
Unpaired permutation1,2 0.22
Unpaired permutation1,3 ,0.0001
Unpaired permutation2,3 ,0.0001
Unpaired permutation1,4 ,0.0001
Unpaired permutation2,4 ,0.0001
Unpaired permutation3,4 ,0.0001

Table 3: Correlation coefficients with pupil area and running speed during spontaneous context/full values and statistics re-
lated to Figure 4, J and K

Group n Mean SD 95% Confidence interval of the mean p value

AC Non-SOM, pupil correlation coefficient1 2645 0.0057 0.033 0.0045–0.0070
AC SOM pupil correlation coefficient2 359 0.0091 0.031 0.0061–0.12
PPC Non-SOM pupil correlation coefficient3 4719 0.035 0.043 0.034–0.036
PPC SOM pupil correlation coefficient4 525 0.055 0.049 0.051–0.059
Kruskal–Wallis1-4 6.3E-250
Unpaired permutation1,2 0.063
Unpaired permutation1,3 ,0.0001
Unpaired permutation2,3 ,0.0001
Unpaired permutation1,4 ,0.0001
Unpaired permutation2,4 ,0.0001
Unpaired permutation3,4 ,0.0001
AC Non-SOM, running speed correlation coefficient1 2645 0.0020 0.034 0.00060–0.0033
AC SOM running speed correlation coefficient2 359 0.0048 0.034 0.0013–0.0089
PPC Non-SOM running speed correlation coefficient3 4719 0.033 0.044 0.032–0.034
PPC SOM running speed correlation coefficient4 525 0.057 0.055 0.053–0.062
Kruskal–Wallis1–4 ,0.0001
Unpaired permutation1,2 0.15
Unpaired permutation1,3 ,0.0001
Unpaired permutation2,3 ,0.0001
Unpaired permutation1,4 ,0.0001
Unpaired permutation2,4 ,0.0001
Unpaired permutation3,4 ,0.0001
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sound stimulus timing and location, pupil area, and run-
ning velocity to predict the responses of individual SOM
and Non-SOM neurons in AC and PPC, in the passive lis-
tening context (Fig. 5A). We note that in the above analy-
ses (Figs. 1, 4), we considered only the speed at which
the mouse was running in any direction, as increased run-
ning speed is correlated with heightened arousal (Fu et
al., 2014; Zhou et al., 2014; Vinck et al., 2015; Mineault et
al., 2016; Shimaoka et al., 2018). Because the activity of
PPC neurons can be selective for running direction (Nitz,
2006; Whitlock et al., 2012; Runyan et al., 2017; Krumin et
al., 2018; Minderer et al., 2019) in the GLM, we used run-
ning velocity rather than speed to obtain more accurate
predictions of the activity of each neuron (Materials and
Methods, subsection Encoding models; Fig. 5).
To determine the relative contributions of pupil area and

running velocity to the activity of neurons, we separately
removed these predictors from the model and measured
the decrement in the prediction performance of the
model. For example, we calculated the pupil size contri-
bution to the activity of a given neuron as the difference
between the prediction performance of the model with

and without the pupil size predictors. We considered this
decrement in model performance as the contribution of
pupil size to the activity of the neuron that is not redun-
dant with running speed (Materials and Methods, subsec-
tion Running and pupil contribution). If running velocity
and pupil area did not make unique contributions to neu-
ronal activity, running predictors would be able to account
for the missing pupil area predictors and vice versa, and
the performance of the model would not be degraded
compared with the full model, which includes both pupil
area and running velocity predictors. The model compari-
son revealed single-neuron activity that could be ex-
plained distinctly by running and by pupil in both AC and
PPC [Fig. 5B–G (note neurons along the pupil and running
contribution axes in D–G)]. While a Kruskal–Wallis test in-
dicated that the contribution of pupil size differed among
the four cell type/area combinations, post hoc tests re-
turned p.0.05 for all pairwise comparisons (Table 6, full
values and statistics). In contrast, running contributions
were overall stronger in PPC neurons than in AC neurons
(p, 0.0001) and within PPC, running contributions were
stronger to SOM than Non-SOM activity (p=0.0002; Fig.

Table 4: Arousal modulation index during passive listening context

Group n Mean SD 95% Confidence interval of the mean p value

AC Non-SOM, arousal modulation index1 2645 0.072 0.26 0.063–0.083
AC SOM arousal modulation index2 359 0.079 0.28 0.049–0.11
PPC Non-SOM arousal modulation index3 4719 0.18 0.29 0.17–0.19
PPC SOM arousal modulation index4 525 0.26 0.28 0.24–0.29
Kruskal–Wallis1–4 2.1E-66
Unpaired permutation1,2 0.63
Unpaired permutation1,3 ,0.0001
Unpaired permutation2,3 ,0.0001
Unpaired permutation1,4 ,0.0001
Unpaired permutation2,4 ,0.0001
Unpaired permutation3,4 ,0.0001

Table 5: Correlation coefficients with pupil area and running speed during passive listening context

Group n Mean SD 95% Confidence interval of the mean p value

AC Non-SOM, pupil correlation coefficient1 2645 0.0096 0.031 0.0081–0.010
AC SOM pupil correlation coefficient2 359 0.010 0.033 0.0074–0.014
PPC Non-SOM pupil correlation coefficient3 4719 0.030 0.042 0.029–0.031
PPC SOM pupil correlation coefficient4 525 0.043 0.044 0.038–0.046
Kruskal–Wallis1-4 5.3E-115
Unpaired permutation1,2 0.63
Unpaired permutation1,3 ,0.0001
Unpaired permutation2,3 ,0.0001
Unpaired permutation1,4 ,0.0001
Unpaired permutation2,4 ,0.0001
Unpaired permutation3,4 ,0.0001
AC Non-SOM, running speed correlation coefficient1 2645 0.0067 0.029 0.0056–0.0078
AC SOM running speed correlation coefficient2 359 0.0076 0.30 0.0050–0.011
PPC Non-SOM running speed correlation coefficient3 4719 0.029 0.042 0.028–0.030
PPC SOM running speed correlation coefficient4 525 0.045 0.047 0.038–0.046
Kruskal–Wallis1–4 1.2E-146
Unpaired permutation1,2 0.59
Unpaired permutation1,3 ,0.0001
Unpaired permutation2,3 ,0.0001
Unpaired permutation1,4 ,0.0001
Unpaired permutation2,4 ,0.0001
Unpaired permutation3,4 ,0.0001
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Figure 5. Using an encoding model to disentangle running and pupil contributions to single-cell activity. A, Schematic of GLM used
to determine the unique contributions of pupil area and running velocity to neuron activity. B, Average contribution of pupil area to
activity across all AC Non-SOM (N=2645) and SOM (N=359) neurons (red bars) and PPC Non-SOM (N=4525) and SOM (N=505)
neurons (blue bars). Contribution was quantified as the improvement in model prediction performance of the activity of each neuron
when adding pupil area as a set of predictors. Error bars indicate the SEM. n.s., Not significant. Exact values are in the text. C, As in
B, calculated when comparing model performance with and without running velocity predictors. AC Non-SOM and SOM neurons
(red bars) and PPC Non-SOM and SOM neurons (blue bars), ****p, .0001. D, Pupil contribution plotted against running contribution
for each AC Non-SOM neuron, calculated as in B. E, Pupil contribution plotted against running contribution for each AC SOM neu-
ron. F, G, Pupil contribution plotted against running contribution for each PPC Non-SOM or SOM neuron. Sample sizes in B apply
to all panels.

Table 6: Pupil and running contributions/full values and statistics related to Figure 5

Group n Mean SD 95% Confidence interval of the mean p value

AC Non-SOM, pupil diameter contribution1 2476 0.0027 0.0086 0.0023–0.0031
AC SOM, pupil diameter contribution2 330 0.0036 0.0123 0.0025–0.0049
PPC Non-SOM, pupil diameter contribution3 4525 0.0029 0.0060 0.0028–0.0031
PPC SOM, pupil diameter contribution4 505 0.0034 0.0059 0.0029–0.0040
Kruskal–Wallis1-4 ,0.0001
Unpaired permutation1,2 0.0780
Unpaired permutation1,3 0.1259
Unpaired permutation2,3 0.2360
Unpaired permutation1,4 0.0619
Unpaired permutation2,4 0.9520
Unpaired permutation3,4 0.1070
AC Non-SOM, running speed contribution1 2476 0.0020 0.0050 0.0019–0.0023
AC SOM running speed contribution2 330 0.0023 0.0005 0.0019-0.0320
PPC Non-SOM running speed contribution3 4525 0.0079 0.0156 0.0075–0.0083
PPC SOM running speed contribution4 505 0.0113 0.0181 0.0099–0.0131
Kruskal–Wallis1-4 ,0.0001
Unpaired permutation1,2 0.4409
Unpaired permutation1,3 0.0001
Unpaired permutation2,3 0.0001
Unpaired permutation1,4 0.0001
Unpaired permutation2,4 0.0001
Unpaired permutation3,4 0.0002
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5C,F,G). Within AC, running contributions did not depend
on cell type (p=0.44; Fig. 5C,D,E; Table 6, full values and
statistics). Thus, running contributions, but not pupil con-
tributions, reflect the observed differences in the arousal
dependence of activity in AC and PPC.

Sound location coding was enhanced with arousal in
AC, but not PPC
Given the activity changes with arousal in AC and PPC,

we hypothesized that arousal would affect sensory infor-
mation coding in both regions. To test this possibility, we
trained and tested the sound location decoder (Fig. 3) in
low and high arousal periods (Fig. 6A–E). Sound stimulus
trials were classified as occurring during low or high
arousal states based on pupil size (Fig. 4E), and low and
high arousal trials were evenly balanced to train and test
the decoders. Decoding performance for left versus right
sound locations using AC populations was modestly im-
proved during heightened arousal (p=0.0003, paired per-
mutation test), but decoding performance was similarly
poor in low and high arousal trials using PPC population
activity (Fig. 6C–E; p=0.06, paired permutation test).
Thus, while sensory coding in AC was slightly improved
with heightened arousal, coding within PPC populations
was unaffected by arousal state (Table 1, full values and
statistics).
To better understand the basis for the improvement in

sound location coding with arousal in AC, we related the
sound coding of individual neurons (z-scored decoding
performance) to the contribution of pupil size to their ac-
tivity (Fig. 5, encoding model). In AC, sound coding had
a weakly negative relationship with pupil modulation
(Pearson’s correlation, �0.03), where the neurons with
the strongest sound coding tended to have the weak-
est pupil modulation. In PPC, on the other hand, sound
coding and pupil modulation were positively correlated
(Pearson’s correlation, 0.17), as the same neurons can
be modulated by both sound and arousal state in PPC.
We then examined the modulation of neural population
activity by sounds and by arousal state, in population
activity space, where each dimension (axis) is the ac-
tivity of one neuron and a population of n neurons has
n dimensions (axes; Cunningham and Yu, 2014). We
found the direction of the “sound location axis,” along
which left versus right sound locations were best distin-
guished in this n-dimensional space, and the direction of
the “pupil axis,” along which pupil size best explained
population activity, in each AC and PPC population (see
Materials and Methods, subsection Defining population
activity axes related to sound location and arousal). We
then measured the angle between these axes. In AC,
these angles were more orthogonal to each other than in
PPC (p= 0.0006).
The correlation structure of population activity influen-

ces the amount of information that can be encoded
across neurons (Averbeck et al., 2006; Panzeri et al.,
2022). Specifically, the slope of the relationship between
signal and noise correlations determines whether noise
correlations limit the information that can be encoded by
the population. In other words, greater shared variability

among neurons with similar tuning preferences reduces
the information that the population can encode. As a con-
sequence, reductions in noise correlations among neuron
pairs with similar tuning preferences or increases in noise
correlations among neuron pairs with opposing tuning
preferences would both theoretically increase the encod-
ing capacity of a neural population (Averbeck et al., 2006;
Panzeri et al., 2022). We then wondered whether transitions
between arousal states also induced different changes in
the correlation structure in AC and PPC, contributing to the
improvements in sound location coding in AC. We com-
pared pairwise noise correlations in high and low arousal
conditions for both regions, and sorted these by the sig-
nal correlations between neuron pairs. Pairwise noise
correlations among neurons with similar sound location
preferences (high signal correlations) were reduced in
the high arousal state in AC (p=0.002). In PPC, on the other
hand, these similarly tuned neurons instead became more
correlated with arousal (p, 0.0001). In neuron pairs with
negative signal correlations (different tuning), noise cor-
relations were enhanced in AC (p = 0.0015), but did not
change with arousal in PPC (p = 0.235). Together, the
arousal-induced changes in the correlation structure
of population activity suggest that the improvement in
sound location coding in AC could result from a reduc-
tion in shared variability across neurons with similar
sound preferences, in addition to the generalized sup-
pression in sound-evoked responses during locomotion
(Schneider et al., 2014; Bigelow et al., 2019; Yavorska
and Wehr, 2021) that could sharpen response selectivity.

Discussion
Our goal in this study was to determine whether the ac-

tivity of inhibitory interneurons is differently modulated by
behavioral state across the cortical processing hierarchy.
We have measured spontaneous and sound-driven activ-
ity in populations of SOM-expressing inhibitory interneur-
ons and Non-SOM neurons in layer 2/3 of AC and in PPC,
while mice transitioned between arousal states.
In the absence of sound stimulation, the effects of

arousal state on spontaneous activity in AC were com-
plex. Although heightened arousal had a slight positive
effect on activity in AC at the population level, activity in
individual AC neurons could be positively or negatively
modulated, as has been described previously by others
(Bigelow et al., 2019; Yavorska and Wehr, 2021). Short
spurts of running, as we observed in our imaging ses-
sions (Extended Data Fig. 1-1D), are associated with a
net depolarization in AC (Shimaoka et al., 2018), which
likely contributes to the net positive relationship between
spontaneous AC activity and running observed here. In
contrast, the spontaneous activity of most PPC neurons
increased during these heightened arousal states, and
SOM neurons were even more strongly and uniformly
modulated than Non-SOM neurons.
The behavioral state transitions in our study involved

increases both in pupil size and in locomotion (Fig.
4A). It is thus crucial to emphasize that the effects of
heightened arousal state on neural activity described
here include a mixture of motor-related and “true”
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Figure 6. Arousal impacts the structure of population activity, improving information coding in AC. A, The encoding model was
trained on all trials that included all arousal levels, and inverted using Bayes’ rule to compute the posterior probability of auditory
stimuli given the activity of the neural population in AC and PPC. B, Schematic of the discrimination being performed by the de-
coder, classifying sound stimuli as occurring from the left or right of the mouse. C-D, Mean fraction correct of cumulative sound lo-
cation (left sound locations vs right sound locations) decoding in AC (C) and PPC (D) populations in high (dark) and low (light)
arousal conditions. Subsampling to match arousal and sound locations was repeated 10 times. E, Cumulative fraction correct of de-
coding for left versus right sound location at the end of the trial in AC and PPC in high and low arousal. F, For each AC neuron, the
sound location decoding performance based on the activity of that neuron is plotted against the pupil modulation of that neuron, as
quantified by the encoding model in Figure 5. Neurons are color coded from black to red to indicate their z-scored sound location
decoding performance (red neurons. 0 z-scored performance). G, As in F, for PPC. H, Schematic to explain the definitions of the
sound location and pupil axes in the high-dimensional population activity space in I. I, Angle in degrees between the pupil and
sound location axes in each AC and PPC dataset. The angle between the pupil and sound axes is significantly smaller in PPC than
AC. J, Mean pairwise noise correlation among sound-responsive AC neurons during high arousal (gray) and low arousal (black) tri-
als, binned by their pairwise signal correlation. K, As in J, but for PPC. L, Schematic demonstrating the impacts of arousal on sound
coding in AC population activity. The shape of the population activity subspace responding to “sound 1” and “sound 2” changes
between low arousal (dashed outlines) and high arousal (gray ovals) states, improving their discriminability. This shape change oc-
curs because the shared variability is reduced among neurons coding for similar locations and is enhanced among neurons coding
for different locations (see J). M, As in L, for PPC. In PPC, the shape of the area of population activity space encoding sound 1 or
sound 2 does not change with arousal, as shared variability is more generally increased across neuron pairs (see K). Across panels:
**p, 0.01, ***p, 0.001, ****p, 0.0001. n.s., Not significant. AC Non-SOM, N=24 datasets; AC SOM, N=24 datasets; PPC Non-
SOM, N=20 datasets; PPC SOM, N=20 datasets; throughout figure panels.
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arousal-related effects, such as those resulting from in-
creases in norepinephrine and acetylcholine release within
AC and PPC. While locomotion, whisking, and pupil dila-
tions have all been considered as behavioral correlates of
the arousal state of an animal, motor-related feedback acts
on specialized circuits within visual, somatosensory, and
auditory cortices, determining whether motor behavior
positively or negatively influences neural activity (Lee et al.,
2013; Fu et al., 2014; Schneider et al., 2014; Pakan et al.,
2016; Bigelow et al., 2019; Yavorska and Wehr, 2021). This
motor-related feedback acts in concert with neuromodula-
tory inputs more directly related to the arousal state of the
animal, leading to state-dependent network changes that
are specialized across cortical regions. It is unlikely that
any aroused state is without a related change in fidgeting,
facial movements, or other motor outputs (Musall et al.,
2019; Stringer et al., 2019), and so the relative contribu-
tions of motor-related versus neuromodulatory inputs to
neural activity must be defined for each brain region for a
full consideration of state-dependent processing across
the cortex. Here, we were able to disentangle the unique
contributions of running velocity and pupil size to the activ-
ity of individual neurons in AC and PPC using an encoding
model (Fig. 5). In both regions, pupil size and running ve-
locity had distinguishable contributions to the activity of
SOM and Non-SOM neurons. The magnitude of unique
pupil contributions was similar across all groups, but run-
ning contributions to activity were significantly stronger in
PPC, particularly among SOM neurons.
In AC, the effects of arousal and locomotion can op-

pose each other, as motor-related feedback activates PV
neurons, reducing sound-evoked responses during loco-
motion (Schneider et al., 2014; Bigelow et al., 2019;
Yavorska and Wehr, 2021). We observed a small number
of Non-SOM neurons in AC that were strongly and posi-
tively modulated with locomotion, which may include the
PV neurons mediating the locomotion-related reduction
of activity in other neurons (Schneider et al., 2014). In
PPC, motor-related effects were largely positive and were
particularly strong among SOM neurons, suggesting that,
unlike in AC (Schneider et al., 2014), motor feedback does
not target PV neurons in PPC. Instead, SOM neurons in
PPC may inhibit PV neurons during locomotion, disinhibit-
ing excitatory neurons and further enhancing the arousal-
related increase in activity in the local population. It will be
interesting to determine whether this is the case in future
studies. Recently, we also discovered that activity within
the SOM population is highly coordinated, especially in
PPC (Khoury et al., 2022). As a result, the transitions from
low to high arousal states would trigger highly coordi-
nated SOM population events, which could strongly im-
pact the local network activity state (Chen et al., 2015;
Veit et al., 2017; Wang and Yang, 2018). In the future,
causal manipulations of SOM neurons, mimicking their
activity during arousal transitions, will help reveal the im-
pact of these coordinated SOM activity events on the ac-
tivity and coding in the local population.
The effects of arousal on stimulus coding have been ex-

amined in depth across primary sensory cortices (Zhou et
al., 2014; McGinley et al., 2015; Vinck et al., 2015; Shimaoka

et al., 2018; Lin et al., 2019). Previous studies revealed that
moderate levels of arousal optimally impact sensory coding
(McGinley et al., 2015; Lin et al., 2019), aligning well with the
Yerkes–Dodson (inverted-U) relationship between arousal
and perceptual task performance (Waschke et al., 2019).
Unlike these studies, we did not observe a decrement in
sound location coding in the highest arousal state, instead
measuring a modest improvement in decoding accuracy in
the high arousal state. Mice in our experiments were most
likely to visit two separable behavioral states (stationary/un-
aroused or running/aroused), without the gradation of differ-
ent levels of arousal observed by others. As a result, the
high arousal state described here likely includes a mixture of
the moderate and high arousal states defined by others
(McGinley et al., 2015). Because sensory coding in PPC
depends on the behavioral relevance of stimuli (Fitzgerald
et al., 2011; Pho et al., 2018), we expected that sound cod-
ing would also improve in PPC with heightened arousal,
when mice might be more aware of the sound stimuli.
Surprisingly, despite the more pronounced positive modu-
lation of activity in PPC that accompanied increases in
arousal and locomotion (Fig. 4), the behavioral state did
not affect sensory encoding in PPC (Fig. 6). Our results
imply that arousal alone is not sufficient to improve sensory
coding in PPC outside of a task context, supporting the
idea that task engagement and arousal modulate sensory
responses through separate pathways (Saderi et al., 2021).
Finally, to better understand the basis of the improve-

ment of sound coding with arousal in AC (and lack thereof
in PPC), we related sound coding and pupil-related ef-
fects on population activity and its correlation structure.
In AC, sound coding and pupil modulation were strongest
in distinct sets of neurons (Fig. 6F), and, with heightened
arousal, shared variability was reduced among neurons
with similar tuning (Fig. 6J). The net result was an improve-
ment in our ability to decode sound information from AC
population activity in the heightened arousal state, as the
responses of the population to different stimuli were more
separable (Fig. 6L, scheme). In PPC, on the other hand,
sound coding and pupil modulation were intermixed within
the same neurons (Fig. 6G), and shared variability in-
creased among neurons with similar tuning (Fig. 6K). As a
consequence, although activity was strongly modulated in
PPC with arousal, the separability of population responses
to different sounds was not affected (Fig. 6M). As has been
recently reviewed, positive noise correlations among neu-
rons with similar tuning limit the information that a popula-
tion can encode (Averbeck et al., 2006; Panzeri et al.,
2022), which is consistent with our results. To summarize,
arousal had different effects on the correlation structure of
population activity in AC and PPC. In AC, the result was
better separability of the population responses to different
sounds, while in PPC the effects of arousal on population
activity were information limiting (Averbeck et al., 2006;
Panzeri et al., 2022).
To conclude, we have characterized the effects of the

global arousal state on population activity in sensory and
association cortices by measuring neuronal activity during
fluctuations in arousal and locomotion. In AC, but not PPC,
sensory representations were enhanced with arousal, even
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when not behaviorally relevant. An important future direc-
tion will be to determine whether global shifts in arousal af-
fect the coding of behaviorally relevant information in PPC,
and whether local inhibitory circuits can provide a gating
mechanism to enhance the encoding of behaviorally rele-
vant sensory information of PPC.
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