Changes in the subcellular distribution of calmodulin-kinase II during brain development

Brain Res. 1985 Feb;350(1-2):211-24. doi: 10.1016/0165-3806(85)90265-2.

Abstract

Subcellular fractions prepared from rodent forebrain at different postnatal ages were examined for calmodulin-binding proteins using [125I]calmodulin and a gel overlay technique. Synaptic junction (SJ) fractions from newborn brain, which display purity comparable to adult SJ fractions, contain low but detectable amounts of 60 and 50 kdalton calmodulin-binding polypeptides; the latter being the major postsynaptic density protein. These polypeptides have recently been shown to be the calmodulin-binding protein subunits of calmodulin-dependent protein kinase II (CaM-kinase II). CaM-kinase II polypeptides represented the predominent calmodulin-binding proteins in nearly every subcellular fraction examined, regardless of postnatal age. Large increases were observed in the CaM-kinase II content of every subcellular fraction throughout postnatal development. During development, a striking shift in the subcellular distribution of CaM-kinase Ii was observed. Over 4 times as much CaM-kinase II was cytosolic relative to particulate in newborn brain while this ratio was completely reversed in adult brain. Large age-dependent increases in particulate-associated CaM-kinase II were observed in highly purified synaptic plasma membrane (5-fold) and SJ (14-fold) fractions. The CaM-kinase II content of SJ fractions increased approximately 70% between days 24 and 90, a period in development that follows the most active stages of synapse formation in situ. In adult brain, approximately 60% of CaM-kinase II in crude synaptosomal fractions (P2-INT) was recovered in SJ fractions. The CaM-kinase II in SPM fractions from all developmental ages resists solubilization in Triton X-100 and greater than 90% is recovered in SJ fractions. These studies indicate that during brain development the accumulation of SJ-associated CaM-kinase II represents an important process in the molecular and enzymatic maturation of CNS postsynaptic structures.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Age Factors
  • Animals
  • Animals, Newborn
  • Brain / enzymology*
  • Brain / growth & development
  • Brain Chemistry
  • Calmodulin / metabolism*
  • Protein Kinases / metabolism*
  • Rats
  • Subcellular Fractions / enzymology
  • Synaptic Membranes / enzymology
  • Synaptosomes / enzymology

Substances

  • Calmodulin
  • Protein Kinases