The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis

PLoS One. 2014 Sep 4;9(9):e106680. doi: 10.1371/journal.pone.0106680. eCollection 2014.

Abstract

Background: Several studies have suggested that neuron-specific enolase (NSE) in serum may be a biomarker of traumatic brain injury. However, whether serum NSE levels correlate with outcomes remains unclear. The purpose of this review was to evaluate the prognostic value of serum NSE protein after traumatic brain injury.

Methods: PubMed and Embase were searched for relevant studies published up to October 2013. Full-text publications on the relationship of NSE to TBI were included if the studies concerned patients with closed head injury, NSE levels in serum after injury, and Glasgow Outcome Scale (GOS) or Extended GOS (GOSE) scores or mortality. Study design, inclusion criteria, assay, blood sample collection time, NSE cutoff, sensitivity and specificity of NSE for mortality prediction (if sufficient information was provided to calculate these values), and main outcomes were recorded.

Results: Sixteen studies were eligible for the current meta-analysis. In the six studies comparing NSE concentrations between TBI patients who died and those who survived, NSE concentrations correlated with mortality (M.D. 0.28, 95% confidence interval (CI), 0.21 to 0.34; I2 55%). In the eight studies evaluating GOS or GOSE, patients with unfavorable outcomes had significantly higher NSE concentrations than those with favorable outcomes (M.D. 0.24, 95% CI, 0.17 to 0.31; I2 64%). From the studies providing sufficient data, the pooled sensitivity and specificity for mortality were 0.79 and 0.50, and 0.72 and 0.66 for unfavorable neurological prognosis, respectively. The areas under the SROC curve (AUC) of NSE concentrations were 0.73 (95% CI, 0.66-0.80) for unfavorable outcome and 0.76 (95% CI, 0.62-0.90) for mortality.

Conclusions: Mortality and unfavorable outcome were significantly associated with greater NSE concentrations. In addition, NSE has moderate discriminatory ability to predict mortality and neurological outcome in TBI patients. The optimal discrimination cutoff values and optimal sampling time remain uncertain because of significant variations between studies.

Publication types

  • Meta-Analysis
  • Review
  • Systematic Review

MeSH terms

  • Brain Injuries / blood*
  • Brain Injuries / pathology*
  • Humans
  • Phosphopyruvate Hydratase / blood*
  • Prognosis

Substances

  • Phosphopyruvate Hydratase

Grants and funding

The authors have no support or funding to report.