Bayesian tests to quantify the result of a replication attempt

J Exp Psychol Gen. 2014 Aug;143(4):1457-75. doi: 10.1037/a0036731. Epub 2014 May 26.

Abstract

Replication attempts are essential to the empirical sciences. Successful replication attempts increase researchers' confidence in the presence of an effect, whereas failed replication attempts induce skepticism and doubt. However, it is often unclear to what extent a replication attempt results in success or failure. To quantify replication outcomes we propose a novel Bayesian replication test that compares the adequacy of 2 competing hypotheses. The 1st hypothesis is that of the skeptic and holds that the effect is spurious; this is the null hypothesis that postulates a zero effect size, H₀ : δ = 0. The 2nd hypothesis is that of the proponent and holds that the effect is consistent with the one found in the original study, an effect that can be quantified by a posterior distribution. Hence, the 2nd hypothesis-the replication hypothesis-is given by Hr : δ ∼ "posterior distribution from original study." The weighted-likelihood ratio between H₀ and Hr quantifies the evidence that the data provide for replication success and failure. In addition to the new test, we present several other Bayesian tests that address different but related questions concerning a replication study. These tests pertain to the independent conclusions of the separate experiments, the difference in effect size between the original experiment and the replication attempt, and the overall conclusion based on the pooled results. Together, this suite of Bayesian tests allows a relatively complete formalization of the way in which the result of a replication attempt alters our knowledge of the phenomenon at hand. The use of all Bayesian replication tests is illustrated with 3 examples from the literature. For experiments analyzed using the t test, computation of the new replication test only requires the t values and the numbers of participants from the original study and the replication study.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bayes Theorem*
  • Humans
  • Reproducibility of Results*
  • Research Design*